DOI QR코드

DOI QR Code

A Study on Malicious Code Detection Using Blockchain and Deep Learning

블록체인과 딥러닝을 이용한 악성코드 탐지에 관한 연구

  • Received : 2020.12.02
  • Accepted : 2020.12.08
  • Published : 2021.02.28

Abstract

Damages by malware have recently been increasing. Conventional signature-based antivirus solutions are helplessly vulnerable to unprecedented new threats such as Zero-day attack and ransomware. Despite that, many enterprises have retained signature-based antivirus solutions as part of the multiple endpoints security strategy. They do recognize the problem. This paper proposes a solution using the blockchain and deep learning technologies as the next-generation antivirus solution. It uses the antivirus software that updates through an existing DB server to supplement the detection unit and organizes the blockchain instead of the DB for deep learning using various samples and forms to increase the detection rate of new malware and falsified malware.

최근 맬웨어에 의한 피해가 증가하고 있다. 기존의 시그니처 기반 안티 바이러스 솔루션은 제로 데이 공격 및 랜섬웨어와 같은 새로운 위협에 취약하다. 그럼에도 많은 기업은 문제점을 인식하고, 다중 엔드 포인트 보안 전략의 일부로 서명 기반 안티 바이러스 솔루션을 유지하고 있다. 본 논문에서는 차세대 안티 바이러스 솔루션으로 블록 체인과 딥 러닝 기술을 이용한 솔루션을 제안한다. 기존 DB 서버를 통해 업데이트되는 바이러스 백신 소프트웨어를 사용하여 탐지 유닛을 보완하고, 다양한 샘플과 형태를 사용하여 딥 러닝 용 DB 대신 블록 체인을 구성하여 신규 악성 코드 및 위조 악성 코드 탐지율을 높이는 방법을 제안한다.

Keywords

References

  1. Why even the best antivirus software isn't enough (and why you still need it) [Internet], https://www.csoonline.com/article/3316480/why-the-best-antivirus-software-isnt-enough.html
  2. G. S. Kang, "Study on Cloud Computing-Based Malware Detection System," Master, Konkuk University, Korea, 2015.
  3. S. Y. Choi, "Emulation-Based Abnormal Web Page Link Analysis to Detect Malware-istributing Networks," Master, Jeonnam National University, Korea, 2014.
  4. Symantech - Internet Security Thresat Report [Internet], https://docs.broadcom.com/docs/istr-24-executive-summary-en
  5. A. Souri and R. Hosseini, "A state-of-the-art survey of malware detection approaches using data mining techniques," Humand-centric Computing and Information Sciences, Vol.8, No.3, 2018.
  6. A. Douglas, R. Holloway, J. Lohr, E. Morgan, and K. Harfoush, "Blockchains for constrained edge devices," Blockchain: Research and Applications, Vol.1, Iss.1-2, 2020.
  7. S. W. Kim, "Real-Time Malware Detection in Intrusion Detection System," Master, Hanyang University, Korea, 2014.
  8. J. W. Chang, "Study on Detecting Malware and Security Control Measures," Master, Korea University, 2014.
  9. J. H. Park, "Effect of Private Blockchain Characteristics on Acceptance in Medical Sector," Master, Graduate School of Sungkyunkwan University, Korea, 2018.
  10. G. Y. Lee, "Study of Applying Blockchain Technology and Record Management System," Master, Myongji University, Korea, 2019.
  11. P. S. Goh, "Study on Use of Medical Information System with Blockchain," Master, Soongsil University, Korea, 2019.
  12. D. G. Guh, "Study on Predicting Taxi Passenger Using Deep Learning," Master, University of Seoul, Korea, 2018.
  13. D. T. Ramotsoela, G. P. Hancke, and A. M. Abu-Mahfouz, "Attack detection in water distribution systems using machine learning," Human-centric Computing and Information Sciences, Vol.9, No.13, 2019.
  14. S. D. You, C. H. Liu, and W. K. Chen,"Comparative study of singing voice detection based on deep neural networks and ensemble learning," Human-centric Computing and Information Sciences, Vol.8, No.34, 2018.
  15. S. N. Danilin and S. A. Shchanikov, "Neural network algorithms for determining the values of signal parameters in radio- electronic hardware," 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics), Omsk, 2017, pp.1-4, 2017.
  16. Y. B. Cho, "Detection Technique of Malware Using Deep Learning-Based R-CNN," Master, Daejeon University, Korea, 2018.
  17. Y. Cheong, "Blockchain-Based Image Information Management System," Master, Ajou University, Korea, 2019.
  18. S. I. Jung and H. W. Kim, "Web-Anti-MalWare Malware Detection System," Proceedings of the Korean Society of Computer Information Conference, pp.365-367, 2014.
  19. D. Lee and J. H. Park, "Future Trends of AI-Based Smart Systems and Services: Challenges, Opportunities, and Solutions," Journal of Information Processing Systems, Vol.15, No.4, pp.717-723, 2019. https://doi.org/10.3745/JIPS.02.0113