DOI QR코드

DOI QR Code

Optimal fin planting of splayed multiple cross-sectional pin fin heat sinks using a strength pareto evolutionary algorithm 2

  • Ramphueiphad, Sanchai (Sustainable and Infrastructure Research and Development Center, Department of Mechanical Engineering, Faculty of Engineering, Khon Kaen University) ;
  • Bureerat, Sujin (Sustainable and Infrastructure Research and Development Center, Department of Mechanical Engineering, Faculty of Engineering, Khon Kaen University)
  • Received : 2019.11.14
  • Accepted : 2020.10.28
  • Published : 2021.01.25

Abstract

This research aims to demonstrate the optimal geometrical design of splayed multiple cross-sectional pin fin heat sinks (SMCSPFHS), which are a type of side-inlet-side-outlet heat sink (SISOHS). The optimiser strength Pareto evolutionary algorithm2 (SPEA2)is employed to explore a set of Pareto optimalsolutions. Objective functions are the fan pumping power and junction temperature. Function evaluations can be accomplished using computational fluid dynamics(CFD) analysis. Design variablesinclude pin cross-sectional areas, the number of fins, fin pitch, thickness of heatsink base, inlet air speed, fin heights, and fin orientations with respect to the base. Design constraints are defined in such a way as to make a heat sink usable and easy to manufacture. The optimum results obtained from SPEA2 are compared with the straight pin fin design results obtained from hybrid population-based incremental learning and differential evolution (PBIL-DE), SPEA2, and an unrestricted population size evolutionary multiobjective optimisation algorithm (UPSEMOA). The results indicate that the splayed pin-fin design using SPEA2 issuperiorto those reported in the literature.

Keywords

References

  1. Ahmed, H.E. (2016), "Optimization of thermal design of ribbed flat-plate fin heat sink", Appl. Therm. Eng., 102, 1422-1432. https://doi.org/10.1016/j.applthermaleng.2016.03.119.
  2. Bahiraei, M. and Heshmatian, S. (2017), "Optimizing energy efficiency of a specific liquid block operated with nano fluids for utilization in electronics cooling : A decision-making based approach", Energ. Convers. Manag., 154,180-190. https://doi.org/10.1016/j.enconman.2017.10.055.
  3. Bahiraei, M., Heshmatian, S. and Keshavarzi, M. (2018), "Multi-attribute optimization of a novel micro liquid block working with green graphene nano fl uid regarding preferences of decision maker", Appl. Therm. Eng., 143, 11-21. https://doi.org/10.1016/j.applthermaleng.2018.07.074.
  4. Bahiraei, M., Heshmatian, S. and Keshavarzi, M. (2019), "A decision-making based method to optimize energy efficiency of ecofriendly nanofluid flow inside a new heat sink enhanced with flow distributor", Powder. Tech., 342, 85-98. https://doi.org/10.1016/ j.powtec.2018.10.007.
  5. Bahiraei, M., Heshmatian, S. and Keshavarzi, M. (2019), "Multi-criterion optimization of thermohydraulic performance of a mini pin fin heat sink operated with ecofriendly graphene nanoplatelets nanofluid considering geometrical characteristics", J. Mol. Liq., 276, 653-666. https://doi.org/10.1016/j.molliq.2018.12.025.
  6. Castelan, A., Cougo, B., Dutour, S. and Meynard, T. (2019), "3D analytical modelling of plate fin heat sink on forced convection", Math. Comput. Simul., 158, 296-307. https://doi.org/10.1016/j.matcom.2018.09.011.
  7. Hadad, Y., Ramakrishnan, B., Pejman, R., Rangarajan, S., Chiarot, P.R., Pattamatta, A. and Sammakia, B. (2019), "Three-objective shape optimization and parametric study of a micro-channel heat sink with discrete non-uniform heat flux boundary conditions", Appl. Therm. Eng., 150(January), 720-737. https://doi.org/10.1016/j.applthermaleng.2018.12.128.
  8. Haertel, J.H.K., Engelbrecht, K., Lazarov, B.S. and Sigmund, O. (2018), "Topology optimization of a pseudo 3D thermofluid heat sink model", Int. J. Heat Mass Transf., 121, 1073-1088. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.078.
  9. Hilbert, R., Janiga, G., Baron, R. and Thevenin, D. (2006), "Multi-objective shape optimization of a heat exchanger using parallel genetic algorithms", Int. J. Heat Mass Transf., 49(15-16), 2567-2577. https://doi.org/10.1016/j.ijheatmasstransfer.2005.12.015.
  10. Hoi, S.M., Teh, A.L., Ooi, E.H., Chew, I.M.L. and Foo, J.J. (2019), "Plate-fin heat sink forced convective heat transfer augmentation with a fractal insert", Int. J. Therm. Sci., 142(April), 392-406. https://doi.org/10.1016/j.ijthermalsci.2019.04.035.
  11. Husain, A. and Kim, K.Y. (2008), "Optimization of a microchannel heat sink with temperature dependent fluid properties", Appl. Therm. Eng., 28(8-9), 1101-1107. https://doi.org/10.1016/j.applthermaleng.2007.12.001.
  12. Husain, A. and Kim, K.Y. (2010), "Enhanced multi-objective optimization of a microchannel heat sink through evolutionary algorithm coupled with multiple surrogate models", Appl. Therm. Eng., 30(13), 1683-1691. https://doi.org/10.1016/j.applthermaleng.2010.03.027.
  13. Jian-hui, Z., Chun-Xin, Y. and Li-na, Z. (2009), "Minimizing the entropy generation rate of the plate-finned heat sinks using computational fluid dynamics and combined optimization", Appl. Therm. Eng., 29(8-9), 1872-1879. https://doi.org/10.1016/j.applthermaleng.2008.08.001.
  14. Kanyakam, S. and Bureerat, S. (2011), "Multiobjective evolutionary optimization of splayed pin-fin heat sink", Eng. Appl. Comput. Fluid Mech., 5(4), 553-565. https://doi.org/10.1080/19942060.2011.11015394.
  15. Khan, W.A., Culham, J.R. and Yovanovich, M.M. (2009), "Optimization of microchannel heat sinks using entropy generation minimization method", IEEE Trans. Components Packag. Technol., 32(2), 243-251. https://doi.org/10.1109/TCAPT.2009.2022586.
  16. Ramphueiphad, S. and Bureerat, S. (2018), "Synthesis of multiple cross-section pin fin heat sinks using multiobjective evolutionary algorithms", Int. J. Heat Mass Transf., 118, 462-470. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.016.
  17. Shi, X., Li, S., Mu, Y. and Yin, B. (2019), "Geometry parameters optimization for a microchannel heat sink with secondary flow channel", Int. Commun. Heat Mass Transf., Elsevier, 104(March), 89-100. https://doi.org/10.1016/j.icheatmasstransfer.2019.03.009.
  18. Srisomporn, S. and Bureerat, S. (2008), "Geometrical design of plate-fin heat sinks using hybridization of MOEA and RSM", IEEE Trans. Components Packag. Technol., 31(2 SPEC. ISS.), 351-360. https://doi.org/10.1109/TCAPT.2008.916799.
  19. Subasi, A., Sahin, B. and Kaymaz, I. (2016), "Multi-objective optimization of a honeycomb heat sink using Response Surface Method", Int. J. Heat Mass Transf., 101, 295-302. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.012.
  20. Thiele, L. and Zitzler, E. (1999), "Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach", IEEE Trans. Evol. Comput., 3(4), 257-271. https://doi.org/10.1109/4235.797969
  21. Yang, A., Chen, L., Xie, Z., Feng, H. and Sun, F. (2019), "Constructal operation cost minimization for inline cylindrical pin-fin heat sinks", Int. J. Heat Mass Transf., 129, 562-568. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.129.
  22. Yang, Y.T., Lin, S.C., Wang, Y.H. and Hsu, J.C. (2013), "Numerical simulation and optimization of impingement cooling for rotating and stationary pin-fin heat sinks", Int. J. Heat Fluid Flow, 44, 383-393. https://doi.org/10.1016/j.ijheatfluidflow.2013.07.008.
  23. Yu, X., Feng, J., Feng, Q. and Wang, Q. (2005), "Development of a plate-pin fin heat sink and its performance comparisons with a plate fin heat sink", Appl. Therm. Eng., 25(2-3), 173-182. https://doi.org/10.1016/j.applthermaleng.2004.06.016.