References
- Ahmed, H.E. (2016), "Optimization of thermal design of ribbed flat-plate fin heat sink", Appl. Therm. Eng., 102, 1422-1432. https://doi.org/10.1016/j.applthermaleng.2016.03.119.
- Bahiraei, M. and Heshmatian, S. (2017), "Optimizing energy efficiency of a specific liquid block operated with nano fluids for utilization in electronics cooling : A decision-making based approach", Energ. Convers. Manag., 154,180-190. https://doi.org/10.1016/j.enconman.2017.10.055.
- Bahiraei, M., Heshmatian, S. and Keshavarzi, M. (2018), "Multi-attribute optimization of a novel micro liquid block working with green graphene nano fl uid regarding preferences of decision maker", Appl. Therm. Eng., 143, 11-21. https://doi.org/10.1016/j.applthermaleng.2018.07.074.
- Bahiraei, M., Heshmatian, S. and Keshavarzi, M. (2019), "A decision-making based method to optimize energy efficiency of ecofriendly nanofluid flow inside a new heat sink enhanced with flow distributor", Powder. Tech., 342, 85-98. https://doi.org/10.1016/ j.powtec.2018.10.007.
- Bahiraei, M., Heshmatian, S. and Keshavarzi, M. (2019), "Multi-criterion optimization of thermohydraulic performance of a mini pin fin heat sink operated with ecofriendly graphene nanoplatelets nanofluid considering geometrical characteristics", J. Mol. Liq., 276, 653-666. https://doi.org/10.1016/j.molliq.2018.12.025.
- Castelan, A., Cougo, B., Dutour, S. and Meynard, T. (2019), "3D analytical modelling of plate fin heat sink on forced convection", Math. Comput. Simul., 158, 296-307. https://doi.org/10.1016/j.matcom.2018.09.011.
- Hadad, Y., Ramakrishnan, B., Pejman, R., Rangarajan, S., Chiarot, P.R., Pattamatta, A. and Sammakia, B. (2019), "Three-objective shape optimization and parametric study of a micro-channel heat sink with discrete non-uniform heat flux boundary conditions", Appl. Therm. Eng., 150(January), 720-737. https://doi.org/10.1016/j.applthermaleng.2018.12.128.
- Haertel, J.H.K., Engelbrecht, K., Lazarov, B.S. and Sigmund, O. (2018), "Topology optimization of a pseudo 3D thermofluid heat sink model", Int. J. Heat Mass Transf., 121, 1073-1088. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.078.
- Hilbert, R., Janiga, G., Baron, R. and Thevenin, D. (2006), "Multi-objective shape optimization of a heat exchanger using parallel genetic algorithms", Int. J. Heat Mass Transf., 49(15-16), 2567-2577. https://doi.org/10.1016/j.ijheatmasstransfer.2005.12.015.
- Hoi, S.M., Teh, A.L., Ooi, E.H., Chew, I.M.L. and Foo, J.J. (2019), "Plate-fin heat sink forced convective heat transfer augmentation with a fractal insert", Int. J. Therm. Sci., 142(April), 392-406. https://doi.org/10.1016/j.ijthermalsci.2019.04.035.
- Husain, A. and Kim, K.Y. (2008), "Optimization of a microchannel heat sink with temperature dependent fluid properties", Appl. Therm. Eng., 28(8-9), 1101-1107. https://doi.org/10.1016/j.applthermaleng.2007.12.001.
- Husain, A. and Kim, K.Y. (2010), "Enhanced multi-objective optimization of a microchannel heat sink through evolutionary algorithm coupled with multiple surrogate models", Appl. Therm. Eng., 30(13), 1683-1691. https://doi.org/10.1016/j.applthermaleng.2010.03.027.
- Jian-hui, Z., Chun-Xin, Y. and Li-na, Z. (2009), "Minimizing the entropy generation rate of the plate-finned heat sinks using computational fluid dynamics and combined optimization", Appl. Therm. Eng., 29(8-9), 1872-1879. https://doi.org/10.1016/j.applthermaleng.2008.08.001.
- Kanyakam, S. and Bureerat, S. (2011), "Multiobjective evolutionary optimization of splayed pin-fin heat sink", Eng. Appl. Comput. Fluid Mech., 5(4), 553-565. https://doi.org/10.1080/19942060.2011.11015394.
- Khan, W.A., Culham, J.R. and Yovanovich, M.M. (2009), "Optimization of microchannel heat sinks using entropy generation minimization method", IEEE Trans. Components Packag. Technol., 32(2), 243-251. https://doi.org/10.1109/TCAPT.2009.2022586.
- Ramphueiphad, S. and Bureerat, S. (2018), "Synthesis of multiple cross-section pin fin heat sinks using multiobjective evolutionary algorithms", Int. J. Heat Mass Transf., 118, 462-470. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.016.
- Shi, X., Li, S., Mu, Y. and Yin, B. (2019), "Geometry parameters optimization for a microchannel heat sink with secondary flow channel", Int. Commun. Heat Mass Transf., Elsevier, 104(March), 89-100. https://doi.org/10.1016/j.icheatmasstransfer.2019.03.009.
- Srisomporn, S. and Bureerat, S. (2008), "Geometrical design of plate-fin heat sinks using hybridization of MOEA and RSM", IEEE Trans. Components Packag. Technol., 31(2 SPEC. ISS.), 351-360. https://doi.org/10.1109/TCAPT.2008.916799.
- Subasi, A., Sahin, B. and Kaymaz, I. (2016), "Multi-objective optimization of a honeycomb heat sink using Response Surface Method", Int. J. Heat Mass Transf., 101, 295-302. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.012.
- Thiele, L. and Zitzler, E. (1999), "Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach", IEEE Trans. Evol. Comput., 3(4), 257-271. https://doi.org/10.1109/4235.797969
- Yang, A., Chen, L., Xie, Z., Feng, H. and Sun, F. (2019), "Constructal operation cost minimization for inline cylindrical pin-fin heat sinks", Int. J. Heat Mass Transf., 129, 562-568. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.129.
- Yang, Y.T., Lin, S.C., Wang, Y.H. and Hsu, J.C. (2013), "Numerical simulation and optimization of impingement cooling for rotating and stationary pin-fin heat sinks", Int. J. Heat Fluid Flow, 44, 383-393. https://doi.org/10.1016/j.ijheatfluidflow.2013.07.008.
- Yu, X., Feng, J., Feng, Q. and Wang, Q. (2005), "Development of a plate-pin fin heat sink and its performance comparisons with a plate fin heat sink", Appl. Therm. Eng., 25(2-3), 173-182. https://doi.org/10.1016/j.applthermaleng.2004.06.016.