LINEARLY DEPENDENT AND CONCISE SUBSETS OF A SEGRE VARIETY DEPENDING ON k FACTORS

Edoardo Ballico

Abstract

We study linearly dependent subsets with prescribed cardinality s of a multiprojective space. If the set S is a circuit, there is an upper bound on the number of factors of the minimal multiprojective space containing S. B. Lovitz gave a sharp upper bound for this number. If S has higher dependency, this may be not true without strong assumptions (and we give examples and suitable assumptions). We describe the dependent subsets S with $\# S=6$.

1. Introduction

Take k non-zero finite dimensional vector spaces V_{1}, \ldots, V_{k} and consider $V_{1} \otimes \cdots \otimes V_{k}$. An element $u \in V_{1} \otimes \cdots \otimes V_{k}$ is called a k-tensor with format $\left(\operatorname{dim} V_{1}, \ldots, \operatorname{dim} V_{k}\right)([9$, p. 33]). Two non-zero proportional tensors share many properties. Thus often the right object to study is the projectivization \mathbb{P}^{r} of $V_{1} \otimes \cdots \otimes V_{k}$, where $r:=-1+\operatorname{dim} V_{1} \times \cdots \times \operatorname{dim} V_{k}$. Set $n_{i}:=\operatorname{dim} V_{i}-1$ and consider the multiprojective space $Y:=\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{k}}$. Let $\nu: Y \hookrightarrow \mathbb{P}^{r}$ denote the Segre embedding. Many properties of a non-zero tensor u (e.g., the tensor rank and the tensor border rank) may be describe in how its equivalence class $[u] \in \mathbb{P}^{r}$ sits with respect to the Segre variety $\nu(Y)$ (see [9, Def. 4.3.5.1] for the definition of Segre variety). For instance, the tensor $\operatorname{rank} r_{Y}([u])$ (as defined in [9, Def. 2.4.1.2]) of u is the minimal cardinality of a finite set $S \subset Y$ such that $\nu(S)$ spans $[u]$. We call $\mathcal{S}(Y,[u])$ the set of all $S \subset Y$ with minimal cardinality such that $\nu(S)$ spans $[u]$. Using subsets of Y instead of ordered sets of points and \mathbb{P}^{r} instead of $V_{1} \otimes \cdots \otimes V_{k}$ we take care of the obvious non-uniqueness in a finite decomposition $u=\sum_{i} v_{i 1} \otimes \cdots v_{i k}, v_{i j} \in V_{j}$, of a tensor.

Fix an equivalence class $q=[u] \in \mathbb{P}^{r}$ of non-zero tensors. Let $\pi_{i}: Y \rightarrow \mathbb{P}^{n_{i}}$, $1 \leq i \leq k$, denote the projection of Y onto its i-th factor. The width $w(q)$ of q is the minimal number of non-trivial factors of the minimal multiprojective subspace $Y^{\prime} \subseteq Y$ such that $q \in\left\langle\nu\left(Y^{\prime}\right)\right\rangle$, where \rangle denote the linear span. For

[^0]any finite set $A \subset Y$ the width $w(A)$ of A is the number of integers $i \in\{1, \ldots, k\}$ such that $\# \pi_{i}(A)>1$, where $\# E$ denotes the cardinality of the finite set E. By concision we have $w(q)=w(A)$ if $A \in \mathcal{S}(Y, q)$ ([9, Proposition 3.1.3.1]).

The non-uniqueness of tensor decompositions, i.e., the fact that $\mathcal{S}(Y,[u])$ may have more than one element, may be rephrased as the linear dependency of certain subsets of $Y([5])$. For any finite set $S \subset Y$ set $e(S):=h^{1}\left(\mathcal{I}_{S}(1, \ldots, 1)\right)$. By the definition of Segre embedding and the Grassmann's formula we have $e(S)=\# S-1-\operatorname{dim}\langle\nu(S)\rangle$. We say that a non-empty finite set $S \subset Y$ (or that the finite set $\left.\nu(S) \subset \mathbb{P}^{r}\right)$ is equally dependent if $\operatorname{dim}\langle\nu(S)\rangle \leq \# S-2$ and $\left\langle\nu\left(S^{\prime}\right)\right\rangle=\langle\nu(S)\rangle$ for all $S^{\prime} \subset S$ such that $\# S^{\prime}=\# S-1$. Note that S is equally dependent if and only if $e(S)>0$ and $e\left(S^{\prime}\right)<e(S)$ for all $S^{\prime} \subset S, S^{\prime} \neq S$, i.e., if and only if $S \neq \emptyset$ and $e\left(S^{\prime}\right)<e(S)$ for all $S^{\prime} \subset S, S^{\prime} \neq S$. We say that S is uniformly dependent if $e\left(S^{\prime}\right)=\max \left\{0, e(S)-\# S+\# S^{\prime}\right\}$ for all $S^{\prime} \subset S$. A uniformly dependent subset is equally dependent, but when $e(S) \geq 2$ the two notions are different (the key Examples 3.1 and 3.2 are equally dependent, but not uniformly dependent). When $e(S)=1$ equal and uniform dependence coincide. An equally dependent subset with $e(S)=1$ is often called a circuit. Fix an integer $e>0$. Let S be a finite subset of a multiprojective space. We say that S is an e-circuit if $e(S)=e$ and there is a subset $S^{\prime} \subseteq S$ such that S^{\prime} is a circuit and $\# S-\# S^{\prime}=e-1$. A uniformly dependent set S is an $e(S)$-circuit, but the converse does not hold (Example 3.4).

The following result is an immediate corollary of [10, Corollary 14].
Proposition 1.1. Let $S \subset Y$ be an e-circuit. Then $w(S) \leq \# S-e-1$.
We give examples for any integer $s \geq 6$ of an equally dependent set S with $e(S)>1, \# S=s$ and $w(S)$ arbitrarily large (Example 3.3). This example shows there is no upper bound for $w(S)$ in term of $\# S$ for all equally dependent sets if $e(S)>1$.

The main result of this paper is the classification of all equally dependent subsets S of a Segre variety with $\# S=6$ and $w(S)>4$. We prove the following result.

Theorem 1.2. Let $Y=\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{k}}, n_{1} \geq \cdots \geq n_{k}>0$ be a multiprojective space and $S \subset Y$ a concise and equally dependent set with $\# S=6$. Then either $e(S) \geq 2$ and (Y, S) is in one of Examples 3.1 and 3.2 or $w(Y) \leq 4$ and $Y=\left(\mathbb{P}^{1}\right)^{4}$ if $w(Y)=4$.

The families in Examples 3.1, 3.2 have arbitrarily large width. The case $Y=\left(\mathbb{P}^{1}\right)^{4}$ and $e(S)=1$ occurs ([5, Case 3 of Theorem 7.1]). In several cases we could give a more precise description of the pairs (Y, S), but using too much ink.

For any $q \in \mathbb{P}^{r}$ and any finite set $S \subset Y$ we say that S irredundantly spans q if $q \in\langle\nu(S)\rangle$ and $q \notin\left\langle\nu\left(S^{\prime}\right)\right\rangle$ for any $S^{\prime} \subset S, S^{\prime} \neq S$. As a byproduct of a small part of the proof of Theorem 1.2 we also classify the set of all rank 2
tensors which may be irredundantly spanned by a set of 3 points (Proposition 4.3).

We work over a field K, since for the examples we only use that $\mathbb{P}^{1}(K)$ has at least 3 points. For the proofs which require cohomology of coherent algebraic sheaves (like in the quotations of [2, Lemma 5.1] or [4, Lemmas 2.4 and 2.5] or [5]) it is sufficient to work over the algebraic closure \bar{K} of K, because dimensions of cohomology of algebraic sheaves on projective varieties (and in particular the definition of $e(S)$) are invariants under the extension $K \hookrightarrow \bar{K}$ ([6, Proposition III.9.3]). We use Landsberg's book [9] for essential properties on Segre varieties related to tensors (e.g., the notion of concision), in particular concision is [9, Proposition 3.1.3.1] and [9, Ch. 5] contains many results and references on the secant varieties of the Segre varieties. This book contains many applications of tensors ($[9$, Ch. 11, 12, 13, 14]) and additive tensor decompositions are just a way to state linear combinations of elements of the Segre variety $\nu(Y)$. The elementary properties of the Segre varieties that we use do not depend on the base field. For an in-depth study of them over a finite field, see [7, Ch. 25].

1.1. Motivations for this paper

(a) There is no need to stress the importance of tensors and tensor decompositions for the applications of mathematics. Hence the importance of the solution sets $\mathcal{S}(Y, q), q \in \mathbb{P}^{r}$. Outside Kruskal's bound it is very difficult to prove that an irredundant decomposition of a tensor T associated to q, say $q \in\langle\nu(S)\rangle$, evinces the tensor rank of T, i.e., $r_{Y}(q)=\# S$. Thus it seems important to study irredundant decompositions without assuming that they evince the tensor rank, i.e., to study all solution sets $\mathcal{S}(Y, q, t), t \geq r_{Y}(q)$, i.e., all $S \subset Y$ such that $\# S=t$ and $\nu(S)$ irredundantly spans q. It is known that even if Y is minimal for S, q may not be concise for Y ([3, Theorem 3.8]). Proposition 4.3 classifies all triples (Y, q, S) with $r_{Y}(q)=2, \# S=3$ and Y minimal for S, but not always for q. This result is proved studying dependent subsets with cardinality 5 .
(b) Take as K a finite field, \mathbb{F}_{q}. Any $S \subset \mathbb{P}^{k-1}\left(\mathbb{F}_{q}\right)$ such that $\langle S\rangle=\mathbb{P}^{k-1}\left(\mathbb{F}_{q}\right)$ gives an $[n, k]$-code \mathcal{C} over \mathbb{F}_{q}, where $n:=\# S$. Circuits $S^{\prime} \subset S$ arise in the computation of the minimum distance of S. Equally defined sets $S^{\prime} \subset S$ with $e\left(S^{\prime}\right) \geq 2$ arise in the computation of the generalized Hamming weights of \mathcal{C} introduced by Wei ([8, §7.10]).
(c) In the proofs in [1] we needed to classify some rational normal curves contained in a Segre variety X. These curves occur implicitly when we quote [1] and explicitly (plus degenerations/variations of them like reducible conics or unions of 2 disjoint lines) in Example 3.2 and Remarks 5.1 and 5.2. It is easy to see that being contained in the linear span of a certain curve $C \subset X$ often gives that $\# \mathcal{S}(Y, q, t)>1$ for some small t. When C is irreducible it is often easy to construct e-circuits $S \subset C$. More general curves, e.g. elliptic
curves, should occur for larger t, but a full classification of the set S should be too long. In our opinion the classification of the curves (and if K is finite the computation of their number) seems to be interesting.

1.2. Outline of the proof of Theorem 1.2

In Section 3 we describe the examples mentioned in the statement of Theorem 1.2. Take $S \subset Y$ such that $\# S=6$ and S is equally dependent. We fix a partition $S=A \cup B$ with $\# A=\# B=3$ and hence $A \cap B=\emptyset$. In Section 5 we assume that at least one among $\nu(A)$ and $\nu(B)$ is linearly dependent. In that section we get Examples 3.1 and 3.2. Then we assume $\nu(A)$ and $\nu(B)$ linearly independent. Since $A \cap B=\emptyset$, the Grassmann's formula gives $\operatorname{dim}(\langle\nu(A)\rangle \cap\langle\nu(B)\rangle)=e(S)-1$. Thus $\langle\nu(A)\rangle \cap\langle\nu(B)\rangle \neq \emptyset$. We fix a general $q \in\langle\nu(A)\rangle \cap\langle\nu(B)\rangle$. Since $q \in\langle\nu(A)\rangle$, we have $r_{Y}(q) \leq 3$. We discuss the cases $r_{Y}(q)=1, r_{Y}(q)=2, r_{Y}(q)=3$ in Sections 6, 7 and 8, respectively. For the case $r_{Y}(q)=3$ we use [5, Theorem 7.1].

Remark 1.3. In the set-up of Theorem 1.2 the case $k=1$ is possible with $Y=\mathbb{P}^{n}$ for any $2 \leq n \leq 4$ (any 6 points spanning \mathbb{P}^{n} partitioned in two sets of 3 elements no 3 of them collinear). The case $Y=\mathbb{P}^{1}$ was obtained when $e(A)>0$ and $e(B)>0$. When $Y=\mathbb{P}^{n}$ we have $e(S)=6-n-1$.

Thus in Sections 5, 6, 7 and 8 we silently assume $k>1$.
Thanks are due to the referees for useful comments and to Benjamin Lovits for correspondence related to [10].

2. Preliminaries, notation and the proof of Proposition 1.1

For any subset E of any projective space let $\langle E\rangle$ denote the linear span of E. For any multiprojective space let ν denote its Segre embedding. Let $Y=\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{k}}$ be a multiprojective space. Let $\pi_{i}: Y \rightarrow \mathbb{P}^{n_{i}}$ be the projection of Y onto its i-th factor. Set $Y_{i}:=\prod_{j \neq i} \mathbb{P}^{n_{j}}$ and let $\eta_{i}: Y \rightarrow Y_{i}$ be the projection. Thus for any $p=\left(p_{1}, \ldots, p_{k}\right) \in Y, \pi_{i}(p)=p_{i}$ is the i th component of p, while $\eta_{i}(p)=\left(p_{1}, \ldots, p_{i-1}, p_{i+1}, \ldots, p_{k}\right)$ deletes the i-th component of p.

For any $i \in\{1, \ldots, k\}$ let $\epsilon_{i} \in \mathbb{N}^{k}$ (resp. $\hat{\epsilon}_{i}$) be the multiindex $\left(a_{1}, \ldots, a_{k}\right) \in$ \mathbb{P}^{k} with $a_{i}=1$ and $a_{h}=0$ for all $h \neq i$ (resp. $a_{i}=0$ and $a_{h}=1$ for all $h \neq i$. Thus $\mathcal{O}_{Y}\left(\epsilon_{i}\right)$ and $\mathcal{O}_{Y}\left(\hat{\epsilon}_{i}\right)$ are line bundles on Y and $\mathcal{O}_{Y}\left(\epsilon_{i}\right) \otimes \mathcal{O}_{Y}\left(\hat{\epsilon}_{i}\right) \cong$ $\mathcal{O}_{Y}(1, \ldots, 1)$.

If needed we usually call \mathbb{P}^{r} the projectivization of the space of tensors with prescribed format we are working, i.e., the projective space in which the given Segre sits. For instance, if the given Segre is $\nu(Y)$ we take $r=-1+\prod_{i=1}^{k}\left(n_{i}+1\right)$. For any $q \in \mathbb{P}^{r}$ let $r_{Y}(q)$ or $r_{\nu(Y)}(q)$ denote the tensor rank of q. For any finite set $A \subset Y$ the minimal multiprojective subspace of Y containing A is the multiprojective space $\prod_{i=1}^{k}\left\langle\pi_{i}(A)\right\rangle \subseteq Y$. For any positive integer t let $\mathcal{S}(Y, q, t)$ denote the set of all $S \subset Y$ such that $q \in\langle\nu(S)\rangle, \# S=t$ and S irredundantly
spans q. The set $\mathcal{S}(Y, q):=\mathcal{S}\left(Y, q, r_{\nu(Y)}(q)\right)$ is the set of all tensor decompositions of q with minimal length. By concision given any $A \in \mathcal{S}(Y, q)$ the minimal multiprojective subspace of Y containing A is the minimal multiprojective subspace $Y^{\prime} \subseteq Y$ such that $q \in\left\langle\nu\left(Y^{\prime}\right)\right\rangle([9$, Proposition 3.1.3.1]).
Remark 2.1. Take $S \subset Y$ such that $e(S)>0$ and $\# S \leq 3$. Since ν is an embedding, we have $\# S=3, e(S)=1$ and (by the structure of linear subspaces contained in a Segre variety) there is $i \in\{1, \ldots, k\}$ such that $\# \pi_{h}(S)=1$ for all $h \neq 1, \pi_{i \mid S}$ is injective and $\pi_{i}(S)$ is contained in a line.
Lemma 2.2. Fix a multiprojective space Y and any finite set $Z \subset Y$ with $z:=\# Z \geq 3$ and concise for Y. Set $e(Z):=z-1-\operatorname{dim}\langle\nu(Z)\rangle$. We have $e(Z) \leq z-2$ and equality holds if and only if $Y=\mathbb{P}^{1}$.
Proof. Since ν is an embedding, $\nu(Z)$ is a set of $z \geq 2$ points of \mathbb{P}^{N} and hence $\operatorname{dim}\langle\nu(Z)\rangle \geq 1$. The Grassmann's formula gives $e(Z) \leq z-2$ and that equality holds if and only if $\nu(Z)$ is formed by collinear points. Since the Segre $\nu(Y)$ is cut out by quadrics and $z \leq 3$, we get $\langle\nu(Z)\rangle \subseteq \nu(Y)$. Since the lines of a Segre variety are Segre varieties, the concision assumption gives $Y=\mathbb{P}^{1}$.

The converse is trivial, because $h^{0}\left(\mathcal{O}_{\mathbb{P}^{1}}(1)\right)=2$.
The following construction was implicitly used in the proof of [3, Theorem 3.8].

Definition. Fix a multiprojective space $Y=\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{k}}, n_{h}>0$ for all $h \neq i$, and $i \in\{1, \ldots, k\}$ (we allow the case $n_{i}=0$ so that $\mathbb{P}^{n_{i}}$ may be a single point). Fix an integer m_{i} such that $n_{i} \leq m_{i} \leq n_{i}+1$; if $n_{i}=0$ assume $m_{i}=1$. Let $W \supseteq Y$ be a multiprojective space with $\mathbb{P}^{n_{j}}$ as its j-th factor for all $j \neq i$ and with $\mathbb{P}^{m_{i}}$ as its i-th factor. Thus $W=Y$ if $m_{i}=n_{i}$ and $\operatorname{dim} W=\operatorname{dim} Y+1$ if $m_{i}=n_{i}+1$. If $W \neq Y$ we identify Y with a multiprojective subspace of W identifying its factor $\mathbb{P}^{n_{i}}$ with a hyperplane $M_{i} \subset \mathbb{P}^{m_{i}}$. Fix a finite set $E \subset Y$ (we allow the case $E=\emptyset$) and $o=\left(o_{1}, \ldots, o_{k}\right) \in Y \backslash E$. Set $E_{i}:=\pi_{i}(E) \subset \mathbb{P}^{n_{i}}$. Fix any $u_{i} \in \mathbb{P}^{m_{i}} \backslash\left(E_{i} \cup\left\{o_{i}\right\}\right)$ and any $v_{i} \in\left\langle\left\{o_{i}, v_{i}\right\}\right\rangle$ with $v_{i} \notin E_{i}$. Set $u=\left(u_{1}, \ldots, u_{k}\right)$ and $v:=\left(v_{1}, \ldots, v_{k}\right)$ with $u_{h}=v_{h}=o_{h}$ for all $h \neq i$. Set $F:=E \cup\{o\}$ and $G:=E \cup\{u, v\}$. We say that G is an elementary increasing of F with respect to o and the i-th factor. Note that $\# G=\# E+2, \# F=\# E+1$ and $\langle\nu(F)\rangle \subseteq\langle\nu(G)\rangle$. If $n_{i}>0$ we have $w(Y)=w(W)$, while if $n_{i}=0$ we have $w(W)=w(Y)+1$. Thus an elementary increasing may increase the width, but only by 1 and only if $n_{i}=0$.
Remark 2.3. Let $U \subset Y$ be a finite set, $W \supseteq Y$ any multiprojective space and $V \subset W$ any set obtained from U making an elementary increasing. For any finite set $G \subset W$ either $w(V \cup G)=w(U \cup G)$ or $w(V \cup G)=w(U \cup G)+1$, but the latter may occur only if $w(V)=w(U)+1$. Even when $w(V)=w(U)+1$ it is quite easy to see for which G we have $w(V \cup G)=w(U \cup G)+1$.
Proof of Proposition 1.1. Set $s:=\# S$. If $e=1$, then we apply [10, Corollary 14]. Assume $e>1$ and take $U \subset S$ such that $\# U=e-1$ and $S \backslash U$ is
a circuit. Let Y^{\prime} be the minimal multiprojective space containing $S \backslash U$. By [10, Corollary 14] we have $w(S \backslash U) \leq(s-e+1)-2$. Since $h^{1}\left(\mathcal{I}_{S \backslash U}(1, \ldots, 1)\right)=$ $h^{1}\left(\mathcal{I}_{S}(1, \ldots, 1)\right)-\# U,\langle\nu(S \backslash U)\rangle=\langle S\rangle$. Thus $\nu(S) \subseteq\left\langle\nu\left(Y^{\prime}\right)\right\rangle$. Concision ([9, Proposition 3.1.3.1]) gives $S \subset Y^{\prime}$. Thus $w(S)=w(S \backslash U)$.

3. The examples

Example 3.1. Fix an integer $k \geq 2$ and integers $n_{1}, n_{2} \in\{1,2\}$. We take $Y=\mathbb{P}^{n_{1}} \times \mathbb{P}^{n_{2}} \times\left(\mathbb{P}^{1}\right)^{k-2}$. Take $o=\left(o_{1}, \ldots, o_{k}\right) \in Y$ and $p=\left(p_{1}, \ldots, p_{k}\right) \in Y$ such that $p_{i} \neq o_{i}$ for all i. Take $u=\left(u_{1}, \ldots, u_{k}\right) \in Y, v=\left(v_{1}, \ldots, v_{k}\right) \in Y$, $w=\left(w_{1}, \ldots, w_{k}\right) \in Y$ and $z=\left(z_{1}, \ldots, z_{k}\right) \in Y$ such that $u_{i}=v_{i}=o_{i}$ for all $i \neq 1, w_{i}=z_{i}=p_{i}$ for all $i \neq 2, \#\left\{u_{1}, v_{1}, o_{1}, p_{1}\right\}=\#\left\{o_{2}, p_{2}, w_{2}, z_{2}\right\}=4$. If $n_{1}=2$ (resp. $n_{2}=2$) we also require that $\left\langle\left\{u_{1}, v_{1}, o_{1}\right\}\right\rangle \subset \mathbb{P}^{2}$ is a line not containing p_{1} (resp. $\left\langle\left\{w_{2}, z_{2}, p_{2}\right\}\right\rangle \subset \mathbb{P}^{2}$ is a line not containing o_{2}). Set $S:=\{o, p, u, v, w, z\}$. By construction $\# S=6, S$ is concise for Y, and $e(S)=2$. It is easy to check that $e\left(S^{\prime}\right)=1$ (but S^{\prime} is not a circuit) for any $S^{\prime} \subset S$ such that $\# S^{\prime}=5$. The family of these sets S has dimension $n_{1}+n_{2}+2$. If $k>2$ instead of taking the first two factors of Y we may take two arbitrary (but distinct) factors and obtain another family of sets S not projectively equivalent to the one constructed using the first two factors. A small modification of the construction works even if $o_{i}=p_{i}$ for some $i \in\{1,2\}$, but in that case we are forced to take $n_{i}=1$.
Example 3.2. Fix integers $n \in\{1,2,3\}$ and $k \geq 1$. Set $Y:=\mathbb{P}^{n} \times\left(\mathbb{P}^{1}\right)^{k-1}$. If $k>1$ fix any $o_{i}, p_{i} \in \mathbb{P}^{1}, 2 \leq i \leq k$, such that $o_{i} \neq p_{i}$ for all i. Fix lines $L \subseteq \mathbb{P}^{n}$ and $D \subseteq \mathbb{P}^{n}$. If $n=2$ assume $L \neq D$. If $n=3$ assume $L \cap D=\emptyset$. Fix 3 distinct points $o_{1}, u_{1}, v_{1} \subset L$ and 3 distinct points w_{1}, p_{1}, z_{1} of D. If $n=1$ assume $\#\left\{o_{1}, p_{1}, u_{1}, v_{1}, w_{1}, z_{1}\right\}=6$. If $n=2$ assume $L \cap$ $D \notin\left\{o_{1}, p_{1}, u_{1}, v_{1}, w_{1}, z_{1}\right\}$. Set $o:=\left(o_{1}, o_{2}, \ldots, o_{k}\right), u:=\left(u_{1}, o_{2}, \ldots, o_{k}\right), v:=$ $\left(v_{1}, o_{2}, \ldots, o_{k}\right), p:=\left(p_{1}, p_{2}, \ldots, p_{k}\right), w:=\left(w_{1}, p_{2}, \ldots, p_{k}\right), z:=\left(z_{1}, p_{2}, \ldots, p_{k}\right)$, $A:=\{o, u, v\}, B:=\{p, w, z\}$, and $S:=A \cup B$. The decomposition $S=A \cup B$ immediately gives that S is equally dependent. If $k=1$ we have $e(S)=5-n$. Now assume $k>1$. Since neither $\nu(A)$ nor $\nu(B)$ are linearly independent and $A \cap B=\emptyset$, we have $e(S) \geq 2$. Take $D \in\left|\mathcal{I}_{p}\left(\epsilon_{2}\right)\right|$. By construction we have $S \cap D=B$. Thus the residual exact sequence of D gives the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{A}\left(\hat{\epsilon}_{2}\right) \rightarrow \mathcal{I}_{S}(1, \ldots, 1) \rightarrow \mathcal{I}_{B, D}(1, \ldots, 1) \rightarrow 0 \tag{1}
\end{equation*}
$$

It is easy to check that $h^{1}\left(\mathcal{I}_{A}\left(\hat{\epsilon}_{2}\right)\right)=1$ and that $h^{1}\left(D, \mathcal{I}_{B, D}(1, \ldots, 1)\right)=1$. Thus (1) gives $e(S) \leq 2$. Thus $e(S)=2$. A small modification of the construction works even if $o_{1}=p_{1}$, but in this case we take $n<3$.

Example 3.3. Assume $k>1$. Fix $n \in\{1,2,3\}$ and an integer $s \geq 6$ and set $Y:=\mathbb{P}^{n} \times\left(\mathbb{P}^{1}\right)^{k-1}$. We mimic the proof of Example 3.2 taking 3 points on L and $s-3$ points on $Y \backslash L$. We get $S \subset Y$ concise for Y and such that $\# S=s$, $e(S)=s-4$ and $e\left(S^{\prime}\right)<e(S)$ for all $S^{\prime} \subset S, S^{\prime} \neq S$. We get examples similar
to Example 3.1 taking instead of two points a fixed set S^{\prime} of points and get a set with $\# S^{\prime}+2$ points.
Example 3.4. Take $Y=\mathbb{P}^{2}$. Fix a line $L \subset \mathbb{P}^{2}$, any $E \subset L$ such that $\# E=3$ and a general $G \subset \mathbb{P}^{2} \backslash L$ such that $\# G=2$. Set $S:=E \cup G$. We have $e(S)=2$ and for any $p \in E$, the set $S \backslash\{p\}$ is a circuit. However, E shows that S is not uniformly dependent.

4. $4 \leq \# S \leq 5$

In this paper we often use two results from [1] which give a complete classification of circuits S with $\# S \leq 5$ ([1, Theorem 1.1 and Proposition 5.2]). In this section we extend them to the case of equally dependent subsets $S \subset Y$ with $e(S) \geq 2$. Sometimes we will use them later, but the key point is that the cases with arbitrarily large width and fixed $s:=\# S$ occur exactly when $s \geq 6$. We always call $Y=\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{k}}$ the minimal Segre variety containing S.

Fix a set $S \subset Y$ such that $\# S \leq 5, e\left(S^{\prime}\right)<e(S)$ for all $S^{\prime} \subset S, S^{\prime} \neq S$, and $e(S) \geq 2$. We put the last assumption because we described all circuits (i.e., the case $e(S)=1$) in [1, Proposition 5.2] (case $\# S=4)$ and [1, Theorem 1.1] (case $\# S=5$).

Now the two new observations for the case $e(S) \geq 2$. We always assume that S is concise for Y.

Remark 4.1. Assume $\# S=4$ and $e(S) \geq 2$. By Lemma 2.2 we have $e(S)=2$ and $Y=\mathbb{P}^{1}$. Any union F of 4 distinct points of \mathbb{P}^{1} has $e(F)=2$ and it is equally dependent. For the existence of this case we need $\# K \neq 2$.
Remark 4.2. Assume $\# S=5$. If $e(S) \geq 3$, then $e(S)=3, Y=\mathbb{P}^{1}$ and S is an arbitrary subset of \mathbb{P}^{1} with cardinality 5 (Lemma 2.2). Assume $e(S)=2$. Thus for all $o \in S$ we have $e(S \backslash\{o\})=1$. Let $S_{o} \subseteq S \backslash\{o\}$ the minimal subset with $e\left(S_{o}\right)=1$. Each S_{o} is a circuit. Let $Y[o] \subseteq Y$ be the minimal multiprojective subspace containing o. The plane $\langle\nu(S)\rangle$ contains at least 5 points of $\nu(Y)$. Since $\nu(Y)$ is cut out by quadrics either $\langle\nu(S)\rangle \subseteq \nu(Y)$ (and hence $Y=\mathbb{P}^{2}$ by the assumption that Y is the minimal multiprojective space containing S) or $\langle\nu(S)\rangle \cap \nu(Y)$ is a conic. In the latter case the conic may be smooth or reducible, but not a double line. In this case $Y=\mathbb{P}^{1} \times \mathbb{P}^{1}$. To show that this case occurs we take an element $C \in\left|\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(1,1)\right|$ and take a union S of 5 points of C, with no restriction if C is irreducible, with the restriction that no component of C contains 4 or 5 points of S if C is reducible. To get examples with C irreducible we need $\# K \geq 4$, but even if $\# K \in\{2,3\}$ there are examples contained in a reducible C.

In the last part of this section we classify the quintuples (W, Y, q, A, B), where W and Y are multiprojective spaces, $Y \subseteq W, q \in\langle\nu(Y)\rangle, r_{\nu(Y)}(q)=2$, $A \in \mathcal{S}(Y, q), B \subset W$ and $B \in \mathcal{S}(W, q, 3)$. We assume that q is concise for Y. By [9, Proposition 3.1.3.1] this assumption is equivalent to the conciseness of A for Y. We assume that B is concise for W, but we do not assume $W=Y$.

Since Y is concise for A and $\# A=2$, we have $Y=\left(\mathbb{P}^{1}\right)^{k}$ for some $k>0$. Since $r_{\nu(Y)}(q) \neq 1$, we have $k \geq 2$. Since W is concise for B and $\# B=3$ we have $W=\mathbb{P}^{m_{1}} \times \cdots \times \mathbb{P}^{m_{s}}$ for some $s \geq k$ and $m_{i} \in\{1,2\}$ for all $i=1, \ldots, s$. We see the inclusion $Y \subseteq W$, fixing for $i=1, \ldots, k$ a one-dimensional linear subspace $L_{i} \subseteq \mathbb{P}^{m_{i}}$ and for $i=k+1, \ldots, s$ fixing $o_{i} \in \mathbb{P}^{m_{i}}$.

We prove the following statement.
Proposition 4.3. Fix $q \in \mathbb{P}^{r}$ with rank 2 and take a multiprojective space $Y=\left(\mathbb{P}^{1}\right)^{k}$ concise for q. Take a multiprojective space $W \supseteq Y$ and assume the existence of $B \in \mathcal{S}(W, q, 3)$. Fix $A \in \mathcal{S}(Y, q)$. Then one of the following cases occurs:
(1) $A \cap B \neq \emptyset, B$ is obtained from A making an elementary increasing and either $W=Y$ or $W \cong \mathbb{P}^{2} \times\left(\mathbb{P}^{1}\right)^{k-1}$ or $W \cong\left(\mathbb{P}^{1}\right)^{k+1}$;
(2) $A \cap B=\emptyset$; in this case either $W \cong \mathbb{P}^{2} \times \mathbb{P}^{1}$ or $W \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ or $W \cong \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$.

The multiprojective spaces W 's listed in (2) of Proposition 4.3 are the ones with $k>1$ in the list of $[1$, Theorem 1.1].

For more on the possibles B 's in case (1), see Lemma 4.5. For the proof of Proposition 4.3 we set $S:=A \cup B$. Our working multiprojective space is W and cohomology of ideal sheaves is with respect to W. Since $\nu(A)$ and $\nu(B)$ irredundantly spans q, we have $e(S)>0$. Note that $k>1$, because we assumed that the tensor q has tensor $\operatorname{rank} \neq 1$.

Lemma 4.4. If $A \cap B=\emptyset$, then S is irredundantly dependent and either $e(S)=1$ or $e(S)=2, Y=\mathbb{P}^{1} \times \mathbb{P}^{1}$ and S is formed by 5 points of some $C \in\left|\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(1,1)\right|$.

Proof. Since $A \cap B=\emptyset$, we have $e(S)-1=\operatorname{dim}(\langle\nu(A)\rangle \cap\langle\nu(B)\rangle)$. Since $\nu(A)$ (resp. $\nu(B)$) irredundantly spans q, we have $\langle\nu(A \backslash\{a\})\rangle \cap\langle\nu(B)\rangle \subset$ $\langle\nu(A)\rangle \cap\langle\nu(B)\rangle$ (with strict inclusion) for all $a \in A$ and $\langle\nu(A)\rangle \cap\langle\nu(B \backslash\{b\})\rangle \subset$ $\langle\nu(A)\rangle \cap\langle\nu(B)\rangle$ (with strict inclusion) for all $b \in B$. Thus $e\left(S^{\prime}\right)<e(S)$ for all $S^{\prime} \subset S, S^{\prime} \neq S$, by the Grassmann's formula. Assume $e(S) \geq 2$. Since $k>1$ we have $e(S)=2$ (Lemma 2.2). Since $e(S)=2$, Remark 4.2 gives $W=Y=\mathbb{P}^{1} \times \mathbb{P}^{1}$ and that S is formed by 5 points of any smooth $C \in\left|\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(1,1)\right|$. For the existence of this case we need $\# K \geq 4$.

Lemma 4.5. If $A \cap B \neq \emptyset$, then B is obtained from A making an elementary increasing of A with respect to the point $A \backslash A \cap B$ and one of the coordinates. In this case for any $Y=\left(\mathbb{P}^{1}\right)^{k}$ concise for q the concise W for B is either Y or isomorphic to $\mathbb{P}^{2} \times\left(\mathbb{P}^{1}\right)^{k-1}$ in which we may prescribe which of the k factors of W has dimension 2. For any rank 2 point $q \in\langle\nu(Y)\rangle$, any $A \in \mathcal{S}(Y, q)$, any point $a \in A$ and any $i \in\{1, \ldots, k\}$ we get a 2-dimensional family of such sets B 's with $W=Y$ and a 3-dimensional family of such B 's with $\operatorname{dim} W=$ $\operatorname{dim} Y+1$.

Proof. Assume $A \cap B \neq \emptyset$. Since $\nu(A)$ and $\nu(B)$ irredundantly span q, A is not contained in B. Thus $A \cap B \neq A$. Assume $A \cap B=\{o\}$ with $A=\{o, p\}$. Thus $\# S=4$. Since $q \neq \nu(o)$, and $q \in\langle\nu(B)\rangle$, we get $\langle\nu(B)\rangle \supset\langle\nu(A)\rangle$ and in particular $\nu(p) \subset\langle\nu(B)\rangle$.

First assume that S is equally dependent. Since S is equally dependent and $s \geq k \geq 2$, by Remark 4.1 and [1, Proposition 5.2] we get $W=Y=\mathbb{P}^{1} \times \mathbb{P}^{1}$ and the list of all possible S 's. In this list $\nu(p) \notin\langle\nu(S \backslash\{p\}\rangle$, a contradiction.

Now assume that S is not equally dependent. The proof of Lemma 4.4 gives that $e\left(S^{\prime}\right)=e(S)$ only if $S^{\prime}=S \backslash\{o\}$. Since $\# S^{\prime}=3$, there is $i \in\{1, \ldots, s\}$ such that $\# \pi_{h}\left(S^{\prime}\right)=1$ for all $h \neq i$. We see that B is obtained from A keeping o and making an elementary increasing with respect to p to get two other points of B.

5. $\nu(A)$ or $\nu(B)$ linearly dependent

Recall that $\# S=6, Y$ is concise for S and we fixed a partition $S=A \cup B$ such that $\# A=\# B=3$. In this section we assume that at least one among $\nu(A)$ and $\nu(B)$ is linearly dependent, while in the next sections we will always assume that both $\nu(A)$ and $\nu(B)$ are linearly independent. Just to fix the notation we assume $e(A)>0$. Thus $\nu(A)$ is the union of 3 collinear points and there is $i \in\{1, \ldots, k\}$ such that $\# \pi_{h}(A)=1$ for all $h \neq i$ and $\pi_{i}(A)$ is formed by the points spanning a line (Remark 2.1). With no loss of generality we may assume $i=1$.

Remark 5.1. Assume also $e(B)>0$. We want to prove that we are in one of the cases described in Example 3.1 or 3.2, up to a permutation of the factors of Y (assuming obviously $k>1$). By Remark 2.1 there is $j \in\{1, \ldots, k\}$ such that $\# \pi_{h}(B)=1$ for all $h \neq j$ and $\pi_{j}(B)$ is formed by 3 collinear points.
(a) Assume $i \neq j$. Up to a permutation of the factors of Y we may assume $i=1$ and $j=2$. Fix $o=\left(o_{1}, \ldots, a_{k}\right) \in A$ and $p=\left(p_{1}, \ldots, p_{k}\right) \in B$. Set $\left\{u_{1}, o_{1}, v_{1}\right\}:=\pi_{1}(A)$ and $\left\{w_{2}, z_{2}, o_{2}, p_{2}\right\}:=\pi_{2}(B)$. Since $\# \pi_{i}(A)=1$ for all $i>1, \pi_{i}(a)=o_{i}$ for all $a \in A$ and all $i>1$. Since $\# \pi_{i}(B)=1$ for all $i \neq 1$, $\pi_{i}(b)=p_{i}$ for all $b \in B$ and all $i \neq 1$. Thus we are as in Example 3.1.
(b) Now assume $i=j$. Up to a permutation of the factors of Y we may assume $i=1$. In this case we are in the set-up of Example 3.2.

Remark 5.2. Now assume $e(B)=0$. Since $A \subset S, A \neq S$ and $e(A)>0$, we have $e(S) \geq 2$. Take $i \in\{1, \ldots, k\}$ as in part (a) and set $\left\{o_{i}\right\}:=\pi_{i}(A)$. By assumption $\langle\nu(B)\rangle$ is a plane and either $\langle\nu(B)\rangle \cap\langle\nu(A)\rangle=\emptyset$ (i.e., $e(S)=2$) or $\langle\nu(B)\rangle \cap\langle\nu(A)\rangle$ is a point (call it q^{\prime}) (i.e., $e(S)=3$) or $\langle\nu(B)\rangle \supset\langle\nu(A)\rangle$ (i.e., $e(S)=4$). In the latter case we have $Y=\mathbb{P}^{1}$ (Lemma 2.2). Take any $A_{1} \subset A$ such that $\# A_{1}=2$ and set $S_{1}:=A_{1} \cup B$. We have $e\left(S_{1}\right)=e(S)-1$ and $e\left(S^{\prime}\right)<e\left(S_{1}\right)$ for any $S^{\prime} \subset S_{1}$ with $S^{\prime} \neq S_{1}$. The set S_{1} is very particular, because it contains a subset A_{1} such that $\# A_{1}=2$ and $\# \pi_{i}(A)=1$ for $k-1$ integers $i \in\{1, \ldots, k\}$, say for all $i \neq 1$.
(a) Assume $e(S)=3$ and hence $e\left(S_{1}\right)=2$. We may apply Remark 4.2 to this very particular S_{1}. Either $Y=\mathbb{P}^{2}$ or $Y=\mathbb{P}^{1} \times \mathbb{P}^{1}$. The case $Y=\mathbb{P}^{2}$ may obviously occur (take 6 points, 3 of them on a line). To get examples with $Y=$ $\mathbb{P}^{1} \times \mathbb{P}^{1}$ we need $S \subset C \in\left|\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(1,1)\right|$, because $e(S)=3$. The existence of A gives C reducible say $C=L \cup D$ with $L \in\left|\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(1,0)\right|$ and $D \in\left|\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(0,1)\right|$ with $D \supset A$. Since $h^{1}\left(\mathcal{I}_{B}(1,1)\right)=0$, we see that $\#(B \cap L)=2, \#(B \cap D)=1$ and $B \cap D \cap L=\emptyset$.
(b) Now assume $e(S)=2$. Thus $e\left(S_{1}\right)$ is a circuit and we may use the list in [1, Theorem 1.1]. Hence $k \leq 3, k=3$ implies $Y=\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$, while $k=2$ implies $n_{1}+n_{2} \in\{2,3\}$. Obviously the case $k=1, Y=\mathbb{P}^{3}$ occurs (6 points of \mathbb{P}^{3} with the only restriction that 3 of them are collinear).
(b1) Assume $Y=\mathbb{P}^{2} \times \mathbb{P}^{1}$. We are in the set-up of [1, Example 5.7], case $C=T_{1} \cup L_{1}$ with L_{1} a line and $\#\left(L_{1} \cap S_{1}\right)=2$. This case obviously occurs (as explained in [1, last 8 lines of Example 5.7]). To get S just add another point of L_{1}.
(b2) Assume $Y=\mathbb{P}^{1} \times \mathbb{P}^{1}$. Here we may take as S_{1} (resp. S) the union of 2 (resp. 3) points of any $D \in\left|\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(0,1)\right|$ and 3 sufficiently general points of Y.
(b3) Assume $Y=\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$. It does not occur here (it occurs when $e(A)=e(B)=0$ and $\left.r_{Y}(q)=3\right)$, because $\#(L \cap C) \leq 1$ for every integral curve $C \subset \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ with multidegree $(1,1,1)$ and each curve $L \subset \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ such that $\nu(L)$ is a line and we may apply [1, part (c) of Lemma 5.8].

6. $r_{Y}(q)=1$

We recall that q is a general element of $\langle\nu(A)\rangle \cap\langle\nu(B)\rangle$ and that in Sections 6,7 , and 8 we assume $e(A)=e(B)=0$ and $k>1$. In this section we assume $r_{Y}(q)=1$. Take $o \in Y$ such that $\nu(o)=q$ and write $o=\left(o_{1}, \ldots, o_{k}\right)$. Set $A^{\prime}=A \cup\{o\}$ and $B^{\prime}:=B \cup\{o\}$.
(a) Assume $o \in A$. Since $\nu(o)$ is general in $\langle\nu(A)\rangle \cap\langle\nu(B)\rangle$ and A has finitely many points, we have $\langle\nu(A)\rangle \cap\langle\nu(B)\rangle=\{\nu(o)\}$. The Grassmann's formula gives $\operatorname{dim}\langle\nu(S)\rangle=4$, i.e., $e(S)=1$. Since $A \cap B=\emptyset$, we have $o \notin B$. Thus $\nu(B \cup\{o\})$ is linearly dependent. Since $B \cup\{o\}$ is strictly contained in $S, e(S)=1$ and S is assumed to be equally dependent, we get a contradiction. In the same way we prove that $\# B^{\prime}=4$.
(b) By step (a) we have $\# A^{\prime}=\# B^{\prime}=4$. Write $o=\left(o_{1}, \ldots, o_{k}\right)$. The sets $\nu\left(A^{\prime}\right)$ and $\nu\left(B^{\prime}\right)$ are linearly dependent. Assume for the moment the existence of $A^{\prime \prime}$ strictly contained in A^{\prime} such that $e\left(A^{\prime \prime}\right)=e\left(A^{\prime}\right)$. We have $\# A^{\prime \prime}=3$, $e\left(A^{\prime \prime}\right)=1$ and there is $i \in\{1, \ldots, k\}$ such that $\# \pi_{h}\left(A^{\prime \prime}\right)=1$ for all $h \neq 1$. Since $e(A)=0$,o $\in A^{\prime \prime}$. Set $\{b\}:=A \backslash A \cap A^{\prime}$. We see that A is obtained from $\{o, b\}$ making an elementary increasing with respect to o and the i-th factor. But then $\nu(o)$ is spanned by $\nu\left(A \cap A^{\prime \prime}\right)$, contradicting the generality of $q \in\langle\nu(A)\rangle \cap\langle\nu(B)\rangle$ and that S is equally dependent. In the same way we
handle the case in which there is $B^{\prime \prime}$ strictly contained in A^{\prime} such that $\nu\left(A^{\prime \prime}\right)$ is dependent.
(c) By steps (a) and (b) we may assume that $\nu\left(A^{\prime}\right)$ and $\nu\left(B^{\prime}\right)$ are circuits. Let $Y^{\prime}=\prod_{i=1}^{s} \mathbb{P}_{i}^{m}$ (resp. $Y^{\prime \prime}=\prod_{i=1}^{c} \mathbb{P}^{t_{i}}$) be the minimal multiprojective subspace of Y containing A^{\prime} (resp. B^{\prime}). By [1, Proposition 5.2] either $s=1$ and $m_{1}=2$ or $s=2$ and $m_{1}=m_{1}=2$, either $c=2$ and $t_{1}=2$ or $c=2$ and $t_{1}=t_{2}=1$.
(c1) Assume $s=c=2$. Up to a permutation of the factors we may assume $\# \pi_{h}\left(A^{\prime}\right)=1$ for all $h>1$. Call $1 \leq i<j \leq k$ the two indices such that $\# \pi_{h}\left(B^{\prime}\right)=1$ for all $h \notin\{i, j\}$. Note that $\pi_{h}(S)=\pi_{h}(o)$ if $h \notin\{1,2, i, j\}$.
Claim 1. $k=j$.
Proof of Claim 1. Assume $k>j$. Since $k>j \geq 2$, we have $\pi_{k}(A)=\pi_{k}(o)=$ $\pi_{k}(B)$. Thus the pair (Y, S) is not concise.

Claim 2. $k \leq 4$ and $Y=\left(\mathbb{P}^{1}\right)^{4}$ if $k=4$.
Proof of Claim 2. By Claim 1 we have $k \leq 4$. Assume $k=4$, i.e., assume $i=3$ and $j=4$. Assume $Y \neq\left(\mathbb{P}^{1}\right)^{4}$, i.e., assume $n_{h} \geq 2$ for some h, say for $h=1$. Fix $a \in A$. Since $h^{0}\left(\mathcal{O}_{Y}\left(\epsilon_{1}\right)\right)=n_{1}+1 \geq 3$, there is $H \in\left|\mathcal{O}_{Y}\left(\epsilon_{1}\right)\right|$ containing o and at least one point of B. By concision S is not contained in H. Since A and B irredundantly span q, [2, Lemma 5.1] or [4, Lemmas 2.4 and 2.5] give $h^{1}\left(\mathcal{I}_{S \backslash S \cap H}(0,1,1,1)\right)>0$. Since $\# \pi_{1}\left(B^{\prime}\right)=1$, we have $B \subset H$. Thus $\#(S \backslash S \cap H) \leq 2$. Since $\mathcal{O}_{Y}\left(\epsilon_{1}\right)$ is globally generated, we get $\#(S \backslash S \cap H)=2$, i.e., $S \backslash S \cap H=A \backslash\{a\}$. Since $\mathcal{O}_{Y_{1}}(1,1,1)$ is very ample, we get $\# \eta_{1}(A \backslash\{a\})=1$. Taking another $a^{\prime} \in A$ instead of a, we get $\# \eta_{1}(A)=1$, i.e., A does not depend on the second factor of Y. Since $\nu(A)$ irredundantly spans $\nu(o)$, we get $\# \pi_{1}\left(A^{\prime}\right)=1$, a contradiction.
(c2) Assume $s=2$ and $c=1$ (the case $s=2$ and $c=1$) being similar. We may assume $\pi_{h}\left(A^{\prime}\right)=1$ for all $h>2$. Call i the only index such that $\# \pi_{i}\left(B^{\prime}\right)>1$. As in step (c1) we get $k \leq \#\{1,2,3\} \leq 3$.
(c3) Assume $s=c=1$. As is step (c1) and (c2) we get $k \leq 2$.

$$
\text { 7. } r_{Y}(q)=2
$$

In this section we assume $r_{Y}(q)=2$. We fix $E \in \mathcal{S}(Y, q)$. Set $M:=$ $\langle\nu(A)\rangle \cap\langle\nu(E)\rangle$. Call Y^{\prime} (resp. $Y^{\prime \prime}$) the minimal multiprojective subspace of Y containing $E \cup A$ (resp. $E \cup B$)

Lemma 7.1. If $w(Y) \geq 4$, then either $\nu(A)$ and $\nu(B)$ irredundantly span q.
Proof. Assume for instance that $\nu(A)$ does not span irredundantly q. Since $r_{Y}(q)=2$, there is $A^{\prime} \subset A$ such that $\# A^{\prime}=2$ and $A^{\prime} \in \mathcal{S}(Y, q)$. Since $A \cap B=$ $\emptyset, A^{\prime} \cap B=\emptyset$. Since $w(S)>2$, [5, Proposition 2.3] gives that B irredundantly spans q. Let $W \subseteq Y$ be the minimal multiprojective space containing $A^{\prime} \cup B$. Since $q \in\left\langle\nu\left(A^{\prime}\right)\right\rangle \cap\langle\nu(B)\rangle$ and $A^{\prime} \cap B=\emptyset, e\left(A^{\prime} \cup B\right)>0$. Since S is equally
dependent, $e(S)=e\left(A^{\prime} \cup B\right)+1$ and $\langle\nu(S)\rangle=\left\langle\nu\left(A^{\prime} \cup B\right)\right\rangle$. Since $A^{\prime} \cap B=\emptyset$, Proposition 4.3 gives $w(W) \leq 3$. Set $\{a\}:=A \backslash A^{\prime}$. Since $\langle\nu(S)\rangle=\left\langle\nu\left(A^{\prime} \cup B\right)\right\rangle$, $a \in\langle\nu(W)\rangle$. Concision for rank 1 tensors implies $\langle\nu(W)\rangle \cap \nu(Y)=\nu(W)$. Thus $a \in W$. Hence $W=Y$, contradicting the assumption $w(Y) \geq 4$.

Remark 7.2. By Lemma 7.1 from now on in this section we assume that each set $\nu(A)$ and $\nu(B)$ irredundantly spans q.

Lemma 7.3. Take a circuit $F \subset Y:=\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ concise for Y and with $\# F=5$. Write $F=U \cup G$ with $\# U=2$ and $\# G=3$. Then Y is concise for U.

Proof. By [1, Lemma 5.8] F is contained in an integral curve $C \subset Y$ of tridegree $(1,1,1)$. Each map $\pi_{i \mid C}: C \rightarrow \mathbb{P}^{1}$ is an isomorphism. Thus each $\pi_{i \mid U}$ is injective.

Lemma 7.4. $E \cap A \neq \emptyset$ (resp. $E \cap B \neq \emptyset$) if and only if either $w(S) \leq 3$ or A (resp. B) is obtained form E making an elementary increasing.

Proof. It is sufficient to prove the lemma for the set A. The "if" part follows from the definition of elementary increasing, because $\# E>1$.

Assume $E \cap A \neq \emptyset$. Since $\nu(A)$ irredundantly spans q (Remark 7.2), we have E is not contained in A. Write $E \cap A=\{a\}, E=\{a, b\}$ and $A=\{a, u, v\}$. We need to prove that there is i such that $\pi_{h}(a)=\pi_{h}(u)=\pi_{h}(v)$ for all $h \neq i$, while $\pi_{i}(\{a, u, v\})$ spans a line.
(a) First assume that $E \cup A$ is not equally dependent. Since $\#(E \cup A)=4$, we have $e(E \cup A)=1$ and there is $F \subset E \cup A$ such that $\# F=3$ and $e(F)=1$. By Remark 2.1 there is i such that $\# \pi_{h}(F)=1$ for all $h \neq i$ and $\pi_{i}(F)$ is formed by 3 collinear points. Since $\nu(E)$ and $\nu(A)$ irredundantly span q (Remark 7.2 and the assumption $E \in \mathcal{S}(Y, q))$, it is easy to check that $(E \cup A) \backslash F=\{a\}$. Thus A is obtained from E applying an elementary increasing with respect to b and the i-th factor of the multiprojective space.
(b) Now assume that $E \cup A$ is equally dependent. Since $\#(E \cup A)=4$, [1, Proposition 5.2] says that $w(E \cup A) \leq 2$ and that $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is the minimal multiprojective space containing $E \cup A$. Since $E \in \mathcal{S}(Y, q)$ and $r_{Y}(q)>1$, $Y^{\prime} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ is the minimal multiprojective space containing E.
(b1) Assume $E \cap B \neq \emptyset$ and $E \cup B$ is not equally dependent. By step (a) applied to B we get that B is obtained from E making a positive elementary increasing. Thus either $w(B)=2$ or $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ is the minimal multiprojective space containing B (last sentence of Example 3.1) and it contains A, too, since it contains E. Thus $w(S) \leq 3$.
(b2) Assume $E \cap B \neq \emptyset$ and $E \cup B$ equally dependent. Thus $Y^{\prime \prime} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ and $Y^{\prime \prime}$ is the minimal multiprojective subspace containing E. Hence $Y^{\prime \prime}=Y^{\prime}$ and $Y=\mathbb{P}^{1} \times \mathbb{P}^{1}$.
(b3) Assume $E \cap B=\emptyset$. We get $w\left(Y^{\prime \prime}\right) \leq 3$ by Proposition 4.3 and (since $W \supseteq Y^{\prime}$) we get $Y=W$.

Lemma 7.5. Assume $E \cap A \neq \emptyset$ and $E \cap B \neq \emptyset$. Then either $w(S) \leq 2$ or S is as in one of Examples 3.1 and 3.2.

Proof. Assume $w(S)>2$. By Lemma $7.4 A$ and B are obtained from E making an elementary increasing. Since $A \cap B=\emptyset$, we have $\# A \cap E=\# B \cap E=1$ and $E \subset S$. By the definition of elementary increasing it is obvious that S is as in one of Examples 3.1 and 3.2 (Example 3.2 occurs if and only if we are doing the elementary increasings giving A and B from E with respect to the same factor of the multiprojective space).

Lemma 7.6. Assume $E \cap A=\emptyset$ (resp. $E \cap B=\emptyset$). Then $E \cup A$ (resp. $E \cup B$) is equally dependent.

Proof. It is sufficient to prove the lemma for $E \cup A$. The assumption is equivalent to $\operatorname{dim} M=e(E \cup A)-1$. Fix $a \in A$. Since $q \notin\langle\nu(A \backslash\{a\})\rangle$, $\langle\nu(A \backslash\{a\})\rangle \cap\langle\nu(E)\rangle$ is strictly contained in M. The Grassmann's formula gives $e((E \cup A) \backslash\{a\})<e(E \cup A)$. Take $b \in E$. Since $q \notin\langle\nu(E \backslash\{b\})\rangle$, we have $\langle\nu(E \backslash\{b\})\rangle \cap\langle\nu(A)\rangle$ is strictly contained in M. Thus $E \cup A$ is equally dependent.

Lemma 7.7. Assume $E \cap A=E \cap B=\emptyset$. Then $w(S) \leq 3$ and $Y \cong \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ if $w(S)=3$.

Proof. By Proposition 4.3 and Lemmas 7.3 and 7.6 we have $w\left(Y^{\prime}\right) \leq 3, w\left(Y^{\prime \prime}\right)$ ≤ 3 and if one of them, say $w\left(Y^{\prime}\right)$, is 3 , then $Y^{\prime} \cong \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ and $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ is the minimal multiprojective space containing E. Hence $w\left(Y^{\prime \prime}\right)=3$ and $Y^{\prime}=Y^{\prime \prime}$, i.e., $Y \cong \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$. Now assume $w\left(Y^{\prime}\right)=w\left(Y^{\prime \prime}\right)=2$. In this case both Y^{\prime} and $Y^{\prime \prime}$ have the same number of factors as the minimal multiprojective space containing E and exactly the same non-trivial factor, i.e., if $E=\{u, v\}$ with $u=\left(u_{1}, \ldots, u_{k}\right), v=\left(v_{1}, \ldots, v_{k}\right)$ and $u_{i}=v_{i}$ for all $i>2$, then $\# \pi_{i}\left(Y^{\prime}\right)=\# \pi_{i}\left(Y^{\prime \prime}\right)=1$ for all $i>2$. Since $\pi_{i}\left(Y^{\prime}\right)=\left\{u_{i}\right\}=\pi_{i}\left(Y^{\prime \prime}\right)$ for all $i>2$, we get $w(Y)=2$.

Lemma 7.8. Either S is as in Examples 3.1 and 3.2 or $w(S) \leq 4$ with $Y=$ $\left(\mathbb{P}^{1}\right)^{4}$ if $w(S)=4$.

Proof. By the previous lemmas we may assume that exactly one among $E \cap A$ and $E \cap B$, say the first one, is empty. Thus B is obtained from E making a positive elementary increasing, while $w\left(Y^{\prime}\right) \leq 3$ and $Y^{\prime} \cong \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ if $w\left(Y^{\prime}\right)=3$. First assume $w\left(Y^{\prime}\right)=3$ and $Y^{\prime} \cong \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$. By Lemma 7.3 Y^{\prime} is the minimal multiprojective space containing E. Hence $w(E \cup B) \leq 4$ and $Y^{\prime \prime}=\left(\mathbb{P}^{1}\right)^{4}$ with $Y \supset Y^{\prime}$ if $w\left(Y^{\prime \prime}\right)=4$ (last part of Example 3.1). We get $w(Y) \leq 4$ and $Y \cong\left(\mathbb{P}^{1}\right)^{4}$ if S is not as in Examples 3.1 and 3.2. Now assume $w\left(Y^{\prime}\right)=2$. Thus $w(E)=2$. We get that either $w\left(Y^{\prime \prime}\right)=2$ or $Y^{\prime \prime} \cong \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ with $\# \pi_{3}(A)=1$. Hence $w(Y) \leq 3$.

8. $r_{Y}(q)=3$

The point $q \in \mathbb{P}^{N}$ has tensor rank 3 and hence $\nu(A)$ and $\nu(B)$ are tensor decompositions of it with the minimal number of terms. By concision ([9, Proposition 3.1.3.1]) Y is the minimal multiprojective space containing A and the minimal multiprojective space containing B. Hence $1 \leq n_{i} \leq 2$ for all i. Y is as in the cases of [5, Theorem 7.1] coming from the cases $\# S=6$, i.e., we exclude case (6) of that list. In all cases (1), (2), (3), (4), (5) of that list we have $w(Y) \leq 4$ and $w(Y)=4$ if and only if $Y \cong\left(\mathbb{P}^{1}\right)^{4}$. The sets $\mathcal{S}(Y, q)$ to which A and B belong are described in the same paper. The possible concise Y 's are listed in [5, Theorem 7.1], but we stress that from the point of view of tensor ranks among the sets S described in one of the examples of [5] there is some structure. If we start with S with $e(S)=1$ and arising in this section and any decomposition $S=A \cup B$ with $\# A=\# B=3$, the assumption $e(S)=1$ and $e(A)=e(B)=0$ gives that $\langle\nu(A)\rangle \cap\langle\nu(B)\rangle$ is a single point by the Grassmann's formula. Call q this point. If we assume $r_{X}(q)=3$, then in [5] there is a description of all $S \in \mathcal{S}(Y, q)$. Changing the decomposition $S=A \cup B$ change q and hence all sets associated to S using the point q. Thus if $e(S)=1$ and there is a partition $S=A \cup B$ of S such that the point $\langle\nu(A)\rangle \cap\langle\nu(B)\rangle$ has tensor rank 3, then to S and the partition $S=A \cup B$ we may associate a family $\mathcal{S}(Y, q)$ of circuits associated to q.

End of the proof of Theorem 1.2. In the last 4 sections we considered all possible cases coming from a fixed partition of $A \cup B$. We summarized the case $r_{Y}(q)=2$ in the statement of Lemma 7.8.

References

[1] E. Ballico, Linearly dependent subsets of Segre varieties, J. Geom. 111 (2020), no. 2, Paper No. 23, 19 pp. https://doi.org/10.1007/s00022-020-00534-7
[2] E. Ballico and A. Bernardi, Stratification of the fourth secant variety of Veronese varieties via the symmetric rank, Adv. Pure Appl. Math. 4 (2013), no. 2, 215-250. https://doi.org/10.1515/apam-2013-0015
[3] E. Ballico, A. Bernardi, L. Chiantini, and E. Guardo, Bounds on the tensor rank, Ann. Mat. Pura Appl. (4) 197 (2018), no. 6, 1771-1785. https://doi.org/10.1007/s10231-018-0748-6
[4] E. Ballico, A. Bernardi, M. Christandl, and F. Gesmundo, On the partially symmetric rank of tensor products of W-states and other symmetric tensors, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 30 (2019), no. 1, 93-124. https://doi.org/10.4171/ RLM/837
[5] E. Ballico, A. Bernardi, and P. Santarsiero, Identifiability of rank-3 tensors, arXiv: 2001.10497.
[6] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.
[7] J. W. P. Hirschfeld and J. A. Thas, General Galois Geometries, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991.
[8] W. C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cambridge University Press, Cambridge, 2003. https://doi.org/10.1017/CB09780511807077
[9] J. M. Landsberg, Tensors: geometry and applications, Graduate Studies in Mathematics, 128, American Mathematical Society, Providence, RI, 2012. https://doi.org/10.1090/ gsm/128
[10] B. Lovitz, Toward a generalization of Kruskal's decomposition on tensor decomposition, arXiv:1812.00264v2.

Edoardo Ballico
University of Trento
Via Sommarive 14
38123 Trento (TN), Italy
Email address: edoardo.ballico@unitn.it

[^0]: Received March 16, 2020; Revised September 4, 2020; Accepted November 18, 2020.
 2010 Mathematics Subject Classification. Primary 14N07, 14N05, 12E99, 12 F 99.
 Key words and phrases. Segre varieties, tensor rank, tensor decomposition.
 The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

