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WEIGHTED NORM ESTIMATES FOR THE DYADIC

PARAPRODUCT WITH VMO FUNCTION

Daewon Chung

Abstract. In [1], Beznosova proved that the bound on the norm of the
dyadic paraproduct with b ∈ BMO in the weighted Lebesgue space L2(w)

depends linearly on the Ad
2 characteristic of the weight w and extrapolated

the result to the Lp(w) case. In this paper, we provide the weighted norm
estimates of the dyadic paraproduct πb with b ∈ VMO and reduce the

dependence of the Ad
2 characteristic to 1/2 by using the property that

for b ∈ VMO its mean oscillations are vanishing in certain cases. Using
this result we also reduce the quadratic bound for the commutators of

the Calderón-Zygmund operator [b, T ] to 3/2.

1. Introduction

Let D denote the collection of dyadic intervals of the real line R and D(J)
denote the dyadic subintervals of an interval J . For any interval I ∈ D, there
is a Haar function associated to I defined by

hI(x) =
1√
|I|
(
1I+(x)− 1I−(x)

)
,

where |I| denotes the length of I, I+ and I− are the right and left halves respec-
tively of I, and the characteristic function 1I(x) = 1 if x ∈ I, zero otherwise.
We say the positive almost everywhere and locally integrable function w, a
weight, satisfies the Ap condition if:

(1.1) [w]Ad
p

:= sup
I∈D
〈w〉I〈w−1/(p−1)〉p−1

I <∞,

where 〈w〉I stands for the integral average of a weight w over the interval I . It
was known in the 1970s that the Maximal function, the Hilbert transform, the
Calderón-Zygmund operator are bounded on Lp(w) if and only if w satisfies the
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Ap condition respectively in [5, 8, 12]. A few decades later, we have obtained
better understandings regarding the dependence of the weight characteristic,
such as the Maximal function [2], the Hilbert transform [16], the dyadic para-
product [1], Calderón-Zygmund operators [9] and their commutators [4]. One
can find the detailed statements and their proofs in the indicated references
but we also refer to [15] which kindly presented the most of this subject and
progression. In this paper we are primarily interested in the result in [1] which
is the now well-known fact that the dyadic paraproduct with b, a function in
BMO obeys the linear dependence on the A2 characteristic of the weight and
also the dependence is optimal. Namely, for all f ∈ L2(w)

‖πbf‖L2(w) ≤ C[w]A2‖b‖BMO‖f‖L2(w),

where b ∈ L1
loc(R), the dyadic paraproduct is defined as

πbf :=
∑
I∈D
〈f〉IbIhI .

Here bI := 〈b, hI〉 where 〈· , ·〉 denotes the inner product on L2(R). However,
in this paper, we can reduce the dependence of the weight characteristic by
choosing the function b in VMO which was introduced by D. Sararon in [17].
More precisely, we show the following theorem.

Theorem 1.1 (Main result). Let w ∈ Ad
2 and b ∈ VMOd. Then there is a

constant C, independent of the weight w, such that

‖πb‖L2(w)→L2(w) ≤ C[w]
1
2

Ad
2
‖b‖BMOd .

This theorem, together with the sharp version of the Rubio De Francia’s
extrapolation theorem from [7], produces Lp(w) bounds as follows.

Theorem 1.2. Let w ∈ Ad
p and b ∈ VMOd. Then the norm of the dyadic

paraproduct operator πb on the weighted Lp(w) spaces satisfies

‖πb‖Lp(w)→Lp(w) ≤ C(p)[w]
1
2 max{1, 1

p−1}
Ad

p
‖b‖BMOd .

The functions in BMO are characterized by the boundedness of their mean
oscillation over intervals. The functions in VMO on the circle T are those
with the additional property that their mean oscillations over small intervals
are small. The space VMO is a closed subspace of BMO and contains all
uniformly continuous functions in BMO. Coifman and Weiss defined the space
VMO on the real line [6] and they also proved that VMO(R) is the predual
of the Hardy space H1(R). The precise definition of VMO(R) and several its
alternative characterizations are given in the following section. Definitions and
frequently used theorems are collected in Section 2. We give the proof of the
main theorem in Section 3 and concluding remarks with an application of the
main result to the weighted norm estimate of the commutator in Section 4.
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2. Definition and useful lemmata

In this section, we will review some basic definitions, notations and some
useful lemmas. Throughout the proofs a constant C will be a numerical con-
stant that may change from line to line. Given a weight w and an interval I
we also define the weighed Haar function associated to I as

hwI (x) =
1√
w(I)

(√
w(I−)

w(I+)
1I+(x)−

√
w(I+)

w(I−)
1I−(x)

)
.

The Haar systems {hI}I∈D and {hwI }I∈D are orthonormal systems in L2 and
L2(w) respectively, where L2(w) is the collection of square integrable functions
with respect to the measure wdx and it is a Hilbert space with the weighted
inner product defined by 〈f, g〉w =

∫
fgwdx . Then every function f ∈ L2(w)

can be written as

f =
∑
I∈D
〈f, hwI 〉whwI ,

where the sum converges a.e. in L2(w). Moreover, by the Bessel’s inequality,
we have ∑

I∈D
|〈f, hwI 〉w|2 ≤ ‖f‖2L2(w) .

Also, the weighted and unweighted Haar functions are related linearly as fol-
lows.

Proposition 2.1. For any weight w, there are numbers αw
I and βw

I such that

hI(x) = αw
I h

w
I (x) + βw

I

1I(x)√
|I|

,

where |αw
I | ≤ 〈w〉1/2, |βw

I | ≤
|∆Iw|
〈w〉I , and ∆Iw := 〈w〉I+ − 〈w〉I− .

We refer to [13] for the proof of Proposition 2.1. For the dyadic paraproduct
to be defined on Lp(R) the function b needs to be in BMOd, that is

‖b‖BMOd :=

(
sup
I∈D

1

|I|

∫
I

|b(x)− 〈b〉I |2dx
)1/2

<∞ .

We will use the alternative definition of the BMOd norm of b which is

‖b‖2BMOd = sup
J∈D

1

|J |
∑

I∈D(J)

b2I .

As we mentioned in the beginning, the linear estimate of the dyadic paraprod-
uct first presented by O. Beznosova in [1]. Here we state it as a theorem.

Theorem 2.2 ([1]). Let w ∈ Ad
2 and b ∈ BMOd. Then the norm of the dyadic

paraproduct operator πb on the weighted L2(w) space is bounded by

‖πb‖L2(w)→L2(w) ≤ C[w]Ad
2
‖b‖BMOd .
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Theorem 2.2 plays an important role in the weighted norm estimates of the
singular integral operators to obtain the its linear estimate in L2(w). In order
to reduce the dependence of the weight characteristic, we are going to choose
the function b in the space of VMOd. First, we state the definition of VMO(R)
as it appeared in [6].

Definition 1 ([6]). VMO(R) is the closure of C∞0 (R) in the BMO(R) norm.

The alternative definitions in terms of oscillation conditions and Carleson
measures on Haar coefficients as follows. One can find the proof and more
detailed statements in [10]. Let us denote B(0, 2R) be the ball in the real line
centered origin with radius 2R.

Definition 2. The space VMOd(R) is the set of all functions b ∈ BMOd(R)
satisfying the conditions:

(1) lim
N→∞

sup
J∈D
|J|<2−N

1

|J |
∑

I∈D(J)

b2I = 0;

(2) lim
M→∞

sup
J∈D
|J|>2M

1

|J |
∑

I∈D(J)

b2I = 0; and

(3) lim
R→∞

sup
J∈D

J∩B(0,2R)=∅

1

|J |
∑

I∈D(J)

b2I = 0.

If a function b belongs to the space VMOd then, for any positive number
ε > 0 there exist N and M such that

sup

 1

|J |
∑

I∈D(J)

b2I

∣∣∣∣ |J | ≤ 2−N

 < ε

and

sup

 1

|J |
∑

I∈D(J)

b2I

∣∣∣∣ |J | ≥ 2M

 < ε.

Also, by the 3rd condition of Definition 2, there exists R such that

sup

 1

|J |
∑

I∈D(J)

b2I

∣∣∣∣ J ∩B(0, 2R) = ∅

 < ε .

Then, for any given ε > 0, we can also define the collections of the dyadic
intervals B and G as follows:

B = {I ∈ D | 2−N < |I| < 2M and I ∩B(0, 2R) 6= ∅} and G = D \ B .

Then B only contains a finite number of intervals, namely at most 2
(
2N+R+1−1

)
.

The collection of the dyadic intervals G contains infinitely many intervals, but
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for any J ∈ D, we have

(2.1)
1

|J |
∑

I∈D(J)∩G

b2I < ε .

We now introduce some useful theorems and lemmas which will be used fre-
quently throughout the paper. The dyadic weighted maximal function Md

w is
defined as

Md
wf(x) := sup

I3x
I∈D

1

w(I)

∫
I

|f(y)|w(y)dy.

A very important fact about the weighted maximal function is that the Lp(w)
norm of Md

w only depends on p′ = p/(p− 1) not on the weight w . This follows
by Marcinkiewicz interpolation theorem, using the facts that Md

w is bounded
on L∞(w) with constant 1 and it is weak-type (1, 1) also with constant 1. We
use the notation 〈f〉I,w for the weighted average of f over I. It is worth to note
here for later uses that

(2.2) 〈|f |〉I,w ≤ inf
x∈I

Md
wf(x)

for any I ∈ D .

Theorem 2.3. Let w be a locally integrable function such that w > 0 a.e. Then
for all 1 < p <∞, Md

w is bounded in Lp(w). Moreover, for all f ∈ Lp(w)

‖Md
wf‖Lp(w) ≤ p′‖f‖Lp(w) .

A positive sequence {λI}I∈D is a w-Carleson sequence if there is a constant
C > 0 such that for all dyadic intervals J

(2.3)
∑

I∈D(J)

λI ≤ Cw(J).

The smallest constant C > 0 that satisfies the inequality (2.3) is called the
intensity of the sequence. If w = 1 a.e. the sequence is called a Carleson
sequence. One can find the relationship between unweighted and weighted
Carleson sequences in the following lemma that was first presented in [1]. For
example, {b2I}I∈D for b ∈ BMOd is a Carleson sequence with intensity ‖b‖2BMOd

and, by the following lemma, {b2I/〈w−1〉I}I∈D is a w-Carleson sequence with
intensity at most 4‖b‖2BMOd .

Lemma 2.4 (Little Lemma, [1]). Let w be a weight, such that w−1 is also
a weight, and let {αI}I∈D be a Carleson sequence with intensity B. Then
{αI/〈w−1〉I}I∈D is a w-Carleson sequence with intensity at most 4B, that is
for all J ∈ D,

1

|J |
∑

I∈D(J)

αI

〈w−1〉I
≤ 4B〈w〉J .
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The weighted Carleson Lemma 2.5 will repeatedly appear in the proof of our
main theorem. The original version of the lemma was first stated in [13]. The
version we state here is called the Folklore lemma which was introduced and
used in [14]. One can find the proof of the following version of lemma in [11].

Lemma 2.5 (Weighted Carleson Lemma). Let w be a weight. Then {λI}I∈D
is a w-Carleson sequence with intensity B if and only if for all non-negative
w-measurable functions F on the line,

(2.4)
∑
I∈D

(inf
x∈I

F (x))λI ≤ B
∫
R
F (x)w(x) dx.

The following lemma is also necessary for us to prove our main theorem.
One can find its proof in the indicated references. In fact, there is one more
important lemma called α-Lemma for the sharp weighted estimate of the dyadic
paraproduct in [1]. However, by taking advantage of the property of the VMOd

function, we can get our results without using α-Lemma.

Lemma 2.6 ([1]). Let w ∈ Ad
2 be a weight. Then for all J ∈ D

1

|J |
∑

I∈D(J)

|∆Iw|2

〈w〉I
|I|〈w−1〉I ≤ C[w]Ad

2
.

3. Proof of the main result

In order to prove Theorem 1.1 it is enough to show that, for every f ∈
L2(w−1) and g ∈ L2(w),

(3.1) |〈πb(fw−1), gw〉| ≤ C([w]Ad
2
, ‖b‖BMOd)‖f‖L2(w−1)‖g‖L2(w) .

To obtain the inequality (3.1), we will split the left hand side of (3.1) by two
parts as follows.

|〈πb(fw−1), gw〉| =

∣∣∣∣∣∑
I∈D
〈fw−1〉IbI〈gw, hI〉

∣∣∣∣∣
≤

∣∣∣∣∣∑
I∈B
〈fw−1〉IbI〈gw, hI〉

∣∣∣∣∣+

∣∣∣∣∣∑
I∈G
〈fw−1〉IbI〈gw, hI〉

∣∣∣∣∣
:= Σ1 + Σ2 .

For the summand Σ1, applying the Cauchy-Schwarz inequality to the average
of fw−1, we get the following inequality

Σ1 =

∣∣∣∣∣∑
I∈B
〈fw−1〉IbI〈gw, hI〉

∣∣∣∣∣ ≤∑
I∈B
〈|f |2w−1〉1/2

I 〈w
−1〉1/2

I |bI | |〈gw, hI〉| .
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Replace hI by αIh
w
I + βI

1I√
|I|

, where αI = αw
I and βI = βw

I as described in

Proposition 2.1 and get∑
I∈B
〈|f |2w−1〉1/2

I 〈w
−1〉1/2

I |bI | |〈gw, hI〉|

=
∑
I∈B
〈|f |2w−1〉1/2

I 〈w
−1〉1/2

I |bI |

∣∣∣∣∣
〈
gw, αIh

w
I + βI

1I√
|I|

〉∣∣∣∣∣
:= Σ3 + Σ4 ,(3.2)

where

Σ3 =
∑
I∈B
〈|f |2w−1〉1/2

I 〈w
−1〉1/2

I |bI | |〈gw, αIh
w
I 〉|

and

Σ4 =
∑
I∈B
〈|f |2w−1〉1/2

I 〈w
−1〉1/2

I |bI |

∣∣∣∣∣
〈
gw, βI

1I√
|I|

〉∣∣∣∣∣ .
Estimate for Σ3: Using the estimate |αI | ≤ 〈w〉1/2

I and 〈w〉I〈w−1〉I ≤ [w]Ad
2

and applying the Cauchy-Schwarz inequality, we get

Σ3 ≤ [w]
1/2
A2

∑
I∈B
〈|f |2w−1〉1/2

I |bI | |〈g, h
w
I 〉w|

≤ [w]
1/2
A2
‖f‖L2(w−1)

∑
I∈B

|bI |√
|I|
|〈g, hwI 〉w|

≤ [w]
1/2
A2
‖f‖L2(w−1)

(∑
I∈B

|bI |2

|I|

)1/2(∑
I∈B
|〈g, hwI 〉w|2

)1/2

≤ [w]
1/2
A2
‖f‖L2(w−1)‖g‖L2(w)

(
sup
I∈B

|K|
|I|

)1/2
(

1

|K|
∑
I∈B
|bI |2

)1/2

,

where K denotes the smallest interval that contains all dyadic intervals in B.

Since the collection B only contains finite dyadic intervals, supI∈B
|K|
|I| exists as

a finite number and only depends on the vanishing rate of the function b. Thus
there exists a constant C such that

(3.3) Σ3 ≤ C[w]
1/2
A2
‖b‖BMOd‖f‖L2(w−1)‖g‖L2(w) .

Estimate for Σ4: Using the estimate |βI | ≤ |∆Iw|
〈w〉I and similar argument with

the estimate for Σ3 we get

Σ4 ≤
∑
I∈B
〈|f |2w−1〉1/2

I 〈w
−1〉1/2

I |bI |

∣∣∣∣∣
〈
gw, βI

1I√
|I|

〉∣∣∣∣∣
≤ ‖f‖L2(w−1)

∑
I∈B
〈w−1〉1/2

I |bI |〈gw〉I
|∆Iw|
〈w〉I
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≤ ‖f‖L2(w−1)

∑
I∈B
〈w−1〉1/2

I |bI |〈|g|
2w〉1/2

I 〈w〉
1/2
I

|∆Iw|
〈w〉I

≤ ‖f‖L2(w−1)‖g‖L2(w)

∑
I∈B
〈w−1〉1/2

I

|bI |√
|I|
|∆Iw|
〈w〉1/2

I

≤ ‖f‖L2(w−1)‖g‖L2(w)‖b‖BMO

(
|K|

∑
I∈B

1

|I|

)1/2(
1

|K|
∑
I∈B
|I|〈w−1〉I

|∆Iw|2

〈w〉I

)1/2

,

where the last inequality uses the fact that |bI |/
√
|I| ≤ C‖b‖BMOd and K

denotes the smallest interval that contains all intervals in B. Then, by Lemma
2.6, we get the following inequality

Σ4 ≤ C[w]
1/2
A2
‖f‖L2(w−1)‖g‖L2(w)‖b‖BMOd

(
|K|

∑
I∈B

1

|I|

)1/2

≤ C[w]
1/2
A2
‖b‖BMOd‖f‖L2(w−1)‖g‖L2(w) .(3.4)

Combining the estimates (3.3) and (3.4) we obtain the estimate for the sum-
mand Σ1:

(3.5) Σ1 ≤ C[w]
1/2
A2
‖b‖BMOd‖f‖L2(w−1)‖g‖L2(w) .

We now return to the remaining part. One can follow the Beznosova’s linear
estimate to estimate the summand Σ2. However, to prove Theorem 1.1, we
don’t need to have the linear estimate because we can take an advantage of
choosing ε. Before we estimate Σ2 it is good to remind the property of the
collection G, (2.1), which is for any I ∈ G,

1

|J |
∑

I∈D(J)∩G

b2I < ε .

At the end of the estimate we are going to choose ε = ‖b‖BMOd/[w]Ad
2
.

Estimate for Σ2: Similarly to Σ1, replace hI by αIh
w
I + βI

1I√
|I|

and split the

summand into two parts:

Σ2 =

∣∣∣∣∣∑
I∈G
〈fw−1〉IbI〈gw, hI〉

∣∣∣∣∣
=

∣∣∣∣∣∑
I∈G
〈fw−1〉IbI

〈
gw, αIh

w
I + βI

1I√
|I|

〉∣∣∣∣∣
≤

∣∣∣∣∣∑
I∈G
〈fw−1〉IbI 〈gw, αIh

w
I 〉

∣∣∣∣∣+

∣∣∣∣∣∑
I∈G
〈fw−1〉IbI

〈
gw, βI

1I√
|I|

〉∣∣∣∣∣
≤
∑
I∈G
〈|f |w−1〉I |bI ||〈gw, hwI 〉|〈w〉

1/2
I +

∑
I∈G
〈|f |w−1〉I |bI |

√
|I|〈|g|w〉I

|∆Iw|
〈w〉I
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:= Σ5 + Σ6 .

For the summand Σ5, we use the Cauchy-Schwarz inequality and (2.2) as fol-
lows:

Σ5 =
∑
I∈G
〈|f |w−1〉I |bI ||〈gw, hwI 〉|〈w〉

1/2
I

=
∑
I∈G

|bI |√
〈w〉I

〈|f |〉I,w−1 |〈g, hwI 〉w|〈w−1〉I〈w〉I

≤ [w]Ad
2

(∑
I∈G

|bI |2

〈w〉I
〈|f |〉2I,w−1

)1/2(∑
I∈G
|〈g, hwI 〉w|2

)1/2

≤ [w]Ad
2
‖g‖L2(w)

(∑
I∈G

|bI |2

〈w〉I

(
inf
x∈I

Md
w−1f(x)

)2
)1/2

.

Let us define the sequence by

γI =

{
|bI |2/〈w〉I if I ∈ G,
0 otherwise.

Then γI is a w−1-Carleson sequence with intensity at most ε . We now use
Theorem 2.3 and Lemma 2.5 to get the following estimate:

Σ5 ≤ [w]Ad
2
‖g‖L2(w)

(∑
I∈D

γI

(
inf
x∈I

Md
w−1f(x)

)2
)1/2

≤ Cε[w]Ad
2
‖g‖L2(w)

(∫
R

(
Md

w−1f(x)
)2
w−1(x)dx

)1/2

≤ Cε[w]Ad
2
‖g‖L2(w)‖f‖L2(w−1) .

The last summand Σ6 can be estimated similarly to the summand Σ5 as follows:

Σ6 =
∑
I∈G
〈|f |w−1〉I |bI |

√
|I|〈|g|w〉I

|∆Iw|
〈w〉I

=
∑
I∈G
〈|f |〉I,w−1 |bI |

√
|I|〈|g|〉I,w

|∆Iw|
〈w〉I

〈w−1〉I〈w〉I

≤ [w]Ad
2

(∑
I∈G
〈|f |〉2I,w−1

|bI |2

〈w〉I

)1/2(∑
I∈G
〈|g|〉2I,w

|∆Iw|2

〈w〉I
|I|

)1/2

≤ ε[w]Ad
2
‖f‖L2(w−1)

(∑
I∈D

|∆Iw|2

〈w〉I
|I|
(

inf
x∈I

Md
wg(x)

)2
)1/2

≤ ε[w]
3/2

Ad
2
‖f‖L2(w−1)‖g‖L2(w).
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Combining the estimates for Σ5 and Σ6, we get

(3.6) Σ2 ≤ C[w]Ad
2
(1 + [w]

1/2

Ad
2

)ε‖f‖L2(w−1)‖g‖L2(w) .

We now choose ε is equal to ‖b‖BMOd/[w]Ad
2
, then we have

(3.7)
Σ2 ≤ C(1 + [w]

1/2

Ad
2

)‖f‖L2(w−1)‖g‖L2(w)

≤ C[w]
1/2

Ad
2
‖b‖BMOd‖f‖L2(w−1)‖g‖L2(w).

This completes the proof.

4. Concluding remarks

In this section we will state an application of our main result to the commu-
tator of the Hilbert transform. In [3] the author presents the sharp quadratic
estimate for the commutator. In order to obtain the result one can decompose
the commutator as follows:

[b,H](f) = (πb(Hf)−H(πbf)) + (π∗b (Hf)−H(π∗bf)) + (πHf (b)−H(πfb)) ,

where π∗b is the adjoint of the dyadic paraproduct. The author in [3] proved the
linear estimates for the terms Hπb, π

∗
bH and πH(·)(b)−H(π(·)b) using Bellman

function techniques for b ∈ BMO. However for the remaining two parts, namely
πbH and Hπ∗b , one was not able to establish the dependece less than quadratic
due to the lack of localization property of those terms. However, by choosing
b in VMOd, we can take an advantage of Theorem 1.1 and get the estimate for
πbH and Hπ∗b ,

‖πbH(f)‖L2(w) + ‖Hπ∗b (f)‖L2(w) ≤ C‖b‖BMOd [w]
3/2

Ad
2
‖f‖L2(w).

With this 3/2 estimate, the linear estimates for the other terms, and the ex-
trapolation, we get, for b ∈ VMO, w ∈ Ap, and f ∈ Lp(w)

‖[b,H]‖Lp(w) ≤ [w]
3
2 max{1, 1

p−1}
Ap

‖b‖BMO‖f‖Lp(w)

for all 1 < p <∞. However, we don’t believe this 3/2 estimate is optimal. We
expect to have the linear estimate for the commutator with VMO function by
more subtle calculations and it will be our next project.
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