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CONTINUOUS ORBIT EQUIVALENCES ON

SELF-SIMILAR GROUPS

Inhyeop Yi

Abstract. For pseudo-free and recurrent self-similar groups, we show

that continuous orbit equivalence of inverse semigroup partial actions
implies continuous orbit equivalence of group actions. Conversely, if group

actions are continuous orbit equivalent, and the induced homeomorphism
commutes with the shift maps on their groupoids, we obtain continuous

orbit equivalence of inverse semigroup partial actions.

1. Introduction

The main purpose of this paper is to find relations of continuous orbit equiv-
alences on self-similar groups. Continuous orbit equivalence of one-sided sub-
shifts of finite type defined by Matsumoto [12] has had a major effect on the
study of C∗-algebras and topological dynamics. The concept of continuous
orbit equivalence has been generalized to many areas, including graph alge-
bras [1, 3], group actions [10, 11], partial actions of inverse semigroups [2, 4–6],
and asymptotic Ruelle algebras of Smale spaces [13]. In particular, for graphs,
Cordeiro and Beuter [4] showed that two graphs are topologically orbit equiva-
lent if and only if their graph semigroup partial actions on corresponding path
boundaries are topologically orbit equivalent. Li [10] also determined that two
graphs are topologically orbit equivalent if and only if partial actions of free
groups generated by edge sets of graphs are topologically orbit equivalent.

Inspired by the results of [4, 10], we studied continuous orbit equivalences
defined on self-similar groups. Introduced by Nekrashevych [15, 16], the class
of self-similar groups has become an important example of C∗-dynamics. A
self-similar group (G,X) has at least two naturally associated actions. One is
G action on the infinite path space Xω, and the other is the partial action of
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an inverse semigroup SG on Xω. Moreover, Nekrashevych defined the equiva-
lence of self-similar groups to show conjugacy of group actions on the rooted
trees. Then, it is a rational question to find interrelations among these three
equivalences. The method we employ is groupoids of germs of these actions
and their corresponding groupoid C∗-algebras. To use groupoids and their C∗-
algebras effectively, we have to provide some restrictions on self-similar groups.
When self-similar groups satisfy pseudo-free and recurrent conditions, we show
that continuous orbit equivalence of inverse semigroup partial actions implies
continuous orbit equivalence of group action (Theorem 4.7). The converse is
also true if we assume an extra condition that the induced homeomorphism
commutes with the shift maps on their groupoids, we obtain continuous orbit
equivalence of inverse semigroup partial actions (Theorem 4.9).

2. Inverse semigroups

All of the material in this section is taken from [4] and [19]. We refer the
reader to [9, 17] for inverse semigroups and their groupoid C∗-algebras.

Inverse semigroups

An inverse semigroup is a semigroup S such that for every s ∈ S, there is a
unique element s∗ ∈ S, called the inverse of s, satisfying

ss∗s = s and s∗ss∗ = s∗.

We assume that S has a unit element 1 and a zero element 0 with the property

1s = s1 = s and 0s = s0 = 0 for every s ∈ S.
An element s ∈ S is called an idempotent if s2 = s. We denote the set of all
idempotents in S by E(S).

Example 2.1 ([7, Definition 5.2]). Let X be a topological space and define

pHomeo (X) = {h : U → V | U, V ⊂ X are open, and h is a homeomorphism}.
Then pHomeo (X) is an inverse semigroup: its binary operation is given by
composition, for h1, h2 ∈ pHomeo (X),

h1h2 = h1 ◦ h2 : h−12 (Domh1 ∩ Imh2)→ h1(Domh1 ∩ Imh2).

The inverse is given by h∗ = h−1, the unit element is IdX , the 0 element is the
trivial map between empty sets, and h is an idempotent if and only if h = IdU
for some open subset U of X.

An element h ∈ pHomeo (X) is called a partial homeomorphism of X.

Inverse semigroup partial actions

For a topological space X and an inverse semigroup S, S is said to act on X
if there is a semigroup homomorphism θ : S → pHomeo (X) that preserves the
unit element and the zero element [2]. To describe that the partial action of S
on X preserves the topological structure of X, we need the following definitions.
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Definition 2.2 ([2,4]). A partial homeomorphism between inverse semigroups
S and T is a map ϕ : S → T such that, for all s1, s2 ∈ S, one has

(1) ϕ(s∗1) = ϕ(s1)∗;
(2) ϕ(s1)ϕ(s2) ≤ ϕ(s1s2);
(3) ϕ(s1) ≤ ϕ(s2) whenever s1 ≤ s2.

Here, s1 ≤ s2 if and only if s1 = s1s
∗
2s2 holds.

Definition 2.3 ([4, Definition 2.4]). A (topological) partial action of an inverse
semigroup S on a topological space X is a tuple θ = ({Xs}s∈S , {θ(s)}s∈S) such
that:

(1) for every s ∈ S, Xs is an open subset of X and θ(s) : Xs∗ → Xs is a
homeomorphism;

(2) the map s 7→ θ(s) is a partial homomorphism of inverse semigroups;
(3) X = ∪e∈E(S)Xe.

Suppose that θ = ({Xs}s∈S , {θ(s)}s∈S) is the partial action of an inverse
semigroup S on a topological space X. To simplify notation, we denote θ(s)
simply by s so that the S partial action onX will be written as θ=({Xs}s∈S , S).
We consider S as a discrete topological space. A subset S∗X of S×X is defined
by

S ∗X = {(s, x) ∈ S ×X : x ∈ Xs∗}.
For each x ∈ X, the subset {s ∈ S : x ∈ Xs∗} of S is denoted by Sx.

Definition 2.4 ([4, Definition 7.2]). Suppose that θ = ({Xs}s∈S , {θ(s)}s∈S)
is as stated previously. We say that the S partial action on X is topologically
free if the following set is dense in X:

{x ∈ X : ∀s ∈ Sx, if s(x) = x, then there is an e ∈ E(S) such that

e ≤ s and x ∈ Xe}.

Groupoids of germs

Suppose that an inverse semigroup S acts on a locally compact Hausdorff
space X. The groupoid of germs of S, denoted by SnX, is the set of equivalence
classes of pairs (s, x) such that s ∈ Sx and x ∈ Xs∗ . Two pairs (s, x) and (t, y)
are equivalent to each other if and only if x = y and s and t coincide on a
neighborhood of x. The equivalence class of (s, x) is denoted by [s, x] and
called the germ of s at x.

The domain and range maps of S nX are

d([s, x]) = x and r([s, x]) = s(x).

The set of composable pairs of S nX is

S nX(2) = {([s, x], [t, y]) ∈ (S nX)× (S nX) : t(y) = x},
and the groupoid composition and inversion are given as

[s, x] · [t, y] = [st, y] and [s, x]−1 = [s∗, s(x)].
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The unit space of S nX is

S nX(0) = {[e, x] : e ∈ E(S), x ∈ Xe∗},

which is identified with X via the bijective map [e, x] 7→ x.
A topology on S n X is given as follows: for an s ∈ S and any open set

U ⊆ Xs∗s, let

O(s, U) = {[s, x] : x ∈ U}.

Then the collection of all O(s, U) forms a basis for a topology on SnX, which
makes S nX a locally compact étale groupoid [16].

Continuous orbit equivalence of inverse semigroup partial actions

Suppose that S and T are inverse semigroups and that X and Y are topolog-
ical spaces such that S acts on X and T acts on Y . We denote the S partial ac-
tion on X and T partial action on Y by θ = ({Xs}s∈S , S) and η = ({Yt}t∈T , T ),
respectively.

Definition 2.5 ([4, Definition 8.1]). Let θ and η be as stated previously. We
say that θ is continuously orbit equivalent to η if there is a homeomorphism

f : X → Y

and continuous maps

a : S ∗X → T and b : T ∗ Y → S

such that, for all x ∈ X, s ∈ Sx, y ∈ Y, and t ∈ Ty:

(1) f(s(x)) = a(s, x)(f(x)); and
(2) f−1(t(y)) = b(t, y)(f−1(y)).

Implicitly, we require a(s, x) ∈ Tf(x) and b(t, y) ∈ Sf−1(y).

Definition 2.6 ([4, Definition 8.7]). A topological partial action θ = ({Xs}s∈S ,
{θ(s)}s∈S) is called almost ample if X is a locally compact Hausdorff space and
Xs is ultraparacompact for every s ∈ S.

Theorem 2.7 ([4, Theorem 8.15]). Suppose that S and T are inverse semi-
groups and that X and Y are topological spaces such that the S partial action
on X and T partial action on Y are denoted as θ and η, respectively. Assume
that θ and η are almost ample and topologically free partial actions and that the
corresponding groupoids of germs S nX and T n Y are Hausdorff groupoids.
Then the following are equivalent.

(1) The partial actions θ and η are continuously orbit equivalent.
(2) The groupoids of germs SnX and T nY are topologically isomorphic.
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Continuous orbit equivalence of groups actions

We briefly review the continuous orbit equivalence of group actions defined
by Li [11].

Suppose that G is a discrete and countable group and that X is a compact
Hausdorff space. We say that G acts on X if there is a group homomorphism
g 7→ λg ∈ Homeo (X). As in the case of inverse semigroup partial actions,
we denote λ(g) simply by g. The transformation groupoid T (G,X) of the
G action on X is given by the set G × X = {(g, x)} with the multiplication
(h, y) ·(g, x) = (hg, x) if y = gx. It is easy to observe that conditions for inverse
semigroup partial actions are extended to group actions. See [4–7] for details.

Definition 2.8 ([11, Definition 2.5]). Suppose that G and H are discrete and
countable groups and X and Y are compact Hausdorff spaces such that G
acts on X and H acts on Y . Then G action on X and H action on Y are
continuously orbit equivalent if there is a homeomorphism f : X → Y and
continuous maps a : G×X → H and b : H × Y → G such that

f(g(x)) = a(g, x) ◦ f(x),

f−1(h(y)) = b(h, y) ◦ f−1(y)

for all g ∈ G, h ∈ H, x ∈ X, and y ∈ Y .

Definition 2.9 ([11, Definition 2.1]). Let G and X be as above. We say that
the G action on X is topologically free if, for each nontrivial element g ∈ G,
{x ∈ X : g(x) 6= x} is dense in X.

Theorem 2.10 ([11, Theorem 1.2]). Suppose that G action on X and H action
on Y are topologically free actions. Then the following are equivalent.

(1) The G action on X and H action on Y are continuously orbit equiva-
lent.

(2) The transformation groupoids T (G,X) and T (H,Y ) are topologically
isomorphic.

(3) There is a ∗-isomorphism φ : C0(X)orG→ C0(Y )orH with φ(C0(X))
= C0(Y ).

3. Self-similar groups

We review the properties of self-similar groups. All of the material in this
section is taken from [15,16].

Suppose that X is a finite alphabet. We denote by Xn the set of words of
length n in X with X0 = {∅}, and let X∗ = ∪∞n=0X

n. We denote by Xω the
set of right-infinite paths of the form x1x2 · · · where xi ∈ X. The product
topology of the discrete set X is given on Xω. A cylinder set Z(u) for each
u ∈ X∗ is

Z(u) = {ξ ∈ Xω : ξ = x0x1 · · · such that x0 · · ·x|u|−1 = u}.
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Then the collection of all such cylinder sets forms a basis for the product
topology on Xω. It is trivial that every cylinder set is a compact open set, and
that Xω is a compact metrizable space.

A self-similar group (G,X) consists of a finite set X and a faithful action of
a group G on X∗ such that, for all g ∈ G and x ∈ X, there exist unique y ∈ X
and h ∈ G such that

g(xu) = yh(u) for every u ∈ X∗.

The unique element h is called the restriction of g at x and denoted by g|x.
The restriction extends to X∗ via the inductive formula

g|xy = (g|x) |y
so that for every u, v ∈ X∗ we have

g(uv) = g(u)g|u(v).

The G-action extends to an action of G on Xω given by

g(x0x1 · · · ) = g(x0 · · ·xn−1)g|x0···xn−1(xn · · · ).

Conditions on self-similar groups

A self-similar group (G,X) is called contracting if there is a finite subset
N of G satisfying the following: for every g ∈ G, there is n ≥ 0 such that
g|v ∈ N for every v ∈ X∗ of length |v| ≥ n. We say that (G,X) is regular if, for
every g ∈ G and every ξ ∈ Xω, either g(ξ) 6= ξ or there is a neighborhood of
ξ such that every point in the neighborhood is fixed by g. We say that (G,X)
is recurrent if, for any two words a, b of equal length and every h ∈ G, there is
a g ∈ G such that g(a) = b and g|a = h (see [14, p. 235]). We say that (G,X)
is pseudo-free if (g, x) ∈ G×X is such that g(x) = x and g|x = 1, then g = 1
(see [8, Definition 5.4]).

Lemma 3.1. If (G,X) is a pseudo-free self-similar group, then G action on
Xω is a topologically free action.

Proof. Assume that the action is not topologically free. Then there is a non-
trivial element g ∈ G such that {ξ ∈ Xω : g(ξ) 6= ξ} is not dense in Xω. Thus,
there is a µ ∈ Xω such that:

(1) g(µ) = µ; and
(2) there are u ∈ X∗ and ν ∈ Xω such that µ = uν and every element is

Z(u) is fixed by g.

As we have

g(µ) = g(uν) = g(u)g|u(ν) = uν

for every α ∈ Xω so that uα ∈ Z(u),

g(uα) = g(u)g|u(α) = uα.
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Hence, we obtain g|u = 1, which implies g = 1 by the pseudo-free condition.
This is a contradiction to the assumption of g 6= 1. Therefore, G action on Xω

is a topologically free action. �

Recall that G action on X is free if g(x) 6= x for every nontrivial g ∈ G and
every x ∈ X.

Lemma 3.2. If (G,X) is a pseudo-free and regular self-similar group, then G
action on Xω is a free action.

Proof. If there are g 6= 1 in G and ξ in Xω such that g(ξ) = ξ, then the regular
condition implies that there is a neighborhood U of ξ such that every point in
U is fixed by g. Thus, the G action on Xω is not topologically free, which is a
contradiction to Lemma 3.1. Thus, G action on Xω is a free action. �

Inverse semigroups of self-similar groups

Suppose that (G,X) is a self-similar group. The Cuntz-Pimsner algebra OG
of a self-similar group (G,X) is the universal C∗-algebra generated by G and
{sx : x ∈ X} satisfying the following relations (see [16, Definition 3.1]):

(1) all relations of G;
(2) s∗xsx = 1 for every x ∈ X and

∑
x∈X sxs

∗
x = 1; and

(3) for all g ∈ G and x ∈ X, g · sx = sg(x) · g|x.

We denote by SG the inverse semigroup generated by the elements sx, s∗x, and
G in OG. For u = u1 · · ·un ∈ Xn, we let su = su1

· · · sun
and s∗u = s∗un

· · · s∗u1
.

Likewise, we also let s∅ be the identity. Then every element of SG is uniquely
written in the form sugs

∗
v for some u, v ∈ X∗ and g ∈ G [16, Proposition 3.2].

The inverse semigroup SG acts on Xω by the partial homeomorphism

sugs
∗
v(vξ) = ug(ξ)

with domain Z(v) and range Z(u). The groupoid of germs of SG is denoted by
CG and called the Cuntz-Pimsner groupoid of (G,X).

For a self-similar group (G,X), we recall that the group G is a subset of
the inverse semigroup SG. Moreover, vξ is a fixed element of sugs

∗
v ∈ SG if

and only if u = v and g(ξ) = ξ. Then the following property comes from
[8, Corollary 14.14].

Lemma 3.3. Suppose that (G,X) is a self-similar group with its inverse semi-
group SG. If (G,X) is pseudo-free, then SG partial action on Xω is topologically
free.

Remark 3.4. Let (G,X) be a pseudo-free self-similar group with its Cuntz-
Pimsner groupoid CG and inverse semigroup SG.

(1) The notion of groupoid germs used in [4], due to Exel and Paterson
[6,17], differs from the one we used. But both definitions coincide when
an inverse semigroup partial action is topologically free [8].
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(2) The SG partial action on Xω is almost ample because Xω is compact,
Hausdorff, and zero-dimensional.

(3) The Cuntz-Pimsner groupoid CG is an étale, topologically principal, lo-
cally compact, and Hausdorff groupoid. The étale and locally compact
properties come from the definition of groupoids of germs. The topo-
logically principal property is by [8, Corollary 14.14], and the Hausdorff
property is by [16, Lemma 5.4]. If (G,X) is contracting and recurrent,
then CG is amenable by [16, Theorem 5.6].

(4) The Cuntz-Pimsner algebra OG is isomorphic to the convolution C∗-
algebra of CG [16, Theorem 5.1].

We refer the reader to [17,18] for the definition and properties of groupoids
of germs and groupoid algebras.

Theorem 3.5 ([20, Theorem 4.14]). Suppose that (G,X) and (H,Y ) are con-
tracting, recurrent, and regular self-similar groups. Then the following are
equivalent:

(1) SG is isomorphic to SH .
(2) CG is isomorphic to CH as topological groupoids.
(3) There is a ∗-isomorphism Φ: OG → OH with Φ(C(Xω)) = C(Y ω).

4. Continuous orbit equivalences on self-similar groups

Suppose that (G,X) and (H,Y ) are self-similar groups with their inverse
semigroups SG and SH , respectively. We show that continuous orbit equiv-
alence of inverse semigroups with cocycle condition implies continuous orbit
equivalence of group actions under pseudo-free and recurrent conditions and
that the converse is also true under additional commuting condition of shift
maps and homeomorphism.

It is a well-known fact that, for the transformation groupoid and the groupoid
of germs from discrete group action on a topological space, the transformation
groupoid coincides with the groupoid of germs if the group action is topologi-
cally free. So we have the following property from Lemma 3.1.

Proposition 4.1. If (G,X) is a pseudo-free self-similar group, then the trans-
formation groupoid T (G,Xω) of G action on Xω is isomorphic to the groupoid
of germs GnXω of G action on Xω.

Note that {svgs∗u : |u| = |v|, g ∈ G} is a subsemigroup of SG so that SG
partial action on Xω induces an {svgs∗u : |u| = |v|, g ∈ G} partial action.

Proposition 4.2. If (G,X) is a pseudo-free and recurrent self-similar group,
then the transformation groupoid T (G,Xω) is isomorphic to the groupoid of
germs of {svgs∗u : |u| = |v|, g ∈ G} partial action on Xω.

Proof. Let us denote by DG the groupoid of germs of {svgs∗u : |u| = |v|, g ∈ G}
partial action on Xω. For a (g, ξ) ∈ T (G,Xω), let a ∈ X∗ be a prefix of ξ so
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that ξ = aα for some α ∈ Xω. We define φ : T (G,Xω)→ DG by

(g, ξ) 7→ [sg(a)g|as∗a, ξ].
As |a| = |g(a)|, it is obvious that [sg(a)g|as∗a, ξ] ∈ DG for every ξ ∈ Z(a) and

sg(a)g|as∗a(ξ) = sg(a)g|as∗a(aα) = sg(a)g|a(α) = g(a)g|a(α) = g(aα) = g(ξ).

First, we show that φ is well-defined. Let b ∈ X∗ be another prefix of ξ so
that ξ = bβ for some β ∈ Xω. Without loss of generality, we consider only the
case |a| > |b| so that there is a finite word w such that a = bw. Then we need
to check that [sg(a)g|as∗a, ξ] = [sg(b)g|bs∗b , ξ], i.e., there is a neighborhood U of
ξ such that

sg(a)g|as∗a(η) = sg(b)g|bs∗b(η)

for every η ∈ U .
We let U = Z(a). Then every η ∈ U is given by η = aζ = bwζ for some

ζ ∈ Zω. Here, we recall that from the definition of self-similar groups, for
a = bw,

g(a) = g(bw) = g(b)g|b(w) and (g|b)|w = g|bw = g|a
hold. Thus, for every η = aζ = bwζ ∈ U , we have

sg(b)g|bs∗b(η) = sg(b)g|b{s∗b(bwζ)} = sg(b)g|b(wζ)

= g(b)g|b(wζ) = g(b){g|b(w)(g|b)|w(ζ)}
= {g(b)g|b(w)}{(g|b)|w(ζ)}
= g(a)g|a(ζ)

= g(a)g|as∗a(aζ)

= sg(a)g|as∗a(η).

Hence, φ is a well-defined map.
If φ(g, ξ) = φ(h, η), then we have ξ = η = aζ for some a ∈ X∗ and ζ ∈ Xω

so that

φ(g, ξ) = [sg(a)g|as∗a, ξ] = [sh(a)h|as∗a, ξ] = φ(h, η)

and sg(a)g|as∗a = sh(a)h|as∗a on a neighborhood U of ξ. As

sg(a)g|as∗a(ξ) = sg(a)g|as∗a(aζ) = g(a)g|a(ζ) = h(a)h|a(ζ) = sh(a)h|as∗a(ξ),

we have g(a) = h(a), which implies g|a = h|a on Xω. Thus, the pseudo-free
condition induces g = h, and φ is an injective map.

By the recurrent condition, for any finite words u, v of equal length and
g ∈ G, there is an h ∈ G such that h(u) = v and h|u = g. Thus, we have

φ(h, ξ) = [sh(u)h|us∗u, ξ] = [svgs
∗
u, ξ]

for every ξ ∈ Z(u), and φ is a surjective map.
It is routine to show that φ is a groupoid homomorphism. Therefore, φ is a

groupoid isomorphism. �

Before going further, we summarize some necessary properties of DG.
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Remark 4.3. Suppose that OG is the Cuntz-Pimsner algebra of a self-similar
group (G,X) and that C∗(DG) is the groupoid algebra of the groupoid of germs
DG. Then we have the following properties.

(1) By [16, Theorem 5.3], C∗(DG) is isomorphic to a universal C∗-algebra
generated by partial isometries in DG.

(2) By [16, Theorem 3.7], C∗(DG) is isomorphic to the gauge-invariant
subalgebra of OG.

We recall that the Cuntz-Pimsner groupoid CG of a self-similar group (G,X)
is the groupoid of germs of SG partial action on Xω.

Lemma 4.4 ([8, Proposition 8.4 and Theorem 8.19]). If (G,X) is a pseudo-free
self-similar group, then the Cuntz-Pimsner groupoid CG is isomorphic to

EG =


(α; [{gn+l}], l − k;β) : α, β ∈ Xω, gi ∈ G, l, k ∈ N,

αn+l = gn+l(βn+k) and

gn+l+1 = gn+l|βn+k
for every n ≥ 1

 ,

where α ∈ Xω is given by α = α1α2 · · · and [{gl+n}] is explained in the follow-
ing.

Remark 4.5. For {gi}, {hi} ∈ G∞, define {gi} ∼ {hi} if and only if there is a
sufficiently large natural number N such that gi = hi for every i ≥ N . Then it
is easy to check that ∼ is an equivalence relation on G∞, and the equivalence
class of {gi} is denoted by [{gn+l}]. See [8, Section 7] for more details.

It is not difficult to see that the isomorphism CG → EG is given by

[sugs
∗
v, β] 7→ (sugs

∗
v(β), [{gn+|u|}], |u| − |v|, β)

where g1+|u| = g and gn+|u| = g|β1+k···βn−1+k
for every n ≥ 2. Then the

following is trivial.

Lemma 4.6. Let DG be the groupoid of germs of {svgs∗u : |u| = |v|, g ∈ G}
partial action on Xω. Then DG is isomorphic to

FG = {(α, [{gn}], 0, β)} ⊂ EG,

where g1 = g and gn = g|β1···βn−1
for every n ≥ 2.

From now on, we consider EG and FG instead of CG and DG, respectively,
of a self-similar group (G,X). For the groupoid EG, we define a cocycle map
cG : EG → Z by

(α, [{gn+l}], l − k, β) 7→ l − k.
Then it is trivial that FG = ker cG.

We remind that, for self-similar groups (G,X) and (H,Y ), continuously
orbit equivalence of inverse semigroup partial actions implies that there is a
groupoid isomorphism φ : EG → EH by Theorem 2.7 and Lemma 4.4.
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Theorem 4.7. Suppose that (G,X) and (H,Y ) are pseudo-free and recurrent
self-similar groups. If SG partial action on Xω and SH partial action on Y ω

are continuously orbit equivalent and that the cocylce maps and groupoid iso-
morphism satisfy |cG| = |cH ◦ φ|, then G action on Xω and H action on Y ω

are continuously orbit equivalent.

Proof. By Definition 2.10, Lemma 3.1, Proposition 4.2, and Lemma 4.6, it is
enough to show that FG is isomorphic to FH .

Since we assumed |cG| = |cH ◦ φ|, it is easy to see

cH ◦ φ(α, [{gn}], 0, β) = 0 and cG ◦ φ−1(γ, [{hn}], 0, δ) = 0

for every (α, [{gn}], 0, β) ∈ FG and (γ, [{hn}], 0, δ) ∈ FH . Then it is routine
to check that FG = c−1G (0) is mapped to FH = c−1H (0) by φ. Therefore, FG is
isomorphic to FH by φ restricted on FG, and G action on Xω and H action on
Y ω are continuously orbit equivalent. �

Remark 4.8. We define the shift map σ : Xω → Xω by β1β2 · · · 7→ β2β3 · · · .
Then

g1(β) = g1(β1σ(β)) = g1(β1)g1|β1
(σ(β)) = g1(β1)g2(σ(β)) = α1σ(α)

implies that the shift map naturally extends to FG by

(α, [{gn}], 0, β) 7→ (σ(α), [{gn+1}], 0, σ(β)).

Let us denote this extended shift also σ.

Recall that, for self-similar groups (G,X) and (H,Y ), continuous orbit
equivalence of group actions induces that there is a homeomorphism f : Xω →
Y ω.

Theorem 4.9. Suppose that (G,X) and (H,Y ) are pseudo-free and recurrent
self-similar groups. If G action on Xω and H action on Y ω are continuously
orbit equivalent and the homeomorphism f : Xω → Y ω commutes with the shift
maps on FG and FH , then SG partial action on Xω and SH partial action on
Y ω are continuously orbit equivalent.

Proof. Let ϕ : FG → FH be a groupoid isomorphism and show that ϕ induces
a groupoid isomorphism φ : EG → EH . Before proving the statement, let us
note the following.

(i) For any (α, [{gn}], 0, β), (β, [{g′n}], 0, γ) ∈ FG with

ϕ(α, [{gn}], 0, β) = (ξ, [{hn}], 0, η) ∈ FH ,

ϕ((α, [{gn}], 0, β) · (β, [{g′n}], 0, γ)) = ϕ(α, [{gn}], 0, β) · ϕ(β, [{g′n}], 0, γ)

= (ξ, [{hn}], 0, η) · ϕ(β, [{g′n}], 0, γ)

implies

ϕ(β, [{g′n}], 0, γ)=(η, [{h′n}], 0, ζ) ∈ FH and ϕ(α, [{1G}], 0, α)=(ξ, [{1H}], 0, ξ).



144 I. YI

(ii) For any (α, [{gn}], 0, β) ∈ FG and u, v ∈ X∗, we obtain

(uα, [{gn−|u|}n>|u|], |u| − |v|, vβ) ∈ EG.
Conversely, for any (uα, [{gn+|u|}], l − k, vβ) ∈ EG with the conditions |u| ≥
l, |v| ≥ k and |u| − |v| = l − k, we also have

(α, [{gn+|u|}], 0, β) ∈ FG.
(iii) For a finite word u ∈ X∗, denote the infinite circuit uuu · · · ∈ Xω

by ũ. Then it is easy to see (ũ, [{1G}], 0, ũ) ∈ FG and ϕ(ũ, [{1G}], 0, ũ) =
(µ, [{1H}], 0, µ) by (i). For µ = µ1µ2 · · · ∈ Y ω, we let u ∈ Y |u| be

u = µ1 · · ·µ|u|.
Recall that we assumed that the homeomorphism f : Xω → Y ω commutes

with the shift maps on FG and FH , i.e.,

f ◦ σ = σ ◦ f
and that ϕ : FG → FH is determined by

(α, [{gn}], 0, β) 7→ (f(α), [{hn}], 0, f(β)) = (ξ, [{hn}], 0, η)

such that

f(gn(σn−1(β))) = hn(f ◦ σn−1(β)).

For ũ ∈ Xω and µ ∈ Y ω as above, µ = f(ũ) and σ|u|(ũ) = ũ imply that

µ = f(ũ) = f ◦ σ|u|(ũ) = σ|u| ◦ f(ũ) = σ|u|(µ).

Hence, µ is also an infinite circuit uu · · · in Y ω.
Now we define the induced map φ: for any (uα, [{gn+|u|}], l − k, vβ) ∈ EG

with (α, [{gn+|u|}], 0, β) ∈ FG, ϕ(α, [{gn+|u|}], 0, β) = (ξ, [{hn+|u|}], 0, η) ∈ FH ,

u ∈ Y |u| and v ∈ Y |v|, let

φ(uα, [{gn+|u|}], l − k, vβ) = (uξ, [{hn+|u|}], l − k,vη).

Then φ is one-to-one because f is a homeomorphism and (iii), and it is onto
by (ii) and (iii). For the homeomorphism property, we consider

φ(uα, [{gn+|u|}], l − k, vβ) = (uξ, [{hn+|u|}], l − k,vη),

φ(vβ, [{g′n+|v|}], j − i, wγ) = (vη, [{h′n+|v|}], j − i,wζ).

Then we have

φ(uα, [{gn+|u|}], l − k, vβ) · φ(vβ, [{g′n+|v|}], j − i, wγ)

= (uξ, [{hn+|u|}], l − k,vη) · (vη, [{h′n+|v|}], j − i,wζ)

= (uξ, [{hn+|u|h′n+|v|}], l + j − (k + i),wζ).

On the other hand,

(uα, [{gn+|u|}], l − k, vβ) · (vβ, [{g′n+|v|}], j − i, wγ)

= (uα, [{gn+|u|g′n+|v|}], l + j − (k + i), wγ)
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implies

φ((uα, [{gn+|u|}], l − k, vβ) · (vβ, [{g′n+|v|}], j − i, wγ))

= (uξ, [{∗}], l + j − (k + i),wζ).

We have to decide the ∗ part.
Combining

f(σn−1(α)) = f(gn+|u|(σ
n−1(β))) = hn+|u|(f ◦ σn−1(β)) and

f(σn−1(β)) = f(g′n+|v|(σ
n−1(γ))) = h′n+|v|(f ◦ σ

n−1(γ)),

we have

f(σn−1(α)) = hn+|u|(f ◦ σn−1(β)) = hn+|u|h
′
n+|v|(f ◦ σ

n−1(γ)).

Hence, we obtain

φ((uα, [{gn+|u|}], l − k, vβ) · (vβ, [{g′n+|v|}], j − i, wγ))

= (uξ, [{hn+|u|h′n+|v|}], l + j − (k + i),wζ)

= φ(uα, [{gn+|u|}], l − k, vβ) · φ(vβ, [{g′n+|v|}], j − i, wγ),

and φ : EG → EH is a groupoid isomorphism. Therefore, G action on Xω and
H action on Y ω are continuously orbit equivalent by Theorem 2.7 and Lemma
4.4. �
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