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ON DIVISORS COMPUTING MLD’S AND LCT’S

Harold Blum

Abstract. We show that if a divisor centered over a point on a smooth

surface computes a minimal log discrepancy, then the divisor also com-

putes a log canonical threshold. To prove the result, we study the asymp-
totic log canonical threshold of the graded sequence of ideals associated

to a divisor over a variety. We systematically study this invariant and
prove a result describing which divisors compute asymptotic log canonical

thresholds.

1. Introduction

The log canonical threshold and minimal log discrepancy are two invariants
of singularities that arise naturally in the study of birational geometry. Minimal
log discrepancies are of particular interest due to work of Shokoruv [23] in which
he proved that two conjectures on minimal log discrepancies (semicontinuity
and the ascending chain condition (ACC)) imply the termination of flips, a
result needed to complete the minimal model program in full generality.

Shokurov originally conjectured that both the set of minimal log discrepan-
cies and log canonical thresholds in fixed dimension should satisfy the ACC.
The conjecture was proven for log canonical thresholds on smooth varieties in
[4] and later in full generality [9]. The general form of the ACC conjecture for
minimal log discrepancies remains open. In this way, as well as others, minimal
log discrepancies are less well understood than log canonical thresholds.

In order to define these two invariants, we recall the following notions. Let
X be a normal variety such that KX is Q-Cartier. We call E a divisor over1

X if E is a prime divisor on a normal variety Y , proper and birational over X,
and (X, aλ) a pair if a ⊆ OX a nonzero ideal and λ ∈ R≥0. The log discrepancy
of a pair (X, aλ) along E is defined as

a
(
E;X, aλ

)
:= kE + 1− λ ordE(a),
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where kE is the coefficient of E in the relative canonical divisor and ordE is
the valuation given by order of vanishing along E. A pair (X, aλ) is klt (resp.,
lc) if for all divisors E over X, a(E;X, aλ) > 0 (resp., ≥ 0).

Arising from these definitions are two invariants that measure the “nasti-
ness” of a singularity. The log canonical threshold of a nonzero ideal a on X is
defined as

lct(a) := sup{λ ∈ R≥0 | (X, aλ) is lc}.
Given a klt pair (X, aλ) and a (not necessarily closed) point η ∈ X, the minimal
log discrepancy of (X, aλ) at η is defined as

mldη(X, aλ) = min{a(E;X, aλ) |E is a divisor over X with cX(E) = η}.

See Section 2 for further details on these definitions.
In understanding these two invariants it is natural to make the following

definition. Given a divisor E over X, we say that E computes a log canonical
threshold if there exists a non-zero ideal a on X such that

a
(
E;X, alct(a)

)
= 0.

Similarly, we say that E computes a minimal log discrepancy if there exists an
lc pair (X, aλ) such that

mldη(X, aλ) = a
(
E;X, aλ

)
with η = cX(E).

Question 1.1. Which divisors over a variety compute log canonical thresholds
(resp., minimal log discrepancies)?

Divisors computing log canonical thresholds satisfy special properties. As
we will explain shortly, it is well known that divisors computing log canon-
ical thresholds have finitely generated graded sequences of ideals. It is not
known if the same can be said for divisors computing minimal log discrep-
ancies. While it is clear from the above definition that divisors computing
log canonical thresholds also compute minimal log discrepancies, the reverse
statement is not known.

The goal of this paper is to study an invariant that provides information
on whether a divisor computes a log canonical threshold or minimal log dis-
crepancy. As a consequence of this analysis, we prove the following result for
surfaces.2

Theorem 1.2. If X is a smooth surface, then every divisor over X centered at
a point that computes a minimal log discrepancy also computes a log canonical
threshold.

2Shortly after this paper was originally posted to the arXiv, Kawakita posted a related

result which he proved independently [14]. Kawakita showed that if E is a divisor over a
smooth surface X with cX(E) = {x} such that E computes a minimal log discrepancy, then

ordE is a monomial valuation in some local coordinates at x.
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It has long been understood which divisors compute log canonical thresholds
on smooth surfaces. For example, see [6], [18], [24], and [25]. In particular,
[6, Lemma 2.11] implies that if E is a divisor over a smooth surface X with
cX(E) = {x} such that E computes a log canonical threshold, then ordE is a
monomial valuation in some analytic coordinates at x.

In proving Theorem 1.2, we make use of the following object associated to
a divisor over a variety. Let f : Y → X be a proper birational morphism
of normal varieties and E a prime divisor on Y . Associated to E, there is a
corresponding graded sequence of ideals aE• = {aEm}m∈N on X defined as

aEm := f∗OY (−mE).

Recall that a graded sequence of ideals a• = {am}m∈N on X is a sequence
of ideals on X such that am · an ⊆ am+n for all m,n ∈ N. We say that
a graded sequence of ideals a• is finitely generated if the graded OX -algebra
R(a•) :=

⊕
m∈N a• is of finite type.

Using this formalism, we find a criterion to classify which divisors over X
compute log canonical thresholds. As utilized in [13], if E computes lct(b), then
E computes lct(aEm) for all m divisible by ordE(b). Similarly, if E computes
mldη(X, bλ), then E computes mldη(X, (aEm)λ/m) for all m ∈ Z>0 divisible by
ordE(b).

In order to prove Theorem 1.2, we show that if X is a smooth surface
and E is a divisor centered over a closed point that computes a minimal log
discrepancy, then E computes the asymptotic log canonical threshold lct(aE• ).
(See Section 2.6 for the definition of a the log canonical threshold of a graded a
graded sequence of ideals). After proving the previous statement, the following
theorem completes the proof of Theorem 1.2.

Theorem 1.3. Let E be a divisor over a klt variety X. The following condi-
tions are equivalent.

(1) The divisor E computes a log canonical threshold.
(2) The divisor E computes an asymptotic log canonical threshold.
(3) The equality lct(aE• ) = kE + 1 holds.

The implications (1) ⇒ (2) ⇒ (3) appear in [13] and follow from defini-
tions. The remaining implication requires a finite generation statement arising
from the MMP.3 We find the equivalence between (1) and (2) to be somewhat
surprising.

As we will see, the value lct(aE• ) is an important invariant with geometric
ramifications. First, we note the following interpretation of the finite generation
of aE• .

3When X is a surface, this implication does not require the machinery of the MMP and
has an elementary proof (see Remark 5.1). Therefore, if one aims at proving Theorem 1.2

alone, our argument does not require results from the MMP.
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Theorem 1.4 ([11, Corollary 3.3]). Let X be a normal variety and E a divisor
over X. If aE• is finitely generated, then

Y := Proj
X

(⊕
m≥0

aEm

)
→ X

is a proper birational morphism of normal varieties and there exists a prime
divisor EY on Y that is the birational transform of E. Furthermore, EY is
Q-Cartier and −EY is relatively ample over X.

In the case when codimX(cX(E)) ≥ 2, the above statement implies that EY
is the only exceptional divisor of X. Such birational morphisms with exactly
one exceptional divisor were studied in [11] and referred to as prime blowups.
In [22], the author looked at plt-blowups which can be thought of as prime
blowups with mild singularities (see Definition 4). The following proposition
relates the value of lct(aE• ) to the model Y := Proj

X
(⊕m≥0aEm).

Theorem 1.5. If X is a klt variety and E a divisor over X with kE < lct(aE• ),
then the following hold.

(1) The graded sequence aE• is finitely generated.
(2) The variety Y is klt, and lct(EY ) = lct(aE• )−kE (where Y and EY are

defined in Theorem 1.4).

The first assertion of the above proposition is a consequence of the well
known fact that if a divisor E has log discrepancy in the interval [0,1) along
a klt pair, then aE• is finitely generated (see [16, Corollary 1.39]). Note that
there are examples of divisors over smooth varieties with non-finitely generated
graded sequences of ideals [3, 19].

Most of this paper is spent systematically studying the graded sequence of
ideals associated to a divisor over a variety. We emphasize that many of the
results in this paper are not needed in the proof of Theorem 1.2.

Structure of the Paper: In Section 2, we provide preliminary information
on log discrepancies, log canonical thresholds, and graded sequence of ideals.
Section 3 provides a proof of Theorem 1.4 and related results. In Section 4, we
prove Theorem 1.5. Section 5 gives a proof of Theorem 1.3 and a condition on
which divisors compute minimal log discrepancies. Section 6 concerns minimal
log discrepancies on surfaces and gives a proof of Theorem 1.2. Lastly, Section
7 provides computations of lct(aE• ) in a couple examples.

Acknowledgements. I am grateful to my advisor Mircea Mustaţă for in-
troducing me to many of the topics discussed in this paper and guiding my
research, and to Mattias Jonsson and Karen Smith for a number of helpful
discussions. Finally, I am indebted to the anonymous referee for suggestions
that improved this paper.
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2. Preliminaries

Conventions: Throughout this paper, a variety is an integral separated
scheme of finite type over a field k. Furthermore, we will assume that k is
of characteristic 0 and algebraically closed.

2.1. Log resolutions

Let X be a variety and a ⊆ OX a nonzero ideal. A morphism f : Y → X is
a log resolution of (X, a) if f is a projective birational morphism, Y is smooth,
Exc(f) has pure codimension one, a · OY = OY (−D) for some effective divisor
D on Y , and Exc(f) +D is a simple normal crossing divisor.

2.2. Divisors over a variety

Let f : Y → X be a proper birational morphism of normal varieties and E
a prime divisor on Y . We define the center of E on X to be cX(E) := f(E).
Arising from E is a discrete valuation of K(X) that we denote by ordE . The
valuation corresponds to the DVR OY,E ⊆ K(Y ) ' K(X).

Given Y → X and Y ′ → X as above, we identify a prime divisor E on
Y with a prime divisor E′ on Y ′ if they induce the same valuation of K(X).
This is equivalent to the condition that E′ is the birational transform of E.4

A divisor over X is an equivalence class given by this relation.
Given a nonzero ideal a ⊆ OX , we set

ordE(a) := min{ordE(f) | f ∈ a · OX,cX(E)}.

We use the convention that ordE(0) = +∞, where 0 denotes the zero ideal.
For an effective Q-Cartier Q-divisor D on X, we write ordE(D) for the

coefficient of E along f∗D. Note that if m ∈ Z>0 is chosen so that mD is
Cartier, then ordE(D) = m−1 ordE(OX(−mD)).

2.3. Rees valuations

Let X be a normal variety and a ⊆ OX a nonzero ideal. Write π : Z → X
for the normalized blowup of X along a and D for the effective Cartier divisor
on Z such that a · OZ = OZ(−D) . The integral closure of a is the ideal

a := π∗OZ(−D) .

It is clear that a ⊆ a. We say that a is integrally closed if a = a. The Rees
valuations of a are the valuations of K(X) corresponding to prime divisors
in the support of D. The following propositions provide information on Rees
valuations and integral closures of ideals.

4By the birational transform of E on Y ′, we mean the closure of g(E∩U), where g denotes

the birational map Y 99K Y ′ and U ⊂ Y is the open set on which the map is regular.
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Proposition 2.1. Let a be a nonzero ideal on a normal variety X. The set
of Rees valuations of a is the valuations corresponding to the smallest set of
divisors {E1, . . . , Er} over X such that

am =

r⋂
i=1

{f ∈ OX | ordEi
(f) ≥ m · ordEi

(a)}

for all m ∈ Z>0.

Proof. See [10, Section 10.2]. �

Proposition 2.2. Let a be a nonzero ideal on a normal variety X. The ideal
a is integrally closed if and only if there exists a proper birational morphism
f : Y → X with Y normal and D an effective Cartier divisor on Y such that

a = f∗OY (−D).

Proof. The forward direction follows immediately from the definition of a Rees
valuation. See [20, Proposition 9.6.11] for the reverse direction. �

Proposition 2.3. If X is a normal variety and a a nonzero ideal on X such
that an is integrally closed for all n ∈ Z>0, then the blowup of X along a is
normal.

Proof. This follows from [10, Proposition 5.2.1] �

2.4. Log discrepancies

Throughout, letX be a normal variety withKX Q-Cartier. If f : Y → X is a
proper birational morphism of normal varieties, the relative canonical divisor of
the morphism is defined as KY/X := KY −f∗KX where KY and KX are chosen
so that f∗KY = KX . If E is a prime divisor on Y , we set kE := coeffE(KY/X).
When the base variety is unclear, we will use the notation kE,X . The value kE
is not dependent on the model Y but on the valuation ordE .

If a ⊆ OX is a nonzero ideal and λ ∈ R≥0, we refer to (X, aλ) as a pair and
define the log discrepancy of (X, aλ) along E as

a
(
E;X, aλ

)
:= kE + 1− λ ordE(a).

We say that the pair (X, aλ) is klt (resp. lc) if a
(
E;X, aλ

)
> 0 (resp. ≥ 0) for

all prime divisors E over X.
If ∆ is a Q-Cartier divisor, the log discrepancy of (X,∆) along E is

a
(
E;X,∆

)
:= kE + 1− ordE(∆).

We say that (X,∆) is a klt (resp. lc) pair if a
(
E;X,∆

)
> 0 (resp. ≥ 0) for

all divisors E over X. We say that (X,∆) is plt if a
(
E;X,∆

)
> 0 for all

divisors E over X with codim cX(E) ≥ 2. Lastly, we say that X is klt (resp.
log canonical) if (X, 0) is klt (resp. log canonical).



ON DIVISORS COMPUTING MLD’S AND LCT’S 119

2.5. Minimal log discrepancies

Let X be a klt variety. Given a pair (X, aλ) and a (not necessarily closed)
point η ∈ X, we define the minimal log discrepancy of (X, aλ) at η to be

mldη(X, aλ) = inf
{
a
(
E;X, aλ

)
|E is a divisor over X with cX(E) = η

}
.

Assuming codimX(η) ≥ 2, the value of mldη(aλ) is either ≥ 0 or = −∞. If the
above infimum is ≥ 0, it is necessarily a minimum. See [1] for further details
on minimal log discrepancies.

We say a divisor E over X computes a minimal log discrepancy, if there
exists a pair (X, aλ) such that mldη(X, aλ) = a

(
E;X, aλ

)
, where η = cX(E).

2.6. Log canonical thresholds

For a nonzero ideal a on a klt variety X, the log canonical threshold of the
ideal is defined as

lct(a) := sup{λ ∈ Q≥0 | (X, aλ) is lc}.

From this definition, it follows that lct(OX) = +∞. We define lct(0) = 0.
Since (X, aλ) is lc if and only if kE + 1 − λ ordE(a) ≥ 0 for all divisors E

over X, it follows that

lct(a) = inf

{
kE + 1

ordE(a)

∣∣∣∣ E is a divisor over X with ordE(a) > 0

}
.5

We say that a divisor E over X computes lct(a) if it achieves the above infimum.
We say E computes a log canonical threshold if there exists a nonzero ideal a
on X such that E computes lct(a).

Similarly, if ∆ is an effective Q-Cartier Q-divisor on X, then the log canon-
ical threshold of ∆ is

lct(X,∆) := sup{λ ∈ R≥0 | (X,λ∆) is lc}.

The following elementary properties of log canonical thresholds give rise to
the definition of the log canonical threshold for a graded sequence of ideals.

Lemma 2.4. Let a, b be nonzero ideals on a klt variety X. The following hold:

(1) lct(a) = m · lct(am).
(2) lct(a) ≤ lct(b) if a ⊆ b.

5Note that if Y → X is a log resolution of (X, a) and a · OY = OY (−D), it is sufficient to
take the above infimum over all prime divisors contained in Supp(D) (see [20, Section 9.3]).

Since Supp(D) has finitely many components, the above infimum is necessarily a minimum.
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2.7. Graded sequences of ideals

A graded sequence of ideals on a variety X is a sequence of ideals a• =
(am)m∈Z>0

on X such that am · an ⊆ am+n for all m,n ∈ Z>0. By convention,
we set a0 := OX and will always assume am is nonzero for some positive integer
m.

The Rees algebra of a• is the N-graded OX -algebra

R(a•) =
⊕
m∈N

am.

We say that a• is finitely generated if R(a•) is a finitely generated OX -algebra.
We say that a• is finitely generated in degree n if anm = (an)m for all m ∈ N.
As a consequence of [8, Lemma 2.1.6.v], a graded sequence of ideals a• is finitely
generated if and only there exists n ∈ Z>0 such that a• is finitely generated in
degree n.

We list three examples of graded sequences of ideals that arise in algebraic
geometry.

• For a trivial example, let b be an ideal on X and define am := bm.
• Let f : Y → X be a proper birational morphism of normal varieties

and E be a prime divisor on Y . The divisor E gives rise to a graded
sequence of ideals, denoted by aE• , defined by

aEm := f∗OY (−mE).

Note that this only depends on E and not on the model Y .
• Let L be a line bundle on a variety X, having nonnegative Kodaira

dimension and bm(L) denote the base locus of |Lm|. This example was
studied in [5].

For a graded sequence a•, let S(a•) = {m ∈ N | am 6= 0}. We define

ordE(a•) := lim
m→∞,m∈S(a•)

1

m
ordE(am) = inf

m≥1

1

m
ordE(am).

See [13, Section 2] for further details.

Lemma 2.5. Let E be a divisor over a normal variety X. We have that

(1) ordE(aEm) = m for all m ∈ Z>0 sufficiently divisible and
(2) ordE(aE• ) = 1.

Proof. Since elements of aEm vanish to at least order m along E, we see that
ordE(aEm) ≥ m. Set n := ordE(aE1 ). Since (aE1 )m ⊂ aEn·m, we see that
ordE(an·m) ≤ n ·m and (1) holds. Statement (2) follows from (1). �

2.8. Asymptotic log canonical thresholds.

Let X be a graded sequence of ideals on a klt variety X. Since m · lct(am) ≤
mn · lct(amn) by Lemma 2.4, the asymptotic log canonical threshold of a• is
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defined by

lct(a•) := sup
m≥1

m · lct(am) = lim
m→∞,m∈S(a•)

m · lct(am).

For a proof of the second equality, see [13, Lemma 2.3].
In the following statements we collect some basic information on this as-

ymptotic invariant.

Proposition 2.6. Let X be a klt variety and a• a graded sequence of ideals on
X. The following hold:

(1) lct(a•) = infF
kF+1

ordF (a•)
, where the infimum runs over all divisors F over

X.
(2) If a• is finitely generated in degree n, then lct(a•) = n · lct(an).

Proof. See [13, Corollary 2.16] for (1). Lemma 2.4.1 implies (2) holds. �

In light of the previous statement, we say E computes lct(a•) if lct(a•) =
kE+1

ordE(a•)
. We say E computes an asymptotic log canonical threshold if there

exists a graded sequence of ideals a• such that E computes lct(a•).

Lemma 2.7. If E is a divisor over a klt variety X, then

lct(aE• ) ≤ kE + 1

and equality holds if and only if E computes lct(aE• ).

Proof. The statement follows from Lemma 2.5.2 and Proposition 2.6.1. �

The following proposition explains the difference between lct(aE• ) and kE+1.

Proposition 2.8. If X is a klt variety and E a divisor over X, then

kE + 1− lct(aE• ) = inf
{
a(E;X, aλ) | (X, aλ) is an lc pair

}
.

Proof. We first note that

(1)
kE + 1− lct(aE• ) = inf

m≥1
{kE + 1−m · lct(aEm)}

= lim
m→∞

(
kE + 1−m · lct(aEm)

)
.

By Lemma 2.5, for m divisible enough ordE(aEm) = m, and, thus,

kE + 1−m · lct(aEm) = a
(
E;X, (aEm)lct(a

E
m)
)
.

Since (X, (aEm)lct(a
E
m)) is lc, the relation “≥” of the desired equality follows.

To show “≤” holds, fix an lc pair (X, bλ) and set m′ = ordE(b). Since
b ⊆ aEm′ , we have λ ≤ lct(b) ≤ lct(aEm′). Therefore,

a
(
E;X, bλ

)
:= kE + 1− λ ordE(b) ≥ kE + 1−m′ lct(aEm′).

Applying (1) now shows a
(
E;X, bλ

)
≥ kE + 1− lct(aE• ), which completes the

proof. �



122 H. BLUM

3. Rees valuations and graded sequences

In this section, we prove Theorem 1.4. While the statement was proven in
[11], we give a short proof for the benefit of the reader.

Lemma 3.1. Let E be a divisor over a normal variety X. If aE• is finitely
generated in degree n, then the following hold.

(1) The powers of the ideal aEn are integrally closed.
(2) The ideal aEn has exactly one Rees valuation, namely ordE.

Proof. Let f : Y → X be a projective birational morphism such that Y is
normal and E appears as a prime divisor on Y . For each positive integer m,
we have

f∗OY (−(n ·m)E) = aEm·n = (aEn )m,

where the first equality comes from the definition of aE• and the second from
our assumption that aE• is finitely generated in degree n. Proposition 2.2 now
implies (aEn )m is integrally closed, while Proposition 2.1 implies E is the unique
Rees valuation of aEn . �

Theorem 1.4 is an easy consequence of the previous lemma.

Proof of Theorem 1.4. Fix n ∈ Z>0 so that aE• is finitely generated in degree

n. Note that Y := Proj
X

(⊕
m≥0 a

E
m

)
is isomorphic to the blowup of X along

aEn . Indeed, Y ' Proj
(⊕

m≥0 a
E
nm)

)
by the Veronese isomorphism and aEnm =

(aEn )m for all m ∈ N.
Lemma 3.1.1 combined with Proposition 2.3 now implies Y is normal. By

Lemma 3.1.2, we know aEn · OY = OY (−nEY ), where EY is a prime divisor on
Y satisfying ordEY

= ordE . Since Y is isomorphic to the blowup of X along
aEn , we conclude −nEY is Cartier and f -ample. �

4. Finite generation using MMP

In this section we prove Theorem 1.5, which gives a sufficient condition for
the finite generation of aE• . One of the key ingredients of the proof is the
following proposition that is well known to experts and follows from [2].

Proposition 4.1. Let (X,∆) be a klt pair. If E is a divisor over X such that
a(E,X,∆) < 1, then aE• is finitely generated.

Proof. Set a := a
(
E;X,∆

)
< 1 and fix a log resolution f : Y → X of the pair

(X,∆) such that E appears on Y . We have

KY + f−1∗ ∆ ∼Q f∗(KX + ∆) + (a− 1)E +

r∑
i=1

(a
(
Ei;X,∆

)
− 1)Fi,
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where f−1∗ ∆ denotes the strict transform of ∆ and E1, . . . , Er are the excep-
tional divisors of f not equal to E. Since (X,∆) is klt, a

(
Ei;X,∆

)
> 0 for all

i. Thus, we may choose 0 < ε� 1 so that a
(
Ei;X,∆

)
− ε > 0 for all i. Hence,

KY + f−1∗ ∆ + (1− ε)
∑

Ei ∼Q,f (a− 1)EY +

r∑
i=1

(a
(
Ei;X,∆

)
− ε)Ei.

Now, (Y, f−1∗ ∆ + (1− ε)
∑
Ei) is a klt pair, since Y is smooth and f−1∗ ∆ +

(1− ε)
∑
Ei is a simple normal crossing divisor with coefficients in [0, 1). Ad-

ditionally, KY +f−1∗ ∆+(1− ε)
∑
Ei is f -big, since f is a birational morphism.

Therefore, [2, Theorem 1.2] implies⊕
m≥0

f∗OY (bm(KY + f−1∗ ∆ + (1− ε)
∑

Ei)c)

is a finitely generated OX -algebra. Additionally, so is⊕
m≥0

f∗OY (bm((a− 1)EY +

r∑
i=1

(a
(
Ei;X,∆

)
− ε)Ei)c).

Since a
(
Ei;X,∆

)
− ε > 0 for all i, it follows

f∗OY (bm((a− 1)EW +

r∑
i=1

(a
(
Ei;X,∆

)
− ε)Ei)c) = f∗OY (bm(a− 1)EW c).

After taking a proper Veronese of the previous graded OX -algebra, the result
follows. �

The following lemma will give a condition for when the hypotheses in Propo-
sition 4.1 hold.

Lemma 4.2. Let E be a divisor over an affine klt variety X. If kE < lct(aE• ),
then there exists an effective Q-divisor ∆ such that (X,∆) is a klt pair and
a
(
E;X,∆

)
< 1.

Proof. Choose m ∈ Z>0 sufficiently divisible so that

kE < m · lct(aEm), lct(aEm) < 1, and ordE(aEm) = m.

As described in [20, Proposition 9.2.28], for a general element f ∈ aEm,

lct(f) = lct(aEm) and ordE(f) = m.

Now, set ∆ = lct(f){f = 0}. Note that (X,∆) is log canonical by construction
and satisfies

a
(
E;X,∆

)
= kE + 1− lct(f) ordE(f) = kE + 1−m · lct(aEm) < 1.

While (X,∆) is lc (but not klt), ∆′ = (1 − ε)∆ will satisfy the conclusion of
the lemma for 0 < ε� 1. �

The following proposition is the last ingredient needed to prove Theorem
1.5.
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Proposition 4.3. Let X be a klt variety and E a divisor over X with aE•
finitely generated. Let f : Y → X and EY be as defined in Theorem 1.4. The
following hold:

(i) The divisor KY is Q-Cartier.
(ii) For a divisor F over Y and λ ∈ R≥0, we have

a
(
F ;Y, λEY

)
= kF,X + 1− (kE,X + λ) ordF (aE• ).

Proof. Fix n ∈ Z>0 so that aE• is finitely generated in degree n. As described
in the proof of Theorem 1.4, f : Y → X is isomorphic to the blowup of X along
aEn and aEn · OY = OY (−nEY ). Hence, Exc(f) ⊆ EY and KY/X = kEEY .

To see (i) holds, note that KY = KY/X + f∗KX . Now, f∗KX is Q-Cartier,
since KX is Q-Cartier by assumption. Additionally, KY/X is Q-Cartier, since
EY is Q-Cartier by Theorem 1.4. Therefore, (i) holds.

For (ii), we first compute kF,Y in terms of kF,X . Choose a projective bira-
tional morphism g : Z → Y such that Z is normal and F arises a prime divisor
on Z. Since KZ/X = KZ/Y + g∗KY/X and KY/X = kE,XEY , we see

(2) kF,X = kF,Y + kE,X ordF (EY ).

Additionally,

(3) ordF (EY ) = (1/n) ordF (aEn ) = ordF (aE• ),

where the first equality arises from the fact that aEn ·OY = OY (−nEY ) and the
second from the finite generation of aE• in degree n. Statement (ii) now follows
from (2) and (3). �

Proof of Theorem 1.5. We first prove (i). Since the condition that aE• is finitely
generated is local on X, we may assume X is affine. It follows from Proposition
4.1 and Lemma 4.2 that aE• is finitely generated.

We move on to (ii). By Proposition 4.3, KY is Q-Cartier. Additionally, if
F is a divisor over Y and λ ∈ R≥0, then

(4) a
(
F ;Y, λEY

)
= kF,X + 1− (kE,X + λ) ordF (aE• ).

Hence, (Y, λEY ) is lc if and only if

kF,X + 1

ordF (aE• )
≥ kE,X + λ

for all divisor F over X with ordF (aE• ) > 0. Since the latter condition is
equivalent to the inequality lct(aE• ) ≥ kE,X + λ, (ii) holds. �

We now discuss the relation between the above result and plt blowups.

Definition. Let f : Y → X be a projective birational morphism with exactly
one irreducible exceptional divisor E. We say f : (Y,E) → X is a plt blow-up
if (Y,E) is plt and −(KY + E) is f -ample [22]. When f(E) is a closed point,
E is called a Kollár component [26].
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We note that such plt blowups were constructed in [26, Lemma 1]. Inspired
by the work of Xu and others, we interpret these plt blowups in our framework.

Proposition 4.4. If E is a divisor over a klt variety X with

kE + 1 <
kF + 1

ordF (aE• )

for all divisors F over X not equal to E, then aE• is finitely generated and the
pairs (Y,EY ) from Theorem 1.4 is plt and −(KY +EY ) is relatively ample over
X.

Remark 4.5. We make a couple remarks regarding Proposition 4.4.

(1) The condition that kE + 1 < kF+1
ordF (aE

• )
for all F 6= E implies that

lct(aE• ) = kE + 1. The converse does not hold in general.
(2) In the case when codimX(cX(E)) ≥ 2, then the projective birational

morphism Y → X satisfying the conclusion of the proposition is indeed
a plt blowup.

Proof. Since lct(aE• ) = kE + 1, Theorem 1.5 says (Y,EY ) is lc. For a divisor F
over Y , we have

a
(
F ;Y,EY

)
= kF,X + 1− (kE,X + 1) ordF (aE• )

by Proposition 4.3.2. By our assumption, the latter value is > 0 when F is not
equal to E. Thus, (Y,EY ) is plt. To see −(KY + EY ) is f -ample, note that

−(KY + EY ) ∼Q,f −(KY/X + EY ) = −(kE + 1)EY

and −EY is f -ample by Theorem 1.4. �

The following lemma gives a criterion for when the hypotheses of the above
proposition hold.

Lemma 4.6. Let X be a klt variety and (X, aλ) a pair with log resolution
f : Y → X. Let ∆Y be the divisor on Y such that KY + ∆Y = f∗(KX) + λD
where a ·OY = OY (−D). If E is an exceptional divisor of f and the coefficients
of ∆Y are ≤ 1 with equality precisely along E, then

kE + 1 <
kF + 1

ordF (aE• )

for all divisors F over X not equal to E.

Proof. Let F be a divisor over X. Note that the proof of [17, Lemma 2.30] gives
that a

(
F ;X, aλ

)
= a

(
F ;Y,∆Y

)
. By [17, Lemma 2.31] and our hypotheses on

the coefficients of ∆Y , we see a
(
F ;X, aλ

)
= a

(
F ;Y,∆Y

)
> 0 when F is not

equal to E. Additionally, a
(
E;X, aλ

)
= a

(
E;Y,∆Y

)
= 1. Thus,

(5) kF + 1 > λ ordF (a) and kE + 1 = λ ordE(a).

Next, note

(6) ordF (a) ≥ ordF (aEordE(a)) ≥ ordE(a) ordE(aE• ),
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where the first inequality comes from the inclusion a ⊆ aEordE(a) and the second

from the definition of ordE(aE• ) as an infimum. The desired inequality now
follows from (5) and (6). �

Remark 4.7. The previous lemma gives a condition for when the hypotheses
of Proposition 4.4 hold. By “tie breaking” [15, Proposition 8.7.1], if a ⊆ OX
is a non-zero ideal on klt variety, then at least one of the divisors computing
lct(a) satisfy the hypotheses of Proposition 4.4. Therefore, one of the divisors
computing lct(a) satisfy the conclusion of Proposition 4.4. We note that a
similar result was independently obtained by Kento Fujita in [7].

5. Connection with divisors that compute lct’s and mld’s

We proceed to prove Theorem 1.3. Recall that the theorem says that the
value of lct(aE• ) determines whether E computes a log canonical threshold.

Proof of Theorem 1.3. The implication (1) implies (2) is trivial. Indeed, if E
compute lct(b), then E computes lct(b•), where b• is the graded sequence
defined by bm := bm for all m ∈ N.

To show (2) implies (3), we follow an argument in [13]. Assume E computes
lct(a•), where a• is a graded sequence of ideals on X. Therefore,

kE + 1

ordE(a•)
= lct(a•) ≤

kF + 1

ordF (a•)

for any divisor F over X. If we can show ordE(a•) · ordF (aE• ) ≤ ordF (a•) for
any divisor F over X, it will follow that

kE + 1 ≤ inf
F

kF + 1

ordF (aE• )
= lct(aE• ).

To prove the previous inequality, note that am ⊆ aEordE(am). Therefore,

ordF (am) ≥ ordF (aEordE(am)) ≥ ordE(am) ordF (aE• ).

After dividing by m and taking infimums, the desired inequality follows.
Lastly, we show (3) implies (1). Assume lct(aE• ) = kE + 1. By Theorem 1.5,

the graded sequence aE• is finitely generated. Choose n so that aE• is finitely
generated in degree n. By our assumption,

kE + 1 = lct(aE• ) = n · lct(aEn ).

Since ordE(aEn ) = n, E computes the log canonical threshold of aEn . �

Remark 5.1. When X is a smooth surface, the implication (3) implies (1) does
not require Theorem 1.5 (which relies on the MMP). Indeed, Lemma 6.1, which
is an easy consequence of [21], implies aE• is finitely generated.

Question 5.2. Let E be a divisor over X such that E computes a minimal
log discrepancy.

(1) Does it follow that aE• is finitely generated?
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(2) Does this imply that lct(aE• ) > kE or = kE + 1?

By Proposition 1.3 and Theorem 1.5, the answer is yes to both if we replace
“minimal log discrepancy” with “log canonical threshold.” By Theorem 1.5, an
affirmative answer to the second question implies an affirmative answer to the
first.

Let us consider a divisor E such that lct(aE• ) < kE + 1 and ask whether or
not it can compute a minimal log discrepancy. We know that there must exist
some divisor F such that kF+1

ordF (aE
• )

< kE + 1. Additionally, it might be that

cX(E) = cX(F ) and kF ≤ kE . The proposition below shows that if such an F
exists, then E cannot compute a minimal log discrepancy.

Proposition 5.3. Let E,F be divisors over a klt variety X with

(1) cX(E) = cX(F ),
(2) kF ≤ kE, and
(3) kF+1

ordF (aE
• )
< kE + 1.

Then for any lc pair (X, bλ) where cX(E) ⊂ Cosupp(b) and λ > 0

a
(
F ;X, bλ

)
< a

(
E;X, bλ

)
.

Before proving the above proposition, we define the log discrepancy of a
divisor F over X along aλ• , where a• is a graded sequence of ideals on X and
λ ∈ R≥0, as

a
(
F ;X, aλ•

)
:= kF + 1− λ ordF (a•)

and prove the following lemma.

Lemma 5.4. Let E,F be divisors over X satisfying the conditions in Propo-
sition 5.3. Then,

a
(
F ;X,

(
aE•
)λ )

< a
(
E;X,

(
aE•
)λ )

for all λ ∈ R>0 such that a
(
F ;X,

(
aE•
)λ ) ≥ 0.

Proof. Note that a
(
F ;X,

(
aE•
)λ )

and a
(
F ;X,

(
aE•
)λ )

are real valued linear
functions in λ. When λ = 0, we compare the values of the two functions:

a
(
E;X,

(
aE•
)0 )

= kE + 1 ≥ kF + 1 = a
(
F ;X,

(
aE•
)0 )

.

Set λF and λE to be the values of λ so that a
(
F ;X,

(
aE•
)λ )

= 0 and

a
(
F ;X,

(
aE•
)λ )

= 0, respectively. (The existence of λF relies on assumption

(3), which implies ordF (aE• ) > 0.) Note that

λF =
kE + 1

ordF (aE• )
< kE + 1 =

kE + 1

ordE(aE• )
= λE ,

where the inequality comes from (3). By analyzing these linear functions, we
see that the desired inequality holds. �
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Proof of Proposition 5.3. Let E,F and (X, bλ) satisfy the hypotheses of the
proposition. We have

a
(
F ;X, bλ

)
≤ a

(
F ;X,

(
aEordE(b)

)λ )
≤ a

(
F ;X,

(
aE•
)λ ordE(b) )

< a
(
E;X,

(
aE•
)λ ordE(b) )

= a
(
E;X, bλ

)
,

where the first inequality follows from b ⊂ aEordE(b), the second from the defi-

nition of ordF (aE• ) as an infimum, the third from the previous lemma, and the
last from Lemma 2.5. �

6. Divisors computing mlds on surfaces

Before proving Theorem 1.2, we prove the following lemma and proposition.
The lemma is closely related to the discussion in [12, Section 7.3].

Lemma 6.1. Let x ∈ X be a point on a surface with at worst rational singu-
larities and E a divisor over X with cX(E) = {x}. If

f : Y → X

is a projective birational morphism and Y is a smooth surface that contains E
as a prime divisor, then there is an m ∈ Z>0 such that aE• is finitely generated
in degree m and aEm ·OY = OY (−D), for some divisor D on Y with Supp(D) ⊆
Exc(f).

Proof. We consider the intersection form on the curves in Exc(f). By [16,
Theorem 10.1], the intersection form is negative definite. Thus, we may define
a Q-divisor Ě with support on Exc(f) such that

Ě · C =

{
1, if C = E,

0, if C 6= E and C ⊂ Exc(f).

Since Ě intersects non-negatively with all exceptional curves of f , Ě is f -nef.
By [21, Theorem 12.1], Ě is also f -base point free (we are using that X has
rational singularities). Thus, Ě gives rise to a fiber space h, over X, that
contracts all curves in Exc(f) not equal to E.

Y Z

X

h

f g

The only exceptional divisor of the map g (labeled in the above diagram) is
the prime divisor EZ := h∗(E).
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We claim that −EZ is relatively ample over X. For this, note that X is Q-
factorial by [21, Proposition 17.1]. Since g is a projective birational morphism,
[17, Lemma 2.62] implies that there exists an effective exceptional divisor F on
Z such that −F is relatively ample. Since the only prime divisor contracted
by g is EZ , we conclude −EZ must be relatively ample.

Since −EZ is relatively ample over X and g∗OZ(−mnEZ) = aEmn, we see⊕
m≥0 a

E
m is a finitely generated OX -algebra. Hence, we may choose a positive

integer n so that aE• is finitely generated in degree n. Replacing n with a
multiple, we may also assume OZ(−nEZ) is also relatively base point free over
X. Therefore, aEn · OZ = OZ(−nEZ). If we set D := nh∗EZ , we see

aEn · OY = OZ(−nEZ) · OY = OY (−D)

and Supp(D) ⊆ h−1(EZ) = f−1(x). �

Proposition 6.2. Let X be a surface, x ∈ X a smooth point or a du Val
singularity, and (X, bλ) a pair such that x ∈ Cosupp(b) and λ > 0. If E is a
divisor over X that computes mldx(X, bλ), then lct(aE• ) = kE + 1.

Proof. We first consider the following maps

Y
f−→ X ′

g−→ X,

where g : X ′ → X is the minimal resolution of X and f : Y → X ′ is the
map achieved by repeatedly blowing up the center of E until the center is a
prime divisor. If x ∈ X is a smooth point, then X ′ = X and g is the identity.
Similarly, if E corresponds to a prime divisor on X ′, then Y = X ′ and f is the
identity.

Let E1, . . . , Es denote the exceptional divisors of g ◦f . Note that if Ei is not
contracted by f , then f(Ei) is an exceptional divisor of g and kEi

= 0 (since
X is a du Val singularity).

By the previous lemma, there exists an n ∈ Z>0 so that aE• is finitely
generated in degree n and Y → X is a log resolution of aEn . By Proposition
2.6,

lct(aE• ) = min
i

kEi + 1

ordEi
(aE• )

.

To show that lct(aE• ) = kE + 1, it suffices to show

kE + 1 ≤ kEi + 1

ordEi
(aE• )

for all 1 ≤ i ≤ s by Lemma 2.7.

Claim: kEi
≤ kE for all 1 ≤ i ≤ s.

To prove the claim, we first consider the case when f is the identity. In this
case, x ∈ X is a du Val singularity and E corresponds to a prime divisor on
the minimal resolution of X. Thus, kEi

= 0 for all 1 ≤ i ≤ s and kE = 0.
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Next, we consider the case when f is not the identity. Let Ei for r ≤ i ≤ s
denote the exceptional divisors contracted by f . Since these divisors arose via
a sequence of blowups, we may assume that the divisors are labelled in the
order in which they arose (in particular, Es = E). If 1 ≤ i < r, then Ei is a
an exceptional divisor of g and, as stated before, kEi

= 0. If r ≤ j ≤ s, then
Ej either arose as the blowup of a point lying on a single exceptional divisor
or the intersection of two such exceptional divisors. Thus, we have that either

kEj
= kEj−1

+ 1 or kEj
= kEj−1

+ kEq
+ 1

for some q < j − 1. We see that 0 ≤ kEi−1 ≤ kEi for all 1 < i ≤ s. Since
kEs

= kE , and the proof of the claim is complete.

By the above claim and the fact that E computes mldx(X, bλ), Proposition

5.3 implies that kE + 1 ≥ kEi
+1

ordEi
(aE
• )

for all 1 ≤ i ≤ s. This completes the proof.

�

Proof of Theorem 1.2. Let X be a smooth surface and E a divisor over X
computing mldx(X, bλ) where (X, bλ) is a pair. If x /∈ Cosupp(b) or λ = 0,
then λ ordF (b) = 0 for all divisors F over X with {x} = cX(F ). Thus,

mldx(X, bλ) = min{kE + 1 |E is a divisor with cX(E) = {x}} = 2

and the minimum is achieved solely by the divisor corresponding to the excep-
tional divisor of the blowup of X at {x}. Note that this divisor also computes
a log canonical threshold, namely lct(mx), where mx is the ideal of functions
vanishing at x.

If x ∈ Cosupp(b) and λ > 0, then we apply the previous proposition to see
that lct(aE• ) = kE + 1. By Theorem 1.3, E must also compute a log canonical
threshold. �

7. Examples

Below, we compute lct(aE• ) for some divisors over smooth varieties.

Example 7.1. For a trivial example consider An when n > 1 and let E be
the exceptional divisor of the blowup of An at the origin. Then, aEm = mm0 ,
where m0 ⊂ OAn is the ideal of functions that vanish at the origin. Thus,
lct(aE• ) = kE + 1 = n and is computed by E.

Example 7.2. Let X be a smooth surface and Y → X the composition of
r ≥ 3 point blowups resulting in the following dual tree of exceptional curves

· · ·

E1

E2

E3Er−1Er
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where Ei denotes the strict transform of the exceptional divisor arising from
the i-th blowup and set E := Er. To understand aE• , we apply the argument
in the proof of Lemma 6.1 to find a positive integer n and a divisor D on Y
satisfying: aE• is finitely generated in degree n and aEn · OY = OY (−D).

First, note that E2
1 = −3, E2

i = −2 for 2 ≤ i ≤ r − 1, and E2
r = −1. Since

D ·Ei = 0 for all 1 ≤ i ≤ r−1 (by the proof of Lemma 6.1) and coeffE(D) = n,
we see

D =
n

r + 3

(
2E1 + 3E2 +

r∑
i=3

(i+ 3)Ei

)
.

Since kE1
= 1, kE2

= 2, and kEi
= i + 1 for 3 ≤ i ≤ r and ordEi

(aEn ) =
coeffEi

(D), we see

lct(a•
E) = n lct(an

E) = min
i=1,...,r

kEi + 1

ordEi
(anE)

=
kE3 + 1

ordE3
(anE)

=
5(r + 3)

6
.

We see two behaviors. When r = 3, lct(aE• ) = kE + 1 and E computes
lct(aE• ). When r > 3, lct(aE• ) < kE + 1 and E does not compute an lct (by
Proposition 1.3). We may view E3 as preventing E from computing a minimal
log discrepancy. Indeed, for any log canonical pair (X, bλ), we have that

a
(
E;X, bλ

)
> a

(
E3;X, bλ

)
by Proposition 5.3.
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