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RINGS IN WHICH EVERY ELEMENT IS A SUM OF A

NILPOTENT AND THREE TRIPOTENTS

Jian Cui and Guoli Xia

Abstract. In this article, we completely determine the rings for which

every element is a sum of a nilpotent and three tripotents that commute
with one another. We discuss this property for some extensions of rings,

including group rings.

1. Introduction

Throughout, R is an associative ring with identity. The set of all units,
the set of all nilpotents, the Jacobson radical and the center of R are denoted
by U(R), Nil(R), J(R) and C(R), respectively. We write Zn for the ring of
integers modulo n, Mn(R) for the n× n matrix ring and Tn(R) for the n× n
upper triangular matrix ring over R, respectively.

Rings whose elements are sums of certain special elements have been widely
studied in ring theory. In [4], Hirano and Tominaga determined the rings for
which every element is a sum of two commuting idempotents. An element a of
a ring is called a tripotent if a3 = a. Tripotents are a natural generalization of
idempotents. In [8], the authors determined the rings for which every element
is a sum of two commuting tripotents. In [3], Diesl defined and discussed
(strongly) nil-clean rings: A ring is called (strongly) nil-clean if every element
is a sum of a nilpotent and an idempotent (that commute with each other).
The structure of strongly nil-clean rings was made available in [5] and [6]. In
[1], Chen and Sheibani determined the rings for which every element is a sum
of a nilpotent and a tripotent that commute. In [9], the author characterized
the rings for which every element is a sum of a nilpotent and two tripotents
that commute with one another.

This is a further investigation of this subject. The main objective of this
article is to present the structure of rings for which every element is a sum of
a nilpotent and three tripotents that commute with one another (see Theorem
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10). We also discuss this property for some extensions of rings, including group
rings.

2. The structure theorem

We give the following definition for convenience.

Definition 1. A ring R is said to have property P if every element of R is a
sum of a nilpotent and three tripotents that commute with one another.

One can easily check that the class of rings with property P is closed under
finite direct products and homomorphic images.

Lemma 2. A ring R has property P if and only if R = R1⊕R2⊕R3⊕R4 where
R1, R2, R3, R4 have property P with 2 ∈ Nil(R1), 3 ∈ Nil(R2), 5 ∈ Nil(R3)
and 7 ∈ Nil(R4).

Proof. It suffices to show the necessity, so let us assume that R has property
P. We first show that 2 · 3 · 5 · 7 is nilpotent. Write 4 = b + e + f + g, where
b ∈ Nil(R), e3 = e, f3 = f , g3 = g and b, e, f , g commute with one another.
Note that (4− b)3− (4− b) = (15− 8b+ b2)(4− b) and 4− b = e+ f + g. With
t := 15− 8b+ b2, we have

t(e+ f + g) = (e+ f + g)3 − (e+ f + g)

= 3e2f + 3e2g + 3ef2 + 3f2g + 3eg2 + 3fg2 + 6efg.
(2.1)

Multiplying both sides of (2.1) by e2f2g2 gives 6efg = (t−6)efg(ef+eg+fg),
so

12efg = (t− 6)efg(2ef + 2eg + 2fg)

= (t− 6)efg[(4− b)2 − e2 − f2 − g2]

= (t− 6)efg(4− b)2 − (t− 6)efg(e2 + f2 + g2)

= (t− 6)efg(4− b)2 − 3(t− 6)efg,

which implies that [(t − 6)(4 − b)2 − 3(t − 6) − 12]efg = 0. As b is nilpotent,
we deduce that (9 · 42 − 27− 12)efg = 105efg is nilpotent.

Now multiplying both sides of (2.1) by e2, f2 and g2 respectively, we obtain:

(2.2) te+ (t− 3)e2f + (t− 3)e2g = 3ef2 + 3eg2 + 3e2f2g + 3e2fg2 + 6efg;

(2.3) tf + (t− 3)ef2 + (t− 3)f2g = 3e2f + 3g2f + 3e2f2g + 3ef2g2 + 6efg;

(2.4) tg + (t− 3)eg2 + (t− 3)fg2 = 3e2g + 3f2g + 3e2fg2 + 3ef2g2 + 6efg.

In view of (2.1), (2.2) + (2.3) + (2.4) gives

(t− 3)(e2f + e2g + ef2 + gf2 + eg2 + fg2) = 6efg(2 + ef + eg + fg).
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It follows that 35(t − 3)(e2f + e2g + ef2 + gf2 + eg2 + fg2) = 105 · 2efg(2 +
ef + eg + fg) ∈ Nil(R), since 105efg is nilpotent. Thus, in view of (2.1), we
see that

35(t− 3)t(4− b)
= 35(t− 3)(3e2f + 3e2g + 3ef2 + 3gf2 + 3eg2 + 3fg2 + 6efg)

= 35(t− 3)(3e2f + 3e2g + 3ef2 + 3gf2 + 3eg2 + 3fg2) + 105efg · 2(t− 3)

is nilpotent. Since b is nilpotent, it follows that 24 ·32 ·52 ·7 ∈ Nil(R), and thus,
2 · 3 · 5 · 7 ∈ Nil(R). Hence there exists an integer n ≥ 1 such that 2nR∩ 3nR∩
5nR ∩ 7nR = 0. By the Chinese Reminder Theorem, R = R1 ⊕R2 ⊕R3 ⊕R4

where R1
∼= R/2nR, R2

∼= R/3nR, R3
∼= R/5nR, R4

∼= R/7nR, and R1, R2,
R3 and R4 have property P. �

Lemma 3. If R is a subdirect product of Z7’s and x ∈ R, then there ex-
ist polynomials θ(t), ζ(t), η(t) ∈ Z[t] such that x = θ(x) + ζ(x) + η(x) and
θ(x), ζ(x), η(x) are tripotents.

Proof. Let R be a subdirect product of {Rα : α ∈ Λ} where Rα = Z7

for all α ∈ Λ. Then R is a subring of ΠRα. Write x = (xα) ∈ R and
let Λ be a disjoint union of Λ0, Λ1, Λ2, Λ3, Λ4, Λ5, Λ6 such that xα =
i ⇔ α ∈ Λi for i = 0, 1, 2, 3, 4, 5, 6. Without lose of generality, let x =
(0Λ0

, 1Λ1
, 2Λ2

, 3Λ3
, 4Λ4

, 5Λ5
, 6Λ6

), and set

e1 = (0Λ0
, 1Λ1

, 0Λ2
, 0Λ3

, 0Λ4
, 0Λ5

, 0Λ6
),

e2 = (0Λ0 , 0Λ1 , 1Λ2 , 0Λ3 , 0Λ4 , 0Λ5 , 0Λ6),

e3 = (0Λ0
, 0Λ1

, 0Λ2
, 1Λ3

, 0Λ4
, 0Λ5

, 0Λ6
),

e4 = (0Λ0
, 0Λ1

, 0Λ2
, 0Λ3

, 1Λ4
, 0Λ5

, 0Λ6
),

e5 = (0Λ0
, 0Λ1

, 0Λ2
, 0Λ3

, 0Λ4
, 1Λ5

, 0Λ6
),

e6 = (0Λ0 , 0Λ1 , 0Λ2 , 0Λ3 , 0Λ4 , 0Λ5 , 1Λ6).

One can show that there exist polynomials θi(t) ∈ Z[t] such that ei = θi(x) for
i = 1, 2, . . . , 6. Indeed,

e1 = x6 − y6 where y = x− x6,

e2 = y6 − z6 where z = y − y6,

e3 = z6 − u6 where u = z − z6,

e4 = u6 − v3 where v = u− u6,

e5 = 2v3 − v,
e6 = v − v3.

Thus, ei ∈ R for i = 1, 2, . . . , 6. Let e := e1 + e2 + e3 + 6e4 + 6e5 + 6e6,
f := e2 + e3 + 6e4 + 6e5 and g := e3 + 6e4. Then, e, f and g are tripotents in
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R and x = e+ f + g. With

θ(t) = θ1(t) + θ2(t) + θ3(t) + 6θ4(t) + 6θ5(t) + 6θ6(t),

ζ(t) = θ2(t) + θ3(t) + 6θ4(t) + 6θ5(t),

η(t) = θ3(t) + 6θ4(t),

we have e = θ(x), f = ζ(x) and g = η(x). �

Lemma 4. Let R be a ring with 2 ∈ Nil(R). The following are equivalent:

(1) R has property P.
(2) Every element of R is a sum of a nilpotent and an idempotent that

commute.
(3) a− a2 is nilpotent for all a ∈ R.

Proof. (2)⇔ (3) See [9, Proposition 2.5].
(2)⇒ (1) The implication is clear.
(1)⇒ (3) Let a ∈ R, and write a = b+ e+ f + g, where b ∈ Nil(R), e3 = e,

f3 = f , g3 = g and b, e, f , g commute with one another. If x is a tripotent
of R, then (x− x2)2 = 2x(x− 1); so x− x2 ∈ Nil(R). As e, f, g are tripotents,
a−a2 = b(1−b−2e−2f−2g)−2(ef+eg+fg)+(e−e2)+(f−f2)+(g−g2) ∈
Nil(R). �

Lemma 5. Let R be a ring with 3 ∈ Nil(R). The following are equivalent:

(1) R has property P.
(2) Every element of R is a sum of a nilpotent and a tripotent that com-

mute.
(3) a− a3 is nilpotent for all a ∈ R.

Proof. (2)⇔ (3) See [9, Proposition 2.8].
(2)⇒ (1) The implication is clear.
(1)⇒ (3) Let a ∈ R and write a = b+ e+ f + g, where b ∈ Nil(R), e3 = e,

f3 = f , g3 = g and b, e, f , g commute with one another. As 3 ∈ Nil(R),

a− a3 = b(1− b2 − 3be− 3bf − 3bg − 3e2 − 3f2 − 3g2 − 6ef − 6eg − 6fg)

− 3(e2f + e2g + ef2 + eg2 + f2g + fg2 + 2efg)

is nilpotent. �

Lemma 6. Let R be a ring with 5 ∈ Nil(R). The following are equivalent:

(1) R has property P.
(2) J(R) is nil and R/J(R) is a subdirect product of Z5’s.
(3) a− a5 is nilpotent for all a ∈ R.
(4) Every element of R is a sum of a nilpotent and two tripotents that

commute.

Proof. In view of [9, Proposition 2.19], (2)⇔ (3)⇔ (4) follows.
(4)⇒ (1) The implication is clear.
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(1) ⇒ (2) Let a ∈ R and write a = b + e + f + g, where b ∈ Nil(R),
e3 = e, f3 = f , g3 = g and b, e, f , g commute with one another. There exist
polynomials θ(t1, t2, t3, t4), η(t1, t2, t3, t4) in Z[t1, t2, t3, t4] such that a5 − a =
5 · θ(b, e, f, g) + b · η(b, e, f, g); so a5 − a ∈ Nil(R). �

Lemma 7 ([9, Lemma 2.6]). If 2 ∈ U(R) and a3 − a is nilpotent, then there
exists a polynomial θ(t) ∈ Z[t] such that θ(a)3 = θ(a) and a− θ(a) is nilpotent.

Lemma 8 ([7, Theorem 2.1]). Let R be a ring with J(R) = 0 such that every
nonzero right ideal contains a nonzero idempotent. If an = 0 but an−1 6= 0,
then there exists an idempotent e2 = e ∈ RaR such that eRe ∼= Mn(T ) for
some non-trivial ring T .

Recall that a ring R is reduced if it contains no nonzero nilpotents.

Lemma 9. Let R be a ring with 7 ∈ Nil(R). The following are equivalent:

(1) R has property P.
(2) a− a7 is nilpotent for all a ∈ R.
(3) J(R) is nil and R/J(R) is a subdirect product of Z7’s.

Proof. (1) ⇒ (2) Let a ∈ R and write a = b + e + f + g, where b ∈ Nil(R),
e3 = e, f3 = f , g3 = g and b, e, f , g commute with one another. There exist
polynomials θ(t1, t2, t3, t4), η(t1, t2, t3, t4) in Z[t1, t2, t3, t4] such that a7 − a =
7 · θ(b, e, f, g) + b · η(b, e, f, g); so a7 − a ∈ Nil(R).

(2)⇒ (3) For j ∈ J(R), j − j7 = j(1− j6) is nilpotent. As 1− j6 is a unit
in R, j is nilpotent. Hence J(R) is nil. For any a ∈ R, a − a7 is nilpotent;
so there exists an integer n ≥ 1 such that an ∈ an+1R ∩ Ran+1. Thus, R
and further R := R/J(R) are strongly π-regular rings. Now suppose a2 = 0
for some 0 6= a ∈ R. By Lemma 8, there exists 0 6= w2 = w ∈ RaR such
that wRw ∼= M2(T ) where T is a nontrivial ring. Let x = [ 1 1

1 0 ] ∈ M2(T ). As

7 ∈ J(R), 7=0 in R, so x7 − x =
[−1 −2
−2 1

]
and (x7 − x)2 = [ 5 0

0 5 ] ∈ U(R), a

contradiction. This shows that R is reduced, so x7 = x for all x ∈ R. Hence R
is a subdirect product of Z7’s.

(3) ⇒ (1) Let a ∈ R. By Lemma 3, then there exist polynomials θ(t), ζ(t),
η3(t) ∈ Z[t] such that a = θ(a) + ζ(a) + η(a) and θ(a), ζ(a), η(a) are tripotents

in R := R/J(R). Since θ(a) = θ(a), ζ(a) = ζ(a) and η(a) = η(a), we see that
θ(a)3 − θ(a), ζ(a)3 − ζ(a) and η(a)3 − η(a) are in J(R), so are nilpotent. As
2 ∈ U(R), by Lemma 7, there exist tripotents e, f and g in Z[a] such that
θ(a) − e, ζ(a) − f and η(a) − g are nilpotent. Then b := a − e − f − g =
(a− θ(a)− ζ(a)− η(a)) + (θ(a)− e) + (ζ(a)− f) + (η(a)− g) is nilpotent, b, e, f
and g commute with one another, and a = b+ e+ f + g. �

Here is the structure of rings with property P.

Theorem 10. The following are equivalent for a ring R:

(1) R has property P.
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(2) R = R1 ⊕ R2 ⊕ R3 ⊕ R4, where R1 is zero or R1/J(R1) is a Boolean
ring with J(R1) nil, R2 is zero or R2/J(R2) is a subdirect product of
Z3’s with J(R2) nil, R3 is zero or R3/J(R3) is a subdirect product of
Z5’s with J(R3) nil, R4 is zero or R4/J(R4) is a subdirect product of
Z7’s with J(R4) nil.

(3) R = A ⊕ B, where a − a5 ∈ Nil(A) for all a ∈ A and b − b7 ∈ Nil(B)
for all b ∈ B with 7 ∈ Nil(B).

Proof. (1) ⇔ (2) The equivalence follows from Lemma 2 and Lemmas 4, 5, 6
and 9.

(2) ⇒ (3) Suppose that (2) holds. Let A = R1 ⊕ R2 ⊕ R3 and B = R4.
Then, a − a5 = (1 + a + a2 + a3)(a − a2) = (1 + a2)(a − a3) ∈ Nil(A) for all
a ∈ A. By Lemma 9, b− b7 ∈ Nil(B) for all b ∈ B with 7 ∈ Nil(B).

(3) ⇒ (1) In view of [9, Theorem 2.11], every element of A is a sum of a
nilpotent and two tripotents that commute with one another, so A has property
P. By Lemma 9, B has property P. Hence R has property P. �

The following result is useful to verify property P of a ring.

Theorem 11. A ring R has P property if and only if the following conditions
are satisfied:

(1) 13 ∈ U(R) and a− a13 is nilpotent for all a ∈ R;
(2) 1 + a+ a2 ∈ U(R) for all a ∈ R whenever 2 ∈ Nil(R).

Proof. (⇒) By the proof of Lemma 2, 2 · 3 · 5 · 7 = 210 ∈ Nil(R), so 13 · 97 =
1 + 210 · 6 ∈ U(R), and hence 13 ∈ U(R). Moreover, R has the decomposition
R = A⊕B as stated in Theorem 10(3). For a ∈ A, a−a13 = (a−a5)(1+a4+a8)
is nilpotent; for a ∈ B, a − a13 = (a − a7)(1 + a6) is nilpotent. Thus, a − a13

is nilpotent for all a ∈ R. Now assume 2 ∈ Nil(R). By Lemma 4, a − a2 is
nilpotent for all a ∈ R. So 1 + a+ a2 = 1 + [(a− a2) + 2a2] ∈ U(R), and hence
(2) holds.

(⇐) It is clear that J(R) is nil. Since 213 − 2 = 2 · 32 · 5 · 7 · 13 ∈ Nil(R) and
13 ∈ U(R), 2 · 3 · 5 · 7 is nilpotent. So 2n · 3n · 5n · 7n = 0 for some n > 0. By
the Chinese Reminder Theorem, R = R1⊕R2⊕R3⊕R4, where R1

∼= R/2nR,
R2
∼= R/3nR, R3

∼= R/5nR, R4
∼= R/7nR.

For a ∈ R1, as 2 ∈ Nil(R1) ⊆ Nil(R), there exists a polynomial θ(t) ∈ Z[t]
such that (a−a4)4 = a3(a−a13)+2θ(a) ∈ Nil(R1), so a−a4 = (a−a2)(1+a+a2)
is nilpotent. It follows that a − a2 is nilpotent since 1 + a + a2 ∈ U(R). By
Lemma 4, R1 has property P.

For a ∈ R2, (a − a5)3 = a2(a − a13) − 3(a7 − a11) ∈ Nil(R2). So, by [9,
Theorem 2.11], every element of R2 is a sum of a nilpotent and two tripotents
that commute with one another. Hence, R2 has property P.

As R3 is semiprimitive, R3 is a subdirect product of a family of right prim-
itive rings {Rα : α ∈ Λ}. Assume that Rα is not simple Artinian. Then there
exists a subring Sα ⊆ Rα such that M2(D) is a factor ring of Sα, where D is a
division ring. It follows that y − y13 ∈ Nil(M2(D)) for any y ∈ M2(D). Take
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y = [ 2 3
3 1 ]. Noticing that 5 = 0 in Rα, we have y − y13 =

[−1 1
1 2

]
∈ U(M2(D)),

so y − y13 is not a nilpotent, a contradiction. This shows that Rα is simple
Artinian for each α ∈ Λ, so Rα ∼= Mn(D) for some n ≥ 1. As argued above,
n = 1, i.e., Rα ∼= D is a division ring. Therefore a13 = a for all a ∈ Rα.
Further, let b ∈ Rα. Then (b − b5)5 = b5 − b25 = b5 − b13 = b5 − b ∈ Rα. If
b− b5 6= 0, then (b− b5)4 = −1, and (b− b5)12 = −1, so (b− b5)13 = −(b− b5).
But (b− b5)13 = b− b5. So 2(b− b5) = 0, and hence b− b5 = 0, a contradiction.
Thus b = b5 for all b ∈ Rα. It follows that a − a5 = 0 for all a ∈ R3. So,
a− a5 ∈ J(R3) is a nilpotent. By Lemma 6, R3 has property P.

Similarly, R4 := R4/J(R4) is a subdirect product of right primitive rings
{Rβ : β ∈ Γ}. Assume that Rβ is not simple Artinian. Then there exists
a subring Sβ ⊆ Rβ such that M2(D) is a factor ring of Sβ , where D is a
division ring. It follows that z − z13 ∈ Nil(M2(D)) for any z ∈ M2(D). Take
z = [ 1 1

1 0 ]. Then z − z13 =
[

2 −1
−1 3

]
∈ U(M2(D)). This contradiction shows

that Rβ is simple Artinian. So Rβ ∼= Mn(D) for some n ≥ 1. As argued above,
n = 1, i.e., Rβ ∼= D is a division ring. Thus, for each a ∈ Rβ , a13 = a, so
(a − a7)(1 + a6) = 0. Assume a − a7 6= 0. Then 1 + a6 = 0, so a7 = −a
and (1 + a)7 = 1 + a7 = 1 − a. Now (1 + a) − (1 + a)7 = a − a7 6= 0 and
[(1+a)−(1+a)7][1+(1+a)6] = 0 (indeed, (x−x7)(1+x6) = 0 for all x ∈ Rβ).
Thus, 1 + (1 + a)6 = 0 and so (1 + a)7 = −(1 + a). Hence, 1− a = −1− a, i.e.,
2 = 0 in Rβ , a contradiction. Therefore, a7 = a for all Rβ . It follows that, for
each a ∈ R4, a − a7 ∈ J(R4) is nilpotent. By Lemma 9, R4 has property P.
Hence R has property P. �

Corollary 12. If a ring R has property P, then so does its center C(R).

For R = Z13, 2 ∈ U(R) and a− a13 = 0 for all a ∈ R, but 13 /∈ U(R); so R
does not have P property. For R = M2(Z2), 13 ∈ U(R) and a − a13 ∈ Nil(R)
for all a ∈ R. But 2 ∈ Nil(R)) and 1 + a+ a2 = 0 for a = [ 1 1

1 0 ]; so R does not
have property P.

Next we consider property P for some extensions of rings. By Theorem 10,
if R has property P, then R/J(R) is commutative. Thus any matrix ring of
size greater than 1 does not have property P.

Proposition 13. If a ring R has property P, then so does eRe for any e2 =
e ∈ R.

Proof. By Theorem 10, R = A ⊕ B, where a − a5 ∈ Nil(A) for all a ∈ A and
b − b7 ∈ Nil(B) for all b ∈ B with 7 ∈ Nil(B). Write e = (e1, e2), where
e1

2 = e1 ∈ A and e2
2 = e2 ∈ B. So, eRe = e1Ae1 ⊕ e2Be2. We have

x − x5 ∈ Nil(e1Ae1) for all x ∈ e1Ae1, y − y7 ∈ Nil(e2Be2) for all y ∈ e2Be2

and 7e2 ∈ Nil(e2Be2). Hence, by Theorem 10, eRe has property P. �

Proposition 14. For a nil ideal I of a ring R, R has property P if and only
if R/I has property P.
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Proof. The necessity is obvious; the sufficiency is a quick consequence of The-
orem 11. �

Corollary 15. A ring R has property P if and only if Tn(R) has property P.

Corollary 16. A ring R has property P if and only if R/J(R) has property P
and J(R) is nil.

Proof. If R has property P, then R/J(R) has property P and J(R) is nil (by
Theorem 10); the sufficiency is by Proposition 14. �

3. Group rings

In this section, we determine when a group ring of an abelian group has
property P. The center of a group G is denoted by Z(G). A group G is called
locally finite if every finitely generated subgroup of G is finite. Let p be a prime
number. A group G is called a p-group if the order of each element of G is a
power of p. The cyclic group of order n is denoted by Cn.

If R is a ring and G is a group, RG denotes the group ring of the group
G over R. The ring homomorphism ω : RG → R, Σrgg 7→ Σrg is called the
augmentation map, and ker(ω) is called the augmentation ideal of the group
ring RG and is denoted by4(RG). Note that if the group ring RG has property
P, so does R.

Lemma 17. Let R be a ring and G be a group. If RG is has property P, then
C(R)Z(G) has property P.

Proof. This is by Corollary 12, because C(RG) = C(R)Z(G). �

Lemma 18. Let R be a ring and G be a group. Suppose that RG has property
P.

(1) If 2 ∈ J(R), then Z(G) is a 2-group.
(2) If 3 ∈ J(R), then Z(G) is a direct product of a group of exponent 2

and a 3-group.
(3) If 5 ∈ J(R), then Z(G) = H ×K, where h4 = 1 for all h ∈ H and K

is a 5-group.
(4) If 7 ∈ J(R), then Z(G) is a direct product of a group of exponent 2, a

group of exponent 3 and a 7-group.

Proof. Let p ∈ {2, 3, 5, 7}. If p ∈ J(R), then (R/J(R))G has property P and
p = 0 in R/J(R). So, without loss of generality, we can assume J(R) = 0. Then
x − xp is nilpotent for all x ∈ RG by Lemmas 4, 5, 6 and 9. For g ∈ Z(G),
g− gp is nilpotent, so 1− gp−1 is nilpotent. Thus, there exists n > 0 such that
(1− gp−1)p

n

= 0, i.e., g(p−1)·pn = 1 as p = 0 in R.
If p = 2, then for each g ∈ Z(G), g2n

= 1 for some n ≥ 1; so Z(G) is a
2-group.

If p = 3, then for each g ∈ Z(G), g2·3n

= 1 for some n ≥ 1; so Z(G) is
a direct product of its 2-component and 3-component. Write Z(G) = H ×K
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where H is a 2-group and K is a 3-group. We next verify that H is of exponent
2. By Lemma 17, C(R)Z(G) has property P, so C(R)H has property P. Let
F be a field that is an image of C(R). Then 3 = 0 in F and FH has property
P. If x := a0 + a1h1 + · · ·+ akhk ∈ FH is nilpotent, then, for some n > 0,

0 = x3n

= (a0)3n

+ (a1)3n

(h1)3n

+ · · ·+ (ak)3n

(hk)3n

.

Note that, for i 6= j, (hi)
3n 6= (hj)

3n

. To see this, note that H is a 2-group, so

(hi)
2m

= (hj)
2m

= 1 for some m > 0. Write 1 = s2m+t3n where s, t ∈ Z. Then

hi = (hi)
s2m+t3n

= ((hi)
2m

)s((hi)
3n

)t = ((hi)
3n

)t, and hj = (hj)
s2m+t3n

=

((hj)
2m

)s((hj)
3n

)t = ((hj)
3n

)t. So hi 6= hj implies (hi)
3n 6= (hj)

3n

. Therefore,

it follows that (ai)
3n

= 0 for i = 0, 1, . . . , k. This is, ai = 0 for i = 0, 1, . . . , k.
This shows that FH has no nonzero nilpotents, so every element of FH is a
tripotent by Lemma 5. In particular, for any h ∈ H, h = h3, i.e., h2 = 1.
Hence H is a group of exponent 2.

If p = 5, then for each g ∈ Z(G), g4·5n

= 1 for some n ≥ 1; so Z(G) is
a direct product of its 2-component and 3-component. Write Z(G) = H ×K
where H is a 2-group and K is a 3-group. As argued above, h4 = 1 for all
h ∈ H.

If p = 7, then for each g ∈ Z(G), g2·3·7n

= 1 for some n ≥ 1; so Z(G)
is a direct product of its 2-component, 3-component and 7-component. Write
Z(G) = H ×K × J where H is a 2-group, K is a 3-group and J is a 7-group.
As argued above, for h ∈ H and k ∈ K, h6 = 1 and k6 = 1. As H is a 2-group
and K is a 3-group, it follows that h2 = 1 and k3 = 1. So H is a group of
exponent 2 and K is a group of component 3. �

Lemma 19. Let p ∈ {2, 3, 5, 7}. If R has property P with p ∈ J(R) and G is
a locally finite p-group, then RG has property P.

Proof. As G is locally finite, we can assume that G is a finite p-group. By
Theorem 10, J(R) is nil, so p ∈ J(R) is nilpotent. By [2, Theorem 9], 4(RG)
is nilpotent. Since (RG)/4(RG) ∼= R, it follows from Proposition 14 that RG
has property P. �

Theorem 20. Let R be a ring and G be an abelian group. Then RG has
property P if and only if one of the following cases holds:

(1) R ∼= A and G is a 2-group,
(2) R ∼= B and G is a direct product of a group of exponent 2 and a 3-group.
(3) R ∼= C and G = H × K, where h4 = 1 for all h ∈ H and K is a

5-group.
(4) R ∼= D and G = H ×K × J , where H is a group of exponent 2, K is

a group of exponent 3 and J is a 7-group.
(5) R ∼= A⊕ C, and g4 = 1 for all g ∈ G.
(6) R ∈ {A⊕B,A⊕D,B ⊕C,B ⊕D,C ⊕D,A⊕B ⊕C,A⊕B ⊕D,B ⊕

C ⊕D,A⊕B ⊕ C ⊕D}, and G is a group of exponent 2,
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where A/J(A) is Boolean with J(A) nil, B/J(B) is a subdirect product of Z3’s
with J(B) nil, C/J(C) is a subdirect product of Z5’s with J(C) nil and D/J(D)
is a subdirect product of Z7’s with J(D) nil.

Proof. (⇒) Suppose that RG has property P. Then R has property P, so, by
Theorem 10, R = A⊕B ⊕ C ⊕D where A is zero or A/J(A) is Boolean with
J(A) nil, B is zero or B/J(B) is a subdirect product of Z3’s with J(B) nil, C
is zero or C/J(C) is a subdirect product of Z5’s with J(C) nil, and D is zero or
D/J(D) is a subdirect product of Z7’s. Then one of the following cases occurs,
in view of Lemma 18.

Case 1: R = A. Then G is 2-group.
Case 2: R = B. Then G is a direct product of a group of exponent 2 and

a 3-group.
Case 3: R = C. Then G = H ×K, where h4 = 1 and K is a 5-group.
Case 4: R = D. Then G is a direct product of a group of exponent 2, a

group of exponent 3 and a 7-group.
Case 5: A 6= 0, and B 6= 0 or D 6= 0. Then G satisfies the conditions in

Cases 1,2 and 4, so G is a group of exponent 2.
Case 6: R = A ⊕ C. Then G satisfies the conditions in Cases 1 and 3, so

g4 = 1 for all g ∈ G.
(⇐) Firstly, by Lemma 19, (1) implies that RG has property P.
We next show that, if G is a group of exponent 2, then (A⊕B ⊕ C ⊕D)G

has property P. Indeed, (A ⊕ B ⊕ C ⊕D)G ∼= AG ⊕ (B ⊕ C ⊕D)G. As AG
has property P by (1), we only need to show that (B ⊕C ⊕D)G has property
P, and we can assume that G is a finite group. So G is a direct product of
finite copies of C2, and hence, as 2 is a unit in B ⊕C ⊕D, (B ⊕C ⊕D)G is a
direct sum of finite copies of B ⊕ C ⊕D. Hence, (B ⊕ C ⊕D)G has property
P. Thus, (6) implies RG has property P.

Suppose (2) holds. Write G = H×K where H is a group of exponent 2 and
K is a 3-group. Then RH ∼= BH has property P by (6), so RG ∼= (BH)K has
property P by Lemma 19.

Suppose that (3) holds. Write G = H × K, where h4 = 1 for all h ∈ H
and K is a 5-group. Then RG ∼= (CH)K, thus to show RG has property P
it suffices to show that CH has property P by Lemma 19. We can assume
that H is a finite group. Thus, H is a direct product of finite copies of C2

and finite copies of C4. Therefore, we only need to show that CC2 and CC4

have property P. Note that CC2 has property P by (6). Since J(C) is nil,
J(C)C4 is nil. As (CC4)/(J(C)C4) ∼= (C/J(C))C4, to show CC4 has property
P it suffices to show that (C/J(C))C4 has property P by Proposition 14. As
C/J(C) is commutative with x5 = x for all x ∈ C/J(C) and g5 = g for all
g ∈ C4, one quickly sees that y5 = y for all y ∈ (C/J(C))C4, so (C/J(C))C4

has property P by Lemma 6. Hence (3) implies RG has property P.
Suppose (4) holds. Write G = H×K×J , where H is a group of exponent 2,

K is a group of exponent 3 and J is a 7-group. Then RG ∼= DG ∼= ((DH)K)J .
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Thus to show RG has property P it suffices to show that (DH)K has prop-
erty P by Lemma 19. By (6), DH has property P. Since J(DH) is nil,
J(DH)K is nil. As (DH)K/J(DH)K ∼= ((DH)/J(DH))K, to show that
(DH)K has property P it suffices to show that ((DH)/J(DH))K has prop-
erty P by Proposition 14. As (DH)/J(DH) is commutative with x7 = x for
all x ∈ (DH)/J(DH) and g7 = g for all g ∈ K, one quickly sees that y7 = y
for all y ∈ ((DH)/J(DH))K, so ((DH)/J(DH))K has property P by Lemma
9. Hence (4) implies RG has property P.

Finally suppose (5) holds. Then RG ∼= AG⊕CG. By (1), AG has property
P. By (3), CG has property P. So RG has property P. �
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