RINGS IN WHICH EVERY ELEMENT IS A SUM OF A NILPOTENT AND THREE TRIPOTENTS

Jian Cui and Guoli Xia

Abstract

In this article, we completely determine the rings for which every element is a sum of a nilpotent and three tripotents that commute with one another. We discuss this property for some extensions of rings, including group rings.

1. Introduction

Throughout, R is an associative ring with identity. The set of all units, the set of all nilpotents, the Jacobson radical and the center of R are denoted by $U(R), \operatorname{Nil}(R), J(R)$ and $C(R)$, respectively. We write \mathbb{Z}_{n} for the ring of integers modulo $n, \mathbb{M}_{n}(R)$ for the $n \times n$ matrix ring and $\mathbb{T}_{n}(R)$ for the $n \times n$ upper triangular matrix ring over R, respectively.

Rings whose elements are sums of certain special elements have been widely studied in ring theory. In [4], Hirano and Tominaga determined the rings for which every element is a sum of two commuting idempotents. An element a of a ring is called a tripotent if $a^{3}=a$. Tripotents are a natural generalization of idempotents. In [8], the authors determined the rings for which every element is a sum of two commuting tripotents. In [3], Diesl defined and discussed (strongly) nil-clean rings: A ring is called (strongly) nil-clean if every element is a sum of a nilpotent and an idempotent (that commute with each other). The structure of strongly nil-clean rings was made available in [5] and [6]. In [1], Chen and Sheibani determined the rings for which every element is a sum of a nilpotent and a tripotent that commute. In [9], the author characterized the rings for which every element is a sum of a nilpotent and two tripotents that commute with one another.

This is a further investigation of this subject. The main objective of this article is to present the structure of rings for which every element is a sum of a nilpotent and three tripotents that commute with one another (see Theorem

[^0]10). We also discuss this property for some extensions of rings, including group rings.

2. The structure theorem

We give the following definition for convenience.
Definition 1. A ring R is said to have property \mathcal{P} if every element of R is a sum of a nilpotent and three tripotents that commute with one another.

One can easily check that the class of rings with property \mathcal{P} is closed under finite direct products and homomorphic images.

Lemma 2. A ring R has property \mathcal{P} if and only if $R=R_{1} \oplus R_{2} \oplus R_{3} \oplus R_{4}$ where $R_{1}, R_{2}, R_{3}, R_{4}$ have property \mathcal{P} with $2 \in \operatorname{Nil}\left(R_{1}\right), 3 \in \operatorname{Nil}\left(R_{2}\right), 5 \in \operatorname{Nil}\left(R_{3}\right)$ and $7 \in \operatorname{Nil}\left(R_{4}\right)$.
Proof. It suffices to show the necessity, so let us assume that R has property \mathcal{P}. We first show that $2 \cdot 3 \cdot 5 \cdot 7$ is nilpotent. Write $4=b+e+f+g$, where $b \in \operatorname{Nil}(R), e^{3}=e, f^{3}=f, g^{3}=g$ and b, e, f, g commute with one another. Note that $(4-b)^{3}-(4-b)=\left(15-8 b+b^{2}\right)(4-b)$ and $4-b=e+f+g$. With $t:=15-8 b+b^{2}$, we have

$$
\begin{align*}
t(e+f+g) & =(e+f+g)^{3}-(e+f+g) \\
& =3 e^{2} f+3 e^{2} g+3 e f^{2}+3 f^{2} g+3 e g^{2}+3 f g^{2}+6 e f g \tag{2.1}
\end{align*}
$$

Multiplying both sides of (2.1) by $e^{2} f^{2} g^{2}$ gives $6 e f g=(t-6) e f g(e f+e g+f g)$, so

$$
\begin{aligned}
12 e f g & =(t-6) \operatorname{efg}(2 e f+2 e g+2 f g) \\
& \left.=(t-6) \operatorname{efg} g(4-b)^{2}-e^{2}-f^{2}-g^{2}\right] \\
& =(t-6) \operatorname{efg}(4-b)^{2}-(t-6) \operatorname{efg}\left(e^{2}+f^{2}+g^{2}\right) \\
& =(t-6) \operatorname{efg}(4-b)^{2}-3(t-6) \operatorname{efg}
\end{aligned}
$$

which implies that $\left[(t-6)(4-b)^{2}-3(t-6)-12\right] e f g=0$. As b is nilpotent, we deduce that $\left(9 \cdot 4^{2}-27-12\right)$ efg $=105$ efg is nilpotent.

Now multiplying both sides of (2.1) by e^{2}, f^{2} and g^{2} respectively, we obtain:
(2.2) $t e+(t-3) e^{2} f+(t-3) e^{2} g=3 e f^{2}+3 e g^{2}+3 e^{2} f^{2} g+3 e^{2} f g^{2}+6 e f g ;$
(2.3) $t f+(t-3) e f^{2}+(t-3) f^{2} g=3 e^{2} f+3 g^{2} f+3 e^{2} f^{2} g+3 e f^{2} g^{2}+6 e f g$;
(2.4) $t g+(t-3) e g^{2}+(t-3) f g^{2}=3 e^{2} g+3 f^{2} g+3 e^{2} f g^{2}+3 e f^{2} g^{2}+6 e f g$.

In view of $(2.1),(2.2)+(2.3)+(2.4)$ gives

$$
(t-3)\left(e^{2} f+e^{2} g+e f^{2}+g f^{2}+e g^{2}+f g^{2}\right)=6 e f g(2+e f+e g+f g) .
$$

It follows that $35(t-3)\left(e^{2} f+e^{2} g+e f^{2}+g f^{2}+e g^{2}+f g^{2}\right)=105 \cdot 2 e f g(2+$ $e f+e g+f g) \in \operatorname{Nil}(R)$, since $105 e f g$ is nilpotent. Thus, in view of (2.1), we see that

$$
\begin{aligned}
& 35(t-3) t(4-b) \\
= & 35(t-3)\left(3 e^{2} f+3 e^{2} g+3 e f^{2}+3 g f^{2}+3 e g^{2}+3 f g^{2}+6 e f g\right) \\
= & 35(t-3)\left(3 e^{2} f+3 e^{2} g+3 e f^{2}+3 g f^{2}+3 e g^{2}+3 f g^{2}\right)+105 e f g \cdot 2(t-3)
\end{aligned}
$$

is nilpotent. Since b is nilpotent, it follows that $2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \in \operatorname{Nil}(R)$, and thus, $2 \cdot 3 \cdot 5 \cdot 7 \in \operatorname{Nil}(R)$. Hence there exists an integer $n \geq 1$ such that $2^{n} R \cap 3^{n} R \cap$ $5^{n} R \cap 7^{n} R=0$. By the Chinese Reminder Theorem, $R=R_{1} \oplus R_{2} \oplus R_{3} \oplus R_{4}$ where $R_{1} \cong R / 2^{n} R, R_{2} \cong R / 3^{n} R, R_{3} \cong R / 5^{n} R, R_{4} \cong R / 7^{n} R$, and R_{1}, R_{2}, R_{3} and R_{4} have property \mathcal{P}.

Lemma 3. If R is a subdirect product of \mathbb{Z}_{7} 's and $x \in R$, then there exist polynomials $\theta(t), \zeta(t), \eta(t) \in \mathbb{Z}[t]$ such that $x=\theta(x)+\zeta(x)+\eta(x)$ and $\theta(x), \zeta(x), \eta(x)$ are tripotents.
Proof. Let R be a subdirect product of $\left\{R_{\alpha}: \alpha \in \Lambda\right\}$ where $R_{\alpha}=\mathbb{Z}_{7}$ for all $\alpha \in \Lambda$. Then R is a subring of ΠR_{α}. Write $x=\left(x_{\alpha}\right) \in R$ and let Λ be a disjoint union of $\Lambda_{0}, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \Lambda_{4}, \Lambda_{5}, \Lambda_{6}$ such that $x_{\alpha}=$ $i \Leftrightarrow \alpha \in \Lambda_{i}$ for $i=0,1,2,3,4,5,6$. Without lose of generality, let $x=$ $\left(0_{\Lambda_{0}}, 1_{\Lambda_{1}}, 2_{\Lambda_{2}}, 3_{\Lambda_{3}}, 4_{\Lambda_{4}}, 5_{\Lambda_{5}}, 6_{\Lambda_{6}}\right)$, and set

$$
\begin{aligned}
& e_{1}=\left(0_{\Lambda_{0}}, 1_{\Lambda_{1}}, 0_{\Lambda_{2}}, 0_{\Lambda_{3}}, 0_{\Lambda_{4}}, 0_{\Lambda_{5}}, 0_{\Lambda_{6}}\right), \\
& e_{2}=\left(0_{\Lambda_{0}}, 0_{\Lambda_{1}}, 1_{\Lambda_{2}}, 0_{\Lambda_{3}}, 0_{\Lambda_{4}}, 0_{\Lambda_{5}}, 0_{\Lambda_{6}}\right), \\
& e_{3}=\left(0_{\Lambda_{0}}, 0_{\Lambda_{1}}, 0_{\Lambda_{2}}, 1_{\Lambda_{3}}, 0_{\Lambda_{4}}, 0_{\Lambda_{5}}, 0_{\Lambda_{6}}\right), \\
& e_{4}=\left(0_{\Lambda_{0}}, 0_{\Lambda_{1}}, 0_{\Lambda_{2}}, 0_{\Lambda_{3}}, 1_{\Lambda_{4}}, 0_{\Lambda_{5}}, 0_{\Lambda_{6}}\right), \\
& e_{5}=\left(0_{\Lambda_{0}}, 0_{\Lambda_{1}}, 0_{\Lambda_{2}}, 0_{\Lambda_{3}}, 0_{\Lambda_{4}}, 1_{\Lambda_{5}}, 0_{\Lambda_{6}}\right), \\
& e_{6}=\left(0_{\Lambda_{0}}, 0_{\Lambda_{1}}, 0_{\Lambda_{2}}, 0_{\Lambda_{3}}, 0_{\Lambda_{4}}, 0_{\Lambda_{5}}, 1_{\Lambda_{6}}\right) .
\end{aligned}
$$

One can show that there exist polynomials $\theta_{i}(t) \in \mathbb{Z}[t]$ such that $e_{i}=\theta_{i}(x)$ for $i=1,2, \ldots, 6$. Indeed,

$$
\begin{aligned}
& e_{1}=x^{6}-y^{6} \text { where } y=x-x^{6}, \\
& e_{2}=y^{6}-z^{6} \text { where } z=y-y^{6}, \\
& e_{3}=z^{6}-u^{6} \text { where } u=z-z^{6}, \\
& e_{4}=u^{6}-v^{3} \text { where } v=u-u^{6}, \\
& e_{5}=2 v^{3}-v, \\
& e_{6}=v-v^{3} .
\end{aligned}
$$

Thus, $e_{i} \in R$ for $i=1,2, \ldots, 6$. Let $e:=e_{1}+e_{2}+e_{3}+6 e_{4}+6 e_{5}+6 e_{6}$, $f:=e_{2}+e_{3}+6 e_{4}+6 e_{5}$ and $g:=e_{3}+6 e_{4}$. Then, e, f and g are tripotents in
R and $x=e+f+g$. With

$$
\begin{aligned}
\theta(t) & =\theta_{1}(t)+\theta_{2}(t)+\theta_{3}(t)+6 \theta_{4}(t)+6 \theta_{5}(t)+6 \theta_{6}(t) \\
\zeta(t) & =\theta_{2}(t)+\theta_{3}(t)+6 \theta_{4}(t)+6 \theta_{5}(t) \\
\eta(t) & =\theta_{3}(t)+6 \theta_{4}(t)
\end{aligned}
$$

we have $e=\theta(x), f=\zeta(x)$ and $g=\eta(x)$.
Lemma 4. Let R be a ring with $2 \in \operatorname{Nil}(R)$. The following are equivalent:
(1) R has property \mathcal{P}.
(2) Every element of R is a sum of a nilpotent and an idempotent that commute.
(3) $a-a^{2}$ is nilpotent for all $a \in R$.

Proof. (2) $\Leftrightarrow(3)$ See [9, Proposition 2.5].
$(2) \Rightarrow(1)$ The implication is clear.
(1) \Rightarrow (3) Let $a \in R$, and write $a=b+e+f+g$, where $b \in \operatorname{Nil}(R), e^{3}=e$, $f^{3}=f, g^{3}=g$ and b, e, f, g commute with one another. If x is a tripotent of R, then $\left(x-x^{2}\right)^{2}=2 x(x-1)$; so $x-x^{2} \in \mathrm{Nil}(R)$. As e, f, g are tripotents, $a-a^{2}=b(1-b-2 e-2 f-2 g)-2(e f+e g+f g)+\left(e-e^{2}\right)+\left(f-f^{2}\right)+\left(g-g^{2}\right) \in$ $\operatorname{Nil}(R)$.

Lemma 5. Let R be a ring with $3 \in \operatorname{Nil}(R)$. The following are equivalent:
(1) R has property \mathcal{P}.
(2) Every element of R is a sum of a nilpotent and a tripotent that commute.
(3) $a-a^{3}$ is nilpotent for all $a \in R$.

Proof. (2) \Leftrightarrow (3) See [9, Proposition 2.8].
$(2) \Rightarrow(1)$ The implication is clear.
(1) \Rightarrow (3) Let $a \in R$ and write $a=b+e+f+g$, where $b \in \operatorname{Nil}(R), e^{3}=e$, $f^{3}=f, g^{3}=g$ and b, e, f, g commute with one another. As $3 \in \operatorname{Nil}(R)$,

$$
\begin{aligned}
a-a^{3}= & b\left(1-b^{2}-3 b e-3 b f-3 b g-3 e^{2}-3 f^{2}-3 g^{2}-6 e f-6 e g-6 f g\right) \\
& -3\left(e^{2} f+e^{2} g+e f^{2}+e g^{2}+f^{2} g+f g^{2}+2 e f g\right)
\end{aligned}
$$

is nilpotent.
Lemma 6. Let R be a ring with $5 \in \operatorname{Nil}(R)$. The following are equivalent:
(1) R has property \mathcal{P}.
(2) $J(R)$ is nil and $R / J(R)$ is a subdirect product of \mathbb{Z}_{5} 's.
(3) $a-a^{5}$ is nilpotent for all $a \in R$.
(4) Every element of R is a sum of a nilpotent and two tripotents that commute.

Proof. In view of [9, Proposition 2.19], (2) $\Leftrightarrow(3) \Leftrightarrow(4)$ follows.
$(4) \Rightarrow(1)$ The implication is clear.
(1) \Rightarrow (2) Let $a \in R$ and write $a=b+e+f+g$, where $b \in \operatorname{Nil}(R)$, $e^{3}=e, f^{3}=f, g^{3}=g$ and b, e, f, g commute with one another. There exist polynomials $\theta\left(t_{1}, t_{2}, t_{3}, t_{4}\right), \eta\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$ in $\mathbb{Z}\left[t_{1}, t_{2}, t_{3}, t_{4}\right]$ such that $a^{5}-a=$ $5 \cdot \theta(b, e, f, g)+b \cdot \eta(b, e, f, g) ;$ so $a^{5}-a \in \operatorname{Nil}(R)$.

Lemma 7 ([9, Lemma 2.6]). If $2 \in U(R)$ and $a^{3}-a$ is nilpotent, then there exists a polynomial $\theta(t) \in \mathbb{Z}[t]$ such that $\theta(a)^{3}=\theta(a)$ and $a-\theta(a)$ is nilpotent.

Lemma 8 ([7, Theorem 2.1]). Let R be a ring with $J(R)=0$ such that every nonzero right ideal contains a nonzero idempotent. If $a^{n}=0$ but $a^{n-1} \neq 0$, then there exists an idempotent $e^{2}=e \in R a R$ such that $e R e \cong \mathbb{M}_{n}(T)$ for some non-trivial ring T.

Recall that a ring R is reduced if it contains no nonzero nilpotents.
Lemma 9. Let R be a ring with $7 \in \operatorname{Nil}(R)$. The following are equivalent:
(1) R has property \mathcal{P}.
(2) $a-a^{7}$ is nilpotent for all $a \in R$.
(3) $J(R)$ is nil and $R / J(R)$ is a subdirect product of \mathbb{Z}_{7} 's.

Proof. (1) \Rightarrow (2) Let $a \in R$ and write $a=b+e+f+g$, where $b \in \operatorname{Nil}(R)$, $e^{3}=e, f^{3}=f, g^{3}=g$ and b, e, f, g commute with one another. There exist polynomials $\theta\left(t_{1}, t_{2}, t_{3}, t_{4}\right), \eta\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$ in $\mathbb{Z}\left[t_{1}, t_{2}, t_{3}, t_{4}\right]$ such that $a^{7}-a=$ $7 \cdot \theta(b, e, f, g)+b \cdot \eta(b, e, f, g)$; so $a^{7}-a \in \operatorname{Nil}(R)$.
(2) \Rightarrow (3) For $j \in J(R), j-j^{7}=j\left(1-j^{6}\right)$ is nilpotent. As $1-j^{6}$ is a unit in R, j is nilpotent. Hence $J(R)$ is nil. For any $a \in R, a-a^{7}$ is nilpotent; so there exists an integer $n \geq 1$ such that $a^{n} \in a^{n+1} R \cap R a^{n+1}$. Thus, R and further $\bar{R}:=R / J(R)$ are strongly π-regular rings. Now suppose $\bar{a}^{2}=\overline{0}$ for some $\overline{0} \neq \bar{a} \in \bar{R}$. By Lemma 8 , there exists $\overline{0} \neq \bar{w}^{2}=\bar{w} \in \bar{R} \bar{a} \bar{R}$ such that $\bar{w} \bar{R} \bar{w} \cong \mathbb{M}_{2}(T)$ where T is a nontrivial ring. Let $x=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right] \in \mathbb{M}_{2}(T)$. As $7 \in J(R), 7=0$ in \bar{R}, so $x^{7}-x=\left[\begin{array}{cc}-1 & -2 \\ -2 & 1\end{array}\right]$ and $\left(x^{7}-x\right)^{2}=\left[\begin{array}{cc}5 & 0 \\ 0 & 5\end{array}\right] \in U(\bar{R})$, a contradiction. This shows that \bar{R} is reduced, so $x^{7}=x$ for all $x \in \bar{R}$. Hence \bar{R} is a subdirect product of \mathbb{Z}_{7} 's.
$(3) \Rightarrow(1)$ Let $a \in R$. By Lemma 3, then there exist polynomials $\theta(t), \zeta(t)$, $\eta_{3}(t) \in \mathbb{Z}[t]$ such that $\bar{a}=\theta(\bar{a})+\zeta(\bar{a})+\eta(\bar{a})$ and $\theta(\bar{a}), \zeta(\bar{a}), \eta(\bar{a})$ are tripotents in $\bar{R}:=R / J(R)$. Since $\theta(\bar{a})=\overline{\theta(a)}, \zeta(\bar{a})=\overline{\zeta(a)}$ and $\eta(\bar{a})=\overline{\eta(a)}$, we see that $\theta(a)^{3}-\theta(a), \zeta(a)^{3}-\zeta(a)$ and $\eta(a)^{3}-\eta(a)$ are in $J(R)$, so are nilpotent. As $2 \in U(R)$, by Lemma 7, there exist tripotents e, f and g in $\mathbb{Z}[a]$ such that $\theta(a)-e, \zeta(a)-f$ and $\eta(a)-g$ are nilpotent. Then $b:=a-e-f-g=$ $(a-\theta(a)-\zeta(a)-\eta(a))+(\theta(a)-e)+(\zeta(a)-f)+(\eta(a)-g)$ is nilpotent, b, e, f and g commute with one another, and $a=b+e+f+g$.

Here is the structure of rings with property \mathcal{P}.
Theorem 10. The following are equivalent for a ring R :
(1) R has property \mathcal{P}.
(2) $R=R_{1} \oplus R_{2} \oplus R_{3} \oplus R_{4}$, where R_{1} is zero or $R_{1} / J\left(R_{1}\right)$ is a Boolean ring with $J\left(R_{1}\right)$ nil, R_{2} is zero or $R_{2} / J\left(R_{2}\right)$ is a subdirect product of \mathbb{Z}_{3} 's with $J\left(R_{2}\right)$ nil, R_{3} is zero or $R_{3} / J\left(R_{3}\right)$ is a subdirect product of \mathbb{Z}_{5} 's with $J\left(R_{3}\right)$ nil, R_{4} is zero or $R_{4} / J\left(R_{4}\right)$ is a subdirect product of \mathbb{Z}_{7} 's with $J\left(R_{4}\right)$ nil.
(3) $R=A \oplus B$, where $a-a^{5} \in \operatorname{Nil}(A)$ for all $a \in A$ and $b-b^{7} \in \operatorname{Nil}(B)$ for all $b \in B$ with $7 \in \operatorname{Nil}(B)$.
Proof. (1) $\Leftrightarrow(2)$ The equivalence follows from Lemma 2 and Lemmas 4, 5, 6 and 9 .
$(2) \Rightarrow(3)$ Suppose that (2) holds. Let $A=R_{1} \oplus R_{2} \oplus R_{3}$ and $B=R_{4}$. Then, $a-a^{5}=\left(1+a+a^{2}+a^{3}\right)\left(a-a^{2}\right)=\left(1+a^{2}\right)\left(a-a^{3}\right) \in \operatorname{Nil}(A)$ for all $a \in A$. By Lemma $9, b-b^{7} \in \operatorname{Nil}(B)$ for all $b \in B$ with $7 \in \operatorname{Nil}(B)$.
$(3) \Rightarrow(1)$ In view of $[9$, Theorem 2.11], every element of A is a sum of a nilpotent and two tripotents that commute with one another, so A has property \mathcal{P}. By Lemma $9, B$ has property \mathcal{P}. Hence R has property \mathcal{P}.

The following result is useful to verify property \mathcal{P} of a ring.
Theorem 11. A ring R has \mathcal{P} property if and only if the following conditions are satisfied:
(1) $13 \in U(R)$ and $a-a^{13}$ is nilpotent for all $a \in R$;
(2) $1+a+a^{2} \in U(R)$ for all $a \in R$ whenever $2 \in \operatorname{Nil}(R)$.

Proof. (\Rightarrow) By the proof of Lemma $2,2 \cdot 3 \cdot 5 \cdot 7=210 \in \operatorname{Nil}(R)$, so $13 \cdot 97=$ $1+210 \cdot 6 \in U(R)$, and hence $13 \in U(R)$. Moreover, R has the decomposition $R=A \oplus B$ as stated in Theorem 10(3). For $a \in A, a-a^{13}=\left(a-a^{5}\right)\left(1+a^{4}+a^{8}\right)$ is nilpotent; for $a \in B, a-a^{13}=\left(a-a^{7}\right)\left(1+a^{6}\right)$ is nilpotent. Thus, $a-a^{13}$ is nilpotent for all $a \in R$. Now assume $2 \in \operatorname{Nil}(R)$. By Lemma $4, a-a^{2}$ is nilpotent for all $a \in R$. So $1+a+a^{2}=1+\left[\left(a-a^{2}\right)+2 a^{2}\right] \in U(R)$, and hence (2) holds.
(\Leftarrow) It is clear that $J(R)$ is nil. Since $2^{13}-2=2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \in \operatorname{Nil}(R)$ and $13 \in U(R), 2 \cdot 3 \cdot 5 \cdot 7$ is nilpotent. So $2^{n} \cdot 3^{n} \cdot 5^{n} \cdot 7^{n}=0$ for some $n>0$. By the Chinese Reminder Theorem, $R=R_{1} \oplus R_{2} \oplus R_{3} \oplus R_{4}$, where $R_{1} \cong R / 2^{n} R$, $R_{2} \cong R / 3^{n} R, R_{3} \cong R / 5^{n} R, R_{4} \cong R / 7^{n} R$.

For $a \in R_{1}$, as $2 \in \operatorname{Nil}\left(R_{1}\right) \subseteq \operatorname{Nil}(R)$, there exists a polynomial $\theta(t) \in \mathbb{Z}[t]$ such that $\left(a-a^{4}\right)^{4}=a^{3}\left(a-a^{13}\right)+2 \theta(a) \in \operatorname{Nil}\left(R_{1}\right)$, so $a-a^{4}=\left(a-a^{2}\right)\left(1+a+a^{2}\right)$ is nilpotent. It follows that $a-a^{2}$ is nilpotent since $1+a+a^{2} \in U(R)$. By Lemma $4, R_{1}$ has property \mathcal{P}.

For $a \in R_{2},\left(a-a^{5}\right)^{3}=a^{2}\left(a-a^{13}\right)-3\left(a^{7}-a^{11}\right) \in \operatorname{Nil}\left(R_{2}\right)$. So, by $[9$, Theorem 2.11], every element of R_{2} is a sum of a nilpotent and two tripotents that commute with one another. Hence, R_{2} has property \mathcal{P}.

As $\overline{R_{3}}$ is semiprimitive, $\overline{R_{3}}$ is a subdirect product of a family of right primitive rings $\left\{R_{\alpha}: \alpha \in \Lambda\right\}$. Assume that R_{α} is not simple Artinian. Then there exists a subring $S_{\alpha} \subseteq R_{\alpha}$ such that $\mathbb{M}_{2}(D)$ is a factor ring of S_{α}, where D is a division ring. It follows that $y-y^{13} \in \operatorname{Nil}\left(\mathbb{M}_{2}(D)\right)$ for any $y \in \mathbb{M}_{2}(D)$. Take
$y=\left[\begin{array}{ll}2 & 3 \\ 3 & 1\end{array}\right]$. Noticing that $5=0$ in R_{α}, we have $y-y^{13}=\left[\begin{array}{cc}-1 & 1 \\ 1 & 2\end{array}\right] \in U\left(\mathbb{M}_{2}(D)\right)$, so $y-y^{13}$ is not a nilpotent, a contradiction. This shows that R_{α} is simple Artinian for each $\alpha \in \Lambda$, so $R_{\alpha} \cong \mathbb{M}_{n}(D)$ for some $n \geq 1$. As argued above, $n=1$, i.e., $R_{\alpha} \cong D$ is a division ring. Therefore $a^{13}=a$ for all $a \in R_{\alpha}$. Further, let $b \in R_{\alpha}$. Then $\left(b-b^{5}\right)^{5}=b^{5}-b^{25}=b^{5}-b^{13}=b^{5}-b \in R_{\alpha}$. If $b-b^{5} \neq 0$, then $\left(b-b^{5}\right)^{4}=-1$, and $\left(b-b^{5}\right)^{12}=-1$, so $\left(b-b^{5}\right)^{13}=-\left(b-b^{5}\right)$. But $\left(b-b^{5}\right)^{13}=b-b^{5}$. So $2\left(b-b^{5}\right)=0$, and hence $b-b^{5}=0$, a contradiction. Thus $b=b^{5}$ for all $b \in R_{\alpha}$. It follows that $\bar{a}-\bar{a}^{5}=0$ for all $a \in R_{3}$. So, $a-a^{5} \in J\left(R_{3}\right)$ is a nilpotent. By Lemma $6, R_{3}$ has property \mathcal{P}.

Similarly, $\overline{R_{4}}:=R_{4} / J\left(R_{4}\right)$ is a subdirect product of right primitive rings $\left\{R_{\beta}: \beta \in \Gamma\right\}$. Assume that R_{β} is not simple Artinian. Then there exists a subring $S_{\beta} \subseteq R_{\beta}$ such that $\mathbb{M}_{2}(D)$ is a factor ring of S_{β}, where D is a division ring. It follows that $z-z^{13} \in \operatorname{Nil}\left(\mathbb{M}_{2}(D)\right)$ for any $z \in \mathbb{M}_{2}(D)$. Take $z=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. Then $z-z^{13}=\left[\begin{array}{cc}2 & -1 \\ -1 & 3\end{array}\right] \in U\left(\mathbb{M}_{2}(D)\right)$. This contradiction shows that R_{β} is simple Artinian. So $R_{\beta} \cong \mathbb{M}_{n}(D)$ for some $n \geq 1$. As argued above, $n=1$, i.e., $R_{\beta} \cong D$ is a division ring. Thus, for each $a \in R_{\beta}, a^{13}=a$, so $\left(a-a^{7}\right)\left(1+a^{6}\right)=0$. Assume $a-a^{7} \neq 0$. Then $1+a^{6}=0$, so $a^{7}=-a$ and $(1+a)^{7}=1+a^{7}=1-a$. Now $(1+a)-(1+a)^{7}=a-a^{7} \neq 0$ and $\left[(1+a)-(1+a)^{7}\right]\left[1+(1+a)^{6}\right]=0$ (indeed, $\left(x-x^{7}\right)\left(1+x^{6}\right)=0$ for all $\left.x \in R_{\beta}\right)$. Thus, $1+(1+a)^{6}=0$ and so $(1+a)^{7}=-(1+a)$. Hence, $1-a=-1-a$, i.e., $2=0$ in R_{β}, a contradiction. Therefore, $a^{7}=a$ for all R_{β}. It follows that, for each $a \in R_{4}, a-a^{7} \in J\left(R_{4}\right)$ is nilpotent. By Lemma $9, R_{4}$ has property \mathcal{P}. Hence R has property \mathcal{P}.

Corollary 12. If a ring R has property \mathcal{P}, then so does its center $C(R)$.
For $R=\mathbb{Z}_{13}, 2 \in U(R)$ and $a-a^{13}=0$ for all $a \in R$, but $13 \notin U(R)$; so R does not have \mathcal{P} property. For $R=\mathbb{M}_{2}\left(\mathbb{Z}_{2}\right), 13 \in U(R)$ and $a-a^{13} \in \operatorname{Nil}(R)$ for all $a \in R$. But $2 \in \operatorname{Nil}(R))$ and $1+a+a^{2}=0$ for $a=\left[\begin{array}{cc}1 & 1 \\ 1 & 0\end{array}\right]$; so R does not have property \mathcal{P}.

Next we consider property \mathcal{P} for some extensions of rings. By Theorem 10, if R has property \mathcal{P}, then $R / J(R)$ is commutative. Thus any matrix ring of size greater than 1 does not have property \mathcal{P}.

Proposition 13. If a ring R has property \mathcal{P}, then so does eRe for any $e^{2}=$ $e \in R$.

Proof. By Theorem 10, $R=A \oplus B$, where $a-a^{5} \in \operatorname{Nil}(A)$ for all $a \in A$ and $b-b^{7} \in \operatorname{Nil}(B)$ for all $b \in B$ with $7 \in \operatorname{Nil}(B)$. Write $e=\left(e_{1}, e_{2}\right)$, where $e_{1}{ }^{2}=e_{1} \in A$ and $e_{2}{ }^{2}=e_{2} \in B$. So, $e R e=e_{1} A e_{1} \oplus e_{2} B e_{2}$. We have $x-x^{5} \in \operatorname{Nil}\left(e_{1} A e_{1}\right)$ for all $x \in e_{1} A e_{1}, y-y^{7} \in \operatorname{Nil}\left(e_{2} B e_{2}\right)$ for all $y \in e_{2} B e_{2}$ and $7 e_{2} \in \operatorname{Nil}\left(e_{2} B e_{2}\right)$. Hence, by Theorem 10, e Re has property \mathcal{P}.

Proposition 14. For a nil ideal I of a ring R, R has property \mathcal{P} if and only if R / I has property \mathcal{P}.

Proof. The necessity is obvious; the sufficiency is a quick consequence of Theorem 11.

Corollary 15. A ring R has property \mathcal{P} if and only if $\mathbb{T}_{n}(R)$ has property \mathcal{P}.
Corollary 16. A ring R has property \mathcal{P} if and only if $R / J(R)$ has property \mathcal{P} and $J(R)$ is nil.

Proof. If R has property \mathcal{P}, then $R / J(R)$ has property \mathcal{P} and $J(R)$ is nil (by Theorem 10); the sufficiency is by Proposition 14.

3. Group rings

In this section, we determine when a group ring of an abelian group has property \mathcal{P}. The center of a group G is denoted by $\mathcal{Z}(G)$. A group G is called locally finite if every finitely generated subgroup of G is finite. Let p be a prime number. A group G is called a p-group if the order of each element of G is a power of p. The cyclic group of order n is denoted by C_{n}.

If R is a ring and G is a group, $R G$ denotes the group ring of the group G over R. The ring homomorphism $\omega: R G \rightarrow R, \Sigma r_{g} g \mapsto \Sigma r_{g}$ is called the augmentation map, and $\operatorname{ker}(\omega)$ is called the augmentation ideal of the group ring $R G$ and is denoted by $\triangle(R G)$. Note that if the group ring $R G$ has property \mathcal{P}, so does R.

Lemma 17. Let R be a ring and G be a group. If $R G$ is has property \mathcal{P}, then $C(R) \mathcal{Z}(G)$ has property \mathcal{P}.

Proof. This is by Corollary 12, because $C(R G)=C(R) \mathcal{Z}(G)$.
Lemma 18. Let R be a ring and G be a group. Suppose that $R G$ has property \mathcal{P}.
(1) If $2 \in J(R)$, then $\mathcal{Z}(G)$ is a 2-group.
(2) If $3 \in J(R)$, then $\mathcal{Z}(G)$ is a direct product of a group of exponent 2 and a 3-group.
(3) If $5 \in J(R)$, then $\mathcal{Z}(G)=H \times K$, where $h^{4}=1$ for all $h \in H$ and K is a 5-group.
(4) If $7 \in J(R)$, then $\mathcal{Z}(G)$ is a direct product of a group of exponent 2 , a group of exponent 3 and a 7-group.

Proof. Let $p \in\{2,3,5,7\}$. If $p \in J(R)$, then $(R / J(R)) G$ has property \mathcal{P} and $p=0$ in $R / J(R)$. So, without loss of generality, we can assume $J(R)=0$. Then $x-x^{p}$ is nilpotent for all $x \in R G$ by Lemmas 4, 5, 6 and 9 . For $g \in \mathcal{Z}(G)$, $g-g^{p}$ is nilpotent, so $1-g^{p-1}$ is nilpotent. Thus, there exists $n>0$ such that $\left(1-g^{p-1}\right)^{p^{n}}=0$, i.e., $g^{(p-1) \cdot p^{n}}=1$ as $p=0$ in R.

If $p=2$, then for each $g \in \mathcal{Z}(G), g^{2^{n}}=1$ for some $n \geq 1$; so $\mathcal{Z}(G)$ is a 2-group.

If $p=3$, then for each $g \in \mathcal{Z}(G), g^{2 \cdot 3^{n}}=1$ for some $n \geq 1$; so $\mathcal{Z}(G)$ is a direct product of its 2 -component and 3 -component. Write $\mathcal{Z}(G)=H \times K$
where H is a 2 -group and K is a 3 -group. We next verify that H is of exponent 2. By Lemma $17, C(R) \mathcal{Z}(G)$ has property \mathcal{P}, so $C(R) H$ has property \mathcal{P}. Let F be a field that is an image of $C(R)$. Then $3=0$ in F and $F H$ has property \mathcal{P}. If $x:=a_{0}+a_{1} h_{1}+\cdots+a_{k} h_{k} \in F H$ is nilpotent, then, for some $n>0$,

$$
0=x^{3^{n}}=\left(a_{0}\right)^{3^{n}}+\left(a_{1}\right)^{3^{n}}\left(h_{1}\right)^{3^{n}}+\cdots+\left(a_{k}\right)^{3^{n}}\left(h_{k}\right)^{3^{n}}
$$

Note that, for $i \neq j,\left(h_{i}\right)^{3^{n}} \neq\left(h_{j}\right)^{3^{n}}$. To see this, note that H is a 2 -group, so $\left(h_{i}\right)^{2^{m}}=\left(h_{j}\right)^{2^{m}}=1$ for some $m>0$. Write $1=s 2^{m}+t 3^{n}$ where $s, t \in \mathbb{Z}$. Then $h_{i}=\left(h_{i}\right)^{s 2^{m}+t 3^{n}}=\left(\left(h_{i}\right)^{2^{m}}\right)^{s}\left(\left(h_{i}\right)^{3^{n}}\right)^{t}=\left(\left(h_{i}\right)^{3^{n}}\right)^{t}$, and $h_{j}=\left(h_{j}\right)^{s 2^{m}+t 3^{n}}=$ $\left(\left(h_{j}\right)^{2^{m}}\right)^{s}\left(\left(h_{j}\right)^{3^{n}}\right)^{t}=\left(\left(h_{j}\right)^{3^{n}}\right)^{t}$. So $h_{i} \neq h_{j}$ implies $\left(h_{i}\right)^{3^{n}} \neq\left(h_{j}\right)^{3^{n}}$. Therefore, it follows that $\left(a_{i}\right)^{3^{n}}=0$ for $i=0,1, \ldots, k$. This is, $a_{i}=0$ for $i=0,1, \ldots, k$. This shows that $F H$ has no nonzero nilpotents, so every element of $F H$ is a tripotent by Lemma 5. In particular, for any $h \in H, h=h^{3}$, i.e., $h^{2}=1$. Hence H is a group of exponent 2 .

If $p=5$, then for each $g \in \mathcal{Z}(G), g^{4 \cdot 5^{n}}=1$ for some $n \geq 1$; so $\mathcal{Z}(G)$ is a direct product of its 2-component and 3-component. Write $\mathcal{Z}(G)=H \times K$ where H is a 2 -group and K is a 3 -group. As argued above, $h^{4}=1$ for all $h \in H$.

If $p=7$, then for each $g \in \mathcal{Z}(G), g^{2 \cdot 3 \cdot 7^{n}}=1$ for some $n \geq 1$; so $\mathcal{Z}(G)$ is a direct product of its 2 -component, 3 -component and 7 -component. Write $\mathcal{Z}(G)=H \times K \times J$ where H is a 2 -group, K is a 3 -group and J is a 7 -group. As argued above, for $h \in H$ and $k \in K, h^{6}=1$ and $k^{6}=1$. As H is a 2-group and K is a 3 -group, it follows that $h^{2}=1$ and $k^{3}=1$. So H is a group of exponent 2 and K is a group of component 3 .

Lemma 19. Let $p \in\{2,3,5,7\}$. If R has property \mathcal{P} with $p \in J(R)$ and G is a locally finite p-group, then $R G$ has property \mathcal{P}.

Proof. As G is locally finite, we can assume that G is a finite p-group. By Theorem 10, J(R) is nil, so $p \in J(R)$ is nilpotent. By [2, Theorem 9], $\triangle(R G)$ is nilpotent. Since $(R G) / \triangle(R G) \cong R$, it follows from Proposition 14 that $R G$ has property \mathcal{P}.

Theorem 20. Let R be a ring and G be an abelian group. Then $R G$ has property \mathcal{P} if and only if one of the following cases holds:
(1) $R \cong A$ and G is a 2-group,
(2) $R \cong B$ and G is a direct product of a group of exponent 2 and a 3-group.
(3) $R \cong C$ and $G=H \times K$, where $h^{4}=1$ for all $h \in H$ and K is a 5-group.
(4) $R \cong D$ and $G=H \times K \times J$, where H is a group of exponent 2 , K is a group of exponent 3 and J is a 7 -group.
(5) $R \cong A \oplus C$, and $g^{4}=1$ for all $g \in G$.
(6) $R \in\{A \oplus B, A \oplus D, B \oplus C, B \oplus D, C \oplus D, A \oplus B \oplus C, A \oplus B \oplus D, B \oplus$ $C \oplus D, A \oplus B \oplus C \oplus D\}$, and G is a group of exponent 2 ,
where $A / J(A)$ is Boolean with $J(A)$ nil, $B / J(B)$ is a subdirect product of \mathbb{Z}_{3} 's with $J(B)$ nil, $C / J(C)$ is a subdirect product of \mathbb{Z}_{5} 's with $J(C)$ nil and $D / J(D)$ is a subdirect product of \mathbb{Z}_{7} 's with $J(D)$ nil.

Proof. (\Rightarrow) Suppose that $R G$ has property \mathcal{P}. Then R has property \mathcal{P}, so, by Theorem 10, $R=A \oplus B \oplus C \oplus D$ where A is zero or $A / J(A)$ is Boolean with $J(A)$ nil, B is zero or $B / J(B)$ is a subdirect product of \mathbb{Z}_{3} 's with $J(B)$ nil, C is zero or $C / J(C)$ is a subdirect product of \mathbb{Z}_{5} 's with $J(C)$ nil, and D is zero or $D / J(D)$ is a subdirect product of \mathbb{Z}_{7} 's. Then one of the following cases occurs, in view of Lemma 18.

Case 1: $R=A$. Then G is 2 -group.
Case 2: $R=B$. Then G is a direct product of a group of exponent 2 and a 3 -group.

Case 3: $R=C$. Then $G=H \times K$, where $h^{4}=1$ and K is a 5 -group.
Case 4: $R=D$. Then G is a direct product of a group of exponent 2 , a group of exponent 3 and a 7 -group.

Case 5: $A \neq 0$, and $B \neq 0$ or $D \neq 0$. Then G satisfies the conditions in Cases 1,2 and 4 , so G is a group of exponent 2 .

Case 6: $R=A \oplus C$. Then G satisfies the conditions in Cases 1 and 3, so $g^{4}=1$ for all $g \in G$.
(\Leftarrow) Firstly, by Lemma $19,(1)$ implies that $R G$ has property \mathcal{P}.
We next show that, if G is a group of exponent 2 , then $(A \oplus B \oplus C \oplus D) G$ has property \mathcal{P}. Indeed, $(A \oplus B \oplus C \oplus D) G \cong A G \oplus(B \oplus C \oplus D) G$. As $A G$ has property \mathcal{P} by (1), we only need to show that $(B \oplus C \oplus D) G$ has property \mathcal{P}, and we can assume that G is a finite group. So G is a direct product of finite copies of C_{2}, and hence, as 2 is a unit in $B \oplus C \oplus D,(B \oplus C \oplus D) G$ is a direct sum of finite copies of $B \oplus C \oplus D$. Hence, $(B \oplus C \oplus D) G$ has property \mathcal{P}. Thus, (6) implies $R G$ has property \mathcal{P}.

Suppose (2) holds. Write $G=H \times K$ where H is a group of exponent 2 and K is a 3 -group. Then $R H \cong B H$ has property \mathcal{P} by (6), so $R G \cong(B H) K$ has property \mathcal{P} by Lemma 19 .

Suppose that (3) holds. Write $G=H \times K$, where $h^{4}=1$ for all $h \in H$ and K is a 5 -group. Then $R G \cong(C H) K$, thus to show $R G$ has property \mathcal{P} it suffices to show that $C H$ has property \mathcal{P} by Lemma 19 . We can assume that H is a finite group. Thus, H is a direct product of finite copies of C_{2} and finite copies of C_{4}. Therefore, we only need to show that $C C_{2}$ and $C C_{4}$ have property \mathcal{P}. Note that $C C_{2}$ has property \mathcal{P} by (6). Since $J(C)$ is nil, $J(C) C_{4}$ is nil. As $\left(C C_{4}\right) /\left(J(C) C_{4}\right) \cong(C / J(C)) C_{4}$, to show $C C_{4}$ has property \mathcal{P} it suffices to show that $(C / J(C)) C_{4}$ has property \mathcal{P} by Proposition 14. As $C / J(C)$ is commutative with $x^{5}=x$ for all $x \in C / J(C)$ and $g^{5}=g$ for all $g \in C_{4}$, one quickly sees that $y^{5}=y$ for all $y \in(C / J(C)) C_{4}$, so $(C / J(C)) C_{4}$ has property \mathcal{P} by Lemma 6 . Hence (3) implies $R G$ has property \mathcal{P}.

Suppose (4) holds. Write $G=H \times K \times J$, where H is a group of exponent 2, K is a group of exponent 3 and J is a 7 -group. Then $R G \cong D G \cong((D H) K) J$.

Thus to show $R G$ has property \mathcal{P} it suffices to show that $(D H) K$ has property \mathcal{P} by Lemma 19. By (6), $D H$ has property \mathcal{P}. Since $J(D H)$ is nil, $J(D H) K$ is nil. As $(D H) K / J(D H) K \cong((D H) / J(D H)) K$, to show that $(D H) K$ has property \mathcal{P} it suffices to show that $((D H) / J(D H)) K$ has property \mathcal{P} by Proposition 14. As $(D H) / J(D H)$ is commutative with $x^{7}=x$ for all $x \in(D H) / J(D H)$ and $g^{7}=g$ for all $g \in K$, one quickly sees that $y^{7}=y$ for all $y \in((D H) / J(D H)) K$, so $((D H) / J(D H)) K$ has property \mathcal{P} by Lemma 9. Hence (4) implies $R G$ has property \mathcal{P}.

Finally suppose (5) holds. Then $R G \cong A G \oplus C G$. By (1), $A G$ has property \mathcal{P}. By (3), $C G$ has property \mathcal{P}. So $R G$ has property \mathcal{P}.

Acknowledgments. The authors would like to thank the referee for carefully reading the paper. Part of the work was carried out when Cui was visiting Memorial University. He gratefully acknowledges the hospitality from the host institute. This research was supported in part by Anhui Provincial Natural Science Foundation (No. 2008085MA06) and the Key Project of Anhui Education Committee (No. gxyqZD2019009).

References

[1] H. Chen and M. Sheibani, Strongly 2-nil-clean rings, J. Algebra Appl. 16 (2017), no. 9, 1750178, 12 pp. https://doi.org/10.1142/S021949881750178X
[2] I. G. Connell, On the group ring, Canadian J. Math. 15 (1963), 650-685. https://doi. org/10.4153/CJM-1963-067-0
[3] A. J. Diesl, Nil clean rings, J. Algebra 383 (2013), 197-211. https://doi.org/10.1016/ j.jalgebra.2013.02.020
[4] Y. Hirano and H. Tominaga, Rings in which every element is the sum of two idempotents, Bull. Austral. Math. Soc. 37 (1988), no. 2, 161-164. https://doi.org/10.1017/ S000497270002668X
[5] Y. Hirano, H. Tominaga, and A. Yaqub, On rings in which every element is uniquely expressible as a sum of a nilpotent element and a certain potent element, Math. J. Okayama Univ. 30 (1988), 33-40.
[6] T. Koşan, Z. Wang, and Y. Zhou, Nil-clean and strongly nil-clean rings, J. Pure Appl. Algebra 220 (2016), no. 2, 633-646. https://doi.org/10.1016/j.jpaa.2015.07.009
[7] J. Levitzki, On the structure of algebraic algebras and related rings, Trans. Amer. Math. Soc. 74 (1953), 384-409. https://doi.org/10.2307/1990809
[8] Z. Ying, T. Koşan, and Y. Zhou, Rings in which every element is a sum of two tripotents, Canad. Math. Bull. 59 (2016), no. 3, 661-672. https://doi.org/10.4153/CMB-2016-0090
[9] Y. Zhou, Rings in which elements are sums of nilpotents, idempotents and tripotents, J. Algebra Appl. 17 (2018), no. 1, 1850009, 7 pp. https://doi.org/10.1142/ S0219498818500093

Jian Cui
Department of Mathematics
Anhui Normal University
Wuhu 241002, P. R. China
Email address: cui368@ahnu.edu.cn

Guoli Xia
Department of Mathematics and Statistics
Memorial University of Newfoundland
St. John's, NL A1C 5S7, Canada
Email address: xglxia@mun.ca

[^0]: Received December 5, 2019; Accepted September 23, 2020.
 2010 Mathematics Subject Classification. Primary 16S34, 16 U99.
 Key words and phrases. Nilpotent, tripotent, sum of a nilpotent and three tripotents, Boolean ring, group ring.

