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SHARP CONDITIONS FOR THE EXISTENCE OF AN EVEN
[a,b]-FACTOR IN A GRAPH

Eun-KyunG CHO, JONG YOON HYUN, SuiL. O, AND JEONG RYE PARK

ABSTRACT. Let a and b be positive integers, and let V(G), 6(G), and
02(@G) be the vertex set of a graph G, the minimum degree of G, and the
minimum degree sum of two non-adjacent vertices in V(G), respectively.
An even [a, b]-factor of a graph G is a spanning subgraph H such that for
every vertex v € V(G), dg(v) is even and a < dy(v) < b, where dg(v)
is the degree of v in H. Matsuda conjectured that if G is an n-vertex
2-edge-connected graph such that n > 2a + b + “2%3“ -2, 6(G) > aq,
and o2(G) > %, then G has an even [a,b]-factor. In this paper, we
provide counterexamples, which are highly connected. Furthermore, we
give sharp sufficient conditions for a graph to have an even [a, b]-factor.
For even an, we conjecture a lower bound for the largest eigenvalue in an
n-vertex graph to have an [a, b]-factor.

1. Introduction

Throughout all sections, a graph G is finite, simple, and undirected. We
denote by V(G) the set of vertices of G and by E(G) the set of edges of G. For
S C V(G), we denote by G — S the subgraph of G obtained from G by deleting
the vertices in .S together with the edges incident to vertices in .S. Similarly, for
A C E(G), we denote by G — A the subgraph of G obtained from G by deleting
the edges of A. For S,T C V(G), we denote by [S, T the set of edges joining S
and T. The degree of a vertex v in G, written dg(v) (or d(v) if G is clear from
the context), is the number of edges in E(G) incident to the vertex v. The
minimum and mazimum degree of a graph G are denoted by 6(G) and A(G),
respectively. A graph is even (or eulerian) if every vertex has even degree.

A subgraph H of G is a spanning subgraph of G it V(H) = V(G). An
[a, b]-factor of G is a spanning subgraph H such that a < dg(v) < b for all
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v € V(G). A subgraph H of G is an even [a, b]-factor of G if H is an [a, b]-factor
of G and dy (v) is even for all v € V(H). If a = b, then we call it an a-factor. A
graph G is k-edge-connected if for A C E(G) with |A| < k, G — A is connected.
The edge-connectivity of G, denoted '(G), is the maximum k& such that G is
k-edge-connected. A graph G is k-vertex-connected if |V(G)| > k + 1 and for
S C V(G) with |S] < k, G — S is connected. The vertez-connectivity of G,
denoted k(G), is the maximum & such that G is k-vertex-connected.

Veblen [19] showed that a graph has a cycle decomposition if and only if
it is an even graph. An Euler’s Theorem says that a connected graph has an
Euler cycle if and only if it is an even graph. Those results says that even
graphs are very interesting objects that have lots of useful properties. Thus
many researchers investigated sufficient conditions for a graph to have an even
[a, b]-factor [7-9,14,16].

Kouider and Vestaargard [8,9] explored minimum degree conditions for a
graph to have an even [a, b]-factor.

Theorem 1.1 ([8,9]). Let a and b be even integers such that 2 < a < b, and
let G be an n-vertex 2-edge-connected graph.

(i) Ifa >4, n> max{%7w}, and 0(G) > 4%, then G has an
even [a, b]-factor.

(ii) Ifa >4, n > % and 6(G) = 2% + 5, then G has an even [a, b]-
factor.

(i) Ifa>4,n> 0 2(GQ) > (a+min{y/a, L)), and §(G) = 22, then
G has an even |a, b]-factor.

(iv) If a = 2,n > 3, and §(G) > max{3, %}, then G has an even [2,b]-
factor.

Note that for a = b, the lower bounds for n in (i), (ii), and (iii) of Theorem 1.1
are greater than 4a—>5. In the papers [2,5], the conditions n > 4a—5, §(G) > &
and G being just connected are enough to guarantee the existence of an even
[a, b]-factor. The lower bound for 6(G) in (ii) of Theorem 1.1 is greater than
. For a = 2, the condition 6(G) > 4 guarantees that G has an even
[a, b]-factor. Thus it may be possible to improve the conditions on n, §(G), and
k'(G) in (i), (ii), and (iii) of Theorem 1.1.

The conditions in (iv) of Theorem 1.1 are sharp as shown in Remark 1
of [14]. In 2005, Matsuda [14] improved the result (iv) of Theorem 1.1 by
considering 02(G) > %:{7 instead of §(G) > ;45 for a = 2, where 02(G) =
min,,¢p (@) (d(u) + d(v)) and proposed a conjecture for the existence of an
even [a, b]-factor in a graph as follows:

Conjecture 1.2 ([14]). Let 2 < a < b be even integers. If G is a graph with
n vertices such that () &'(G) > 2, (ii) n > 2a+ b+ ’12%53‘1 —2, (iii)) 6(G) > a,

and (iv) o2(G) > %, then G contains an even [a, b]-factor.
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However, Conjecture 1.2 is not true even when a = 2. Remark 3 in [14] says
that if n = b + 2, then Conjecture 1.2 does not hold. Theorem 8 in [14] says
that if we replace n > b+ 2 by n > b+ 3, then G contains an even [2, b]-factor.
A result of Iida and Nishimura [4] implies that Conjecture 1.2 is true when
a=b.

For a > 4, all other conditions in the conjecture are sharp, except x'(G) > 2
as shown in the examples in Section 6 of [14]. In Section 2 of this paper, we
provide counterexamples to Conjecture 1.2, which are (a — 1)-edge-connected.
Note that Tsuchiya and Yashima [16] also provided some counterexamples,
which are 3-edge-connected. Furthermore, we show that there are (a — 1)-
vertex-connected graphs satisfying all conditions in Conjecture 1.2, which do
not contain an even [a, b]-factor. Thus to guarantee the existence of an even
[a, b]-factor in a graph, we may need high vertex-(or edge-)connectivity. By
reinforcing the condition o2(G) > % to 6(G) > 4%, we give sharp sufficient
conditions for a graph to have an even [a, b]-factor in Theorem 1.3. Example 2.3
of this paper and examples in Section 6 of [14] show that the conditions in
Theorem 1.3 are sharp.

Theorem 1.3 (Main Theorem). Let 4 < a < b be even integers. If G is a
graph with n vertices such that (1) kK(G) > a, (ii) n > 2a+ b+ "2_73“ -2, and

(iif) 6(G) > 245, then G contains an even [a, b]-factor.

Katerinis [5], and Egawa and Enomoto [2] independently showed that The-
orem 1.3 is true when a = b. In this paper, we extend their results by proving
for all 4 < a < b including the case a = b. In the papers [2,5], to have an
[a, a]-factor (or a-factor), one of the sufficient conditions is just “connected”
instead of k(G) > a. However, if there is an enough gap between a and b, then
to have an even [a, b]-factor, a graph must be highly connected (See Section 2).

Note that Conditions (ii) and (iii) in Theorem 1.3 imply that §(G) > a + 1.
If §(G) < a, then Condition (iii) says ;%% < a. Thus we have n < a + b, which
contradicts Condition (ii).

In Section 3, we prove Theorem 1.3 by using Corollary 1.5 of Lovasz’s (g, f)-
factor theory.

Theorem 1.4 (Lovasz’s parity (g, f)-factor theory [10]). Let G be a graph and
let g, f be two integer valued functions defined on V(G) such that 0 < g(v) <
f(v) < dg(v) and g(v) = f(v) (mod 2) for all v € V(G). Then G has a
(9, f)-factor F such that dp(v) = f(v) (mod 2) for all v € V(G) if and only if

> (da(v) = g()+ > f(u) = [[S,T]| — (S, T) > 0
veT u€esS

for all disjoint subsets S and T of V(G), where q(S,T') is the number of com-
ponents Q of G — (SUT) such that

I[Q,T]| + Z f(v) =1 (mod 2).
veV(Q)



34 E. CHO, J. HYUN, S. O, AND J. PARK

Corollary 1.5. Let a and b be even integers with 2 < a < b. A graph G has
an even [a, b]-factor if

9(S,T) = b|S| +a|T| = Y da-s(v) <0
veT

for all disjoint choices S, T C V(G), where q(S,T) is the number of components
Q of G—(SUT) such that |[Q,T]| is odd.

By applying Theorem 1.4 when g(x) = a and f(x) = b, we obtain Corol-
lary 1.5.

We point out that Tutte [18] proved that the Lovasz’s (g, f)-factor theory [10]
can be demonstrated by using Tutte’s f-factor theory [17].

The Parity Lemma is also used in the proof of our main result.

Lemma 1.6 (Parity Lemma). Let a and b be positive integers with the same
parity. Then q(S,T) — b|S| + a|T| = > ,crda—s(v) has the same parity as a
and b for any disjoint sets S, T C V(G).

2. Sharp examples

In this section, by providing Example 2.1 and Example 2.3, we show why
high edge-(or vertex-)connectivity in Theorem 1.3 requires. Note that Mat-
suda [14] showed in the last section that Conditions (ii) and (iii) in Theorem 1.3
are sharp.

Example 2.1 shows that if a graph satisfying Conditions (ii), (iii), and (iv) in
Conjecture 1.2 is not a-edge-connected, then we cannot guarantee the existence
of an even [a,b]-factor in the graph. Thus the graph in Example 2.1 is a
counterexample to Conjecture 1.2, which has edge-connectivity equal to a — 1.

Example 2.1. Let ¢ and b be even integers such that 12 < 3a < b, and

let ¢ be an integer such that ¢t > (a+b)22;3a_4b (= 2a+2b74 + angga > a). For
i € {1,2}, let H; be a copy of the complete graph on ¢ vertices, and let V(H;) =
{zi1,...,zit}. Let Hs be a copy of the complete graph on 2 vertices and let
V(Hs) = {y,z}. Suppose that H is the graph obtained from Hy, Ho, and Hs

by adding edges between y and x11, ... s T1(2-1), £2%, - -+ L2(a—1); and between

z and To1,...,T2(2 1), T1¢,- -+ T1(a—1) (see Figure 1).

Proposition 2.2. The graph in Example 2.1 has edge-connectivity equal to
a — 1 and satisfies all conditions in Conjecture 1.2. Furthermore, it does not
contain an even [a,b]-factor.

Proof. Since there are § — 1 edges between y and H; and 5 edges between
y and Ho, and H; and Hs are both complete graphs, there are exactly a — 1
edge-disjoint y — z paths including the yz edge. Also, since there are exactly
a — 1 edges between H; to Hs, we have k'(H) =a — 1.
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FiGURE 1. The graph H in Example 2.1

H,

The order of H is

b)?2 —3a — 4b 2
(a+)b3a t9—2+b4 b3a

Since every vertex in V(H;) U V(Hs) has degree at least a and dy(y) =
dg(z) = a, we have §(H) = a.

Since oo(H) =a+ (t—1) and ¢t = W, we have

[V (H)| (V)| _ 2a|V(H)| _ 2a|V(H)|
of)=at =T =2 s T 2 Ty
Thus H satisfies all conditions in Conjecture 1.2.

Now, we prove that H does not contain an even [a, b]-factor. Assume to the
contrary that H has an even [a, b]-factor F'. Since dy(y) = a, all edges incident
to y must be in F. Since Hy N F is also a graph, Y cv (g, np) danr(v) must
be even by the degree-sum formula. Note that the a — 1 edges incident to both
Hi and Hs in F' are not in H; N F. Thus we have

Z di,nr(v) = Z dr(v) — (a —1).

veEV(H1NF) veV(H1NF)

|V(H)| =2t+2> — 2.

However, the degree sum is odd since a — 1 is odd and every vertex in F' has
even degree. Thus we have the desired result. ([

Example 2.3 shows that if a graph satisfying Conditions (ii), (iii), and (iv)
in Conjecture 1.2 is not a-vertex-connected, then we cannot guarantee the ex-
istence of even [a, b]-factor in the graph. Thus the graph in Example 2.3 is also
a counterexample to Conjecture 1.2, which is (a — 1)-vertex-connected. Thus
the condition x(G) > a in Theorem 1.3 is sharp. Note that in Example 2.1, we

a?—3a+ay/(a—3)(a+1)

3 .

require b > 3a while in Example 2.3, we require b >
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Example 2.3. Let a and b be even integers at least 4 with

2 _ _
bza 3a+a 2((1 3)((1—1—1).

Let Lo be the trivial graph on a — 1 vertices, and let V(Lo) = {y1,. ., ¥(a—1)}-
For 1 < i < a, let L; be a copy of the complete graph on a + 2 vertices and
let V(L;) = {wi1,...,Tiat2)}- Let t be a positive integer such that (a + 2 <)
—a2—a+b+“2%3“—1 <t<—a®—2a+b+2+2 Let L, be a copy of the
complete graph on ¢ vertices and let V(La11) = {Z(44+1)1,- - - » T(a+1)t }- Suppose
that L is the graph obtained from Lyg,...,Ls11 by adding edges between y;
and z;; for all i € {1,...,a+ 1} and for all j € {1,...,a — 1} (see Figure 2).

Proposition 2.4. The graph in Example 2.3 has vertez-connectivity equal to
a — 1 and satisfies all conditions in Conjecture 1.2. Furthermore, it does not
contain an even |a,b]-factor.

Proof. For each i € [a + 1], there are a — 1 vertex-disjoint paths between any
vertex in L; and Lo by using the vertex z;1, %2, ..., %jq—1). Also, for i # j,
there are a + 1 vertex-disjoint paths between y; and y; by using the path
YiTriTr;y; for k € [a+ 1]. Thus we have k(L) = (a — 1).

Since t > —a2 —a+b+ “2;,)3“ — 1, the order of L is

a? = 3a

V(L) =a—1+(a+2)a+t>2a+b+ -2

Since for ¢ € {0,1,...,a+ 1}, every vertex in V(L;) has degree at least a+1
and every vertex in Lo has degree a + 1, we have 6(L) = a + 1.

Since 02(L) = 2(a+1) and t < —a® — 2a+ b+ 2 + 2, we have

2a|V(L)|  2a(a®+3a—1+1t) _2a(a+b+2+1

C|L+(b)| - :er ) < 2 atb : =Aa+1)=o2(L).
Thus F satisfies all conditions in Conjecture 1.2.

Now, we prove that L does not contain an even [a, b]-factor. Assume to the
contrary that L has an even [a, b]-factor F. Then we have dr(v) = a for every
vertex in Lo since a is even. Since >, v /(r,~p) dr,nr(v) must be even by the
degree-sum formula, there are at most a — 2 edges coming out from V(L;) in
F. Thus we have

ala—1) < (a—2)(a+1),

which is a contradiction. O

Proposition 2.4 shows that Condition (i) in Theorem 1.3 is tight.

3. Proof of Theorem 1.3

As we observed in Section 1, Conjecture 1.2 holds for a = 2 if we replace
Condition (ii) by n > b+ 3 and does not hold when n = b+ 2 (by Theorem 8
and Remark 3 of [14]). The same thing is true for Theorem 1.3 when a = 2 by
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Y1 Y2 Y(a—1)
P e .

FiGURE 2. The graph L in Example 2.3

the same theorem and example. Therefore, from now, we assume that a > 4.
The examples in Section 2 and the last section in [14] say that we require the
conditions in Theorem 1.3 for a graph to have an even [a, b]-factor.

In this section, we prove Theorem 1.3. Note that for a = b, Theorem 1.3 is
true by Katerinis [5], Egawa and Enomoto [2], and lida and Nishimura [4]. In
this paper, we prove for all 4 < a < b including the case a = b.

To prove Case 3 and Case 4-1 in the proof of Theorem 1.3, we use Proposi-
tion 3.1.

Proposition 3.1. Let a,b,n, and p be integers such that 4 < a < b and p > 0,
and let f(z) =n+(a—1— Z5)x + (x —1—b)*5L.
(i) Ifn22a—|—b—|—a2;b3a—2, then f(b+1) <0 and f(a+b—3) <0.

(i) Ifn>2a+b+ 3% 41, then f(a+b—1) <0 and f(a+b—2) < 0.

Proof. (i) Assume that n > 2a + b+ “2%3“ — 2. Then we have

f(b+1):n+(a—1—aa—fb)(b+1)
:(l—a)(ab_ﬁb—b—l)
<(1-a) [f_b(2a+b+a2 bga—2)—b—1}
B bla —3) +a(a—4)
(1—a)[ a+b } 0

and

f(a+b—3):n—&-(a—l—aain)(a—kb—?))
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38
ala+b—3)—p
+[(a+b—3)—1—b]7
B R na+b-—3  (a—4)p
=(4da+b—a ab)(aer 2 ) 2
2 +b+ =3 2 g3 (a—4)p
< 2 b _ _
< (4a+b—a® — ab)( P> 5 ) 2
:a(4—a)—|—b(1—a)_(a—4)p<ol
a+b b
(ii) Assume thatn22a—|—b+a2;b3a+l. Then we have
an
f(a+b—1)—n+(a—1—m)(a+b—l)
H(”b’l)*l’b}w
B e n_a+b—1  (a—2)p
=(2a+b—-a ab)(a—i—b 2 ) 2
20 +b+ 30 41 g4 b—1 (a—2)p
< 2 b _ _
< (2a+b—a® — ab)( P> 5 ) 5
(a(2 —a) +b(1 —a))(—2a+2b) (a—2)p
- b < 0.

- b(a + b)

Since f(z) is a quadratic function which has a positive leading coefficient and
f(b+1) < 0 by (i), we have f(z) < 0 for all z € [b+ 1,a + b — 1] so that
(I

fla+b—-2)<0.

Now, we are ready to prove Theorem 1.3.
Proof of Theorem 1.3. Assume to the contrary that G has no even [a, b]-factor.
Then there exist disjoint subsets S and T in V(G) such that

0<q(S,T) = blS| +a|T| - > da-s(v)
veT

by Corollary 1.5. Let p = —b|S| + a|T| so that

0<q(S,T)+p— Y das).
veT

Note that p > 0 since ¢(S,T) — >, crda—s(v) <0
We consider four cases depending on |T].
Case4 | Casel |
I

|

Case 2 Case 3 |
n

|
1 1
|S] b a+b—-3 a+b-1

Q|lo—rr0o

T =

In Case 4, we consider two subcases Case 4-1 and Case 4-2 depending on n.
To prove Case 1, Case 3, and Case 4-1, we use the same argument as in [9].
For Case 2 and Case 4-2, we prove by using a new technique.



SHARP CONDITIONS FOR THE EXISTENCE OF AN EVEN FACTOR 39

Case 1: |T| > a+b. Since n > |S| + |T| + ¢(S,T), we have

T| - —|S| = ¢(S,T)) — —4(S, 7)) —
5] = dfl—p _aln—|S|-a(ST)-p 18] < a(n—q(S,7)) —p
b b a+b
a(n—q(S,T)) —p
1) — |15, 7] < Isiir] < XIS =Py
With the inequality (1), we have
0<q(S,T) = b|S| +a|T| = Y dg-s(v)
veT
veT
a(n —q(5,T)) —p
< T -6 T T
< q(5,7) +p - 8(@)r| + IS =
an aln—q(S,T))—p
< —
R &
aq(S,T) +p
= T - ————|T
(S, T) +p ponram Tl
< (1-a)g(S,T) <0,
which is a contradiction.
Case 2: |T| < b. Since 6(G) > a + 1, we have
0<q(S,T) =blS|+a|T| = ) da-s(v)
veT
= q(8,T) = blS| +a|T| = Y de(v) + (S, T]]
veT

q(S,T) = b[S| + a|T| = 6(G)|T| + |S||T]|

q(S,T) = bS]+ [a = (a + 1) + [S]]|T|

q(S,T) = b|S| +b[S| — [T| = q(S,T) = |T],

which implies ¢(S,T) > |T| > 0. Let ! be the minimum of |[Q,T]| over all
components @ of G — (S UT) such that |[Q,T]| is odd. Then we have [ > 1.
Also, we have Y. rda_s(v) > 1q(S,T) <= 1> crda-s(v) > q(S,T).
Thus we have

0<q(S,T) = blS| +a|T| = > da_s(v)

(VAN VAR VAN

veT
1-1
< - Z da—s(v) —b|S| +a|T|
veT
1-1 1-1
= ch(v) - TH&TH —blS| +a|T|
veT
1-1 1-1
< s - LI - bS] + a7
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< (1- l)l(a—|— 1)
a+1-—1 b
® g,

-1
1+ 1SI(——IT| = b) + alT|

IN

If a+1—1 < 0 in the inequality (2), then it is a contradiction. Thus

a+1—1>0, and since |T| < b, we have
0< a+1_l|T\—|S|§§ a+1-1-19|
l l l

This gives a +1 — 1 — |S| > 0 so that |S| <a — 1.
Claim 1: |S| = a —l. Assume to the contrary that |S| < @ —I. Then each
component @ in G—(SUT) with |[Q, T]| = I can have at most a—1 neighbors in
SUT. Since G is a-vertex-connected, there is only one component in G—(SUT),
namely @, and every vertex of T must have a neighbor in Q. Thus |T'| < I. For
v € V(T), we have

d(v) = |[{v}, Sll+ (dair)(v) + {0}, Qll) < (a—I-1)+l=0a-1<a+1 <d(G),

which is a contradiction. Thus |S| = a — [, which implies S # 0 since a is even
and [ is odd. Since |S| > 1 and |T'| < b, we have

0<q(S.T) = b|S| +a|T| = Y do-s(v)

b.

veT
=q(S,T) = b|S| +a|T| = ) da(v) + |5, T]]
veT
< q(S,T) = blS| + a|T| = 6(G)|T| + |S[|T|
< q(S,T) = b|S| +[a = (a+1) + [S]]|T|
(3) < q(S,T) = b|S| + (S| = 1)b = (5, T) —b.
By the inequality (3), we have ¢(S,T) > b+ 1. Let ¢q(S,T) = b + « for some
a>1.

Let ¢ be the number of components @ of G — (SUT) such that |[Q,T]| = I.
Since |S| =a —1, |T| < b, and ¢(S,T) = b+ «, we have

0<q(S,T)=b|S|+a|T| =) da-s(v)

veT
q(5,T) = bla = 1) +a|T| — [lg: + (I + 2)(q(S, T) — q1)]
(=1 —=1)q(S,T) + bl +2q
=(=l-1)(b+a)+bl+2q
—b—(l+1)a+ 2q.

<
<

(4)
By the inequality (4), we have ¢; > W. Note that b and 1+ are even

integers so that w is an integer. Thus ¢; > w + 1.
Let m be the minimum of |V(Q)] over all components @ in G — (SUT') such
that |[@,T]| = I. Let O be a component of G — (S UT) such that |[O,T]| =1
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and |[V(O)| = m. Then there exists a vertex v in V(O) such that |[{v}, T]| <
by the pigeonhole principle. Thus we have

L
m

6(G) < d(v) = do(v) + [[{v}, T]| + |[{v}, S]] < (m—1)+(7;)+(a—l)
< 6(G)+l+1—a—\/(;5(G)+l+1—a)2—4l
e s 6(G)+l+1—a+\/(5(G)+l+1—a)2—4l'

2
Note that we have

(5) 0(G) +1+1—a—/(O(G) +i+1—a)? -4
2

Since m > 1, we have m > 0(G)+l+1-a+ (;5(G)+l+1_a)2_4l

ity (5). Note that we have

(@) +1+1-a+/(6(G)+1+1—a)? -4 > 6(G) — ||
2 >

= (0(G)+1+1—-a)* -4l > (5(G)—2|S| —1+a—1)?
= (G = |S)A—a+1+][S]) >1
(6) — §(G)—a+1>1] < (G) >a.
By the inequality (6), we have m > 6(G) — |S|, implying n > |S| + |T| +

q(8(G) — |8]). Since ¢ > HEH L 5(@) > 9 9p —a(b+ (1 + D)) =

<1l < 6G)>a+1.

by the inequal-

a+b?
(2—a)b—(1+1)a<0,and a|T| —b|S| > 0, we have
a+b b+ (1+Da
056y 2 mz 1)+ i)+ DY e - 1s)
2|T| —alb+ (1+0)allS| _ 2(alT] - bIS))
< =
= &) s = T A+ Dal B—abt (1l SISk

which is a contradiction.
Case 3:b+1 < |T'| < a+b—3. Since ¢(5,T) < n—|S|—|T| and 6(G) > 5,
we have
0<a(S.7) = bS] +alT| = 3 das(v)
veT

an
< (n—[S] = [T]) = b|S| +a|T| -

a+b

T[]+ 1S]|T]

an
=t (o= 1= =T+ (T~ 1= S|
an all| —p
(7) :n+(a71—a+b)\T|+(\T|fl—b) | |b .
Let f(|T]) =n+(a—1— 75)|T|+ (T —l—b)‘”Tilj_p. Since f is a quadratic

function which has a positive leading coefficient, the maximum value of f occurs
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when |T| =b+1 or |T| = a+ b — 3. By Proposition 3.1, both f(b+ 1) and
fla+ b—3) are negative, which contradicts the inequality (7).
Case f: |[T|=a+b—2o0ra+b—1.

Case 4-1: n > 2a+b+ “2%53“ + 1. By using the same argument with Case

3 and Proposition 3.1, we have the desired result.
2 2

Case 4-2: 2a+b+ %534 -2 <n<2a+b+253% +1. Let [T|=a+b—k
and 2a+b+"2*T3’a—j <n< 2a+b+“2%3a—j+1 where k € {1,2} and
j€{0,1,2}. Let n =2a+b+ C33% — j 4 ¢, where 0 < e < 1.

Claim 2: If §(G) > j—k+i+n—|T| =i—|—a+a2%53a+e, then a(3 —k) —eb >
(a—k)§Gj—k)+ila+b—k)+ (a—k—1)q(S,T) + 2, where i is an integer.
By Lemma 1.6, we have

2 <q(S,T) = bS| +a|T| =) da(v) +[S, T

veT
<q(S,T) = blS| +a|T| = 6(G)|T| + |S]|T|
. a® —3a
<q(S,T)-b|S|+a|lT|— (i +a+ 5 +o)|T| + |S||T]
. a®’—3a
<4(8,T)+ (a=k)(n — |T] ~ a(S,T)) = (i + =2+ a+b— k)
a® —3a

= (k+1—a)q(S,T) + (a—k)(a—i—j+k)—b(i + +e)
= (k+1-a)q(S,T)+ (a—k)(k—j) —i(a+b—k) +a(3— k) — eb.

Thus we have the desired result.

Since §(G) > 5, we have

an

— T| >
5(G)—n+| |_a+b
bn
= —— b—k
a+b+(a+ )

—b(2a+b+ 538 i pe)+ (a+b—k)(a+Db)
a+b
(3—k)a+ (j — k)b—eb
a+b

—n+|T]

(8) =
>j—k—1,

which is true for j € {0,1,2} and € € [0, 1). Since §(G)—n+|T| is an integer, we

obtain §(G) —n+|T'| > j — k, which satisfies the condition on §(G) when ¢ =0

in Claim 2. Thus we have a(3—k)—eb > (a—k)(j—k)+(a—k—1)q(S,T)+2.

By the inequality (8), we have

(3—k)a+ (j — k)b —eb

- >
0(G)—n+|T| > P
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- (G-—kb+@a—k)(G—k)+(a—k—1)q(S,T)+2
- a+b
R L5

which is true for k£ € {1,2} and j € {0,1,2} and a > 4. Since 6(G) —n+|T| is
an integer, we obtain 6(G) —n + |T| > j — k + 1, which satisfies the condition
on 6(G) when ¢ =1 in Claim 2. Thus we have

9) aB-k)—eb>(a—k)(j—k)+(a+b—Fk)+ (a—k—1)q(S,T)+2.

When k = j = 1, the inequality (9) becomes a — (e+1)b > (a —2)q(S,T)+1
which is a contradiction since a — (e + 1)b < 0 and (a — 2)¢(S,T) +1 > 0.
Similarly, we have a contradiction when (k, j) € {(1,2),(2,1),(2,2)} by using
the inequality (9). The remaining case is when j = 0. By the inequality (8)
and (9), we improve §(G) as follows:

G) —n+|T|
_B=Ka+(-kb—e
a+b
>(j—k)b+(a—k)(j—k)+(a+b—k)+(a— —1)q(8,T) +
B a+b

which is true for (k,7) € {(1,0),(2,0)} and a > 4. Since §(G) —n + |T] is an
integer, we obtain §(G) —n + |T'| > j — k + 2, which satisfies the condition on
d(G) when i = 2 in Claim 2. Thus we have

(10) a(B3—k)—eb>(a—k)(j—k)+2(a+b—k)+ (a—k—1)q(S,T) + 2.

When k = 1 and j = 0, the inequality (10) becomes a — (e + 2)b > (a —
2)q(S,T)+ 2 which is a contradiction since a — (e +2)b < 0 and (a —2)q(S,T) +
2 > 0. Similarly, we get a contradiction when k = 2 and j = 0, which completes
the proof. O

4. Concluding remarks

In this section, we provide some questions and a conjecture. By finding
counterexamples to Conjecture 1.2, we investigated alternative sharp conditions
replacing the conditions in the conjecture and proved Theorem 1.3 in this paper.

As a consequence, we could replace £'(G) > 2 by k(G) > a and o2(G) > Zi’z

by §(G) > % and proved that these conditions are sharp in a sense that we

cannot replace kK(G) > a by k(G) > a—1 or §(G) > = & by 0(G) > a"—” —1.
However, we do not know whether we can replace the condition k(G) > a by
K'(G) > a or §(G) = 5 by 02(G) > 21’1’), which for both cases, improves
Theorem 1.3. Therefore, it is natural to ask the following questions.
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Question 4.1. If we replace “k(G)” in Theorem 1.3 by “&’(G)”, then do we
have the same conclusion?

Question 4.2. If we replace “6(G) > 4%” in Theorem 1.3 by “o2(G) > i_‘ﬁ”,

then do we have the same conclusion?

‘We might be also interested in some sufficient conditions for a certain eigen-
value in a certain graph G to have an (even or odd) [a, b]-factor, where a graph
is odd if every vertex has odd degree. If G has an [a, b]-factor, then we have
A1 (G) > a since A (G) > §(G), where A\ (G) is the largest eigenvalue of G. Is
there a sufficient condition for A (G) in a graph G to have an [a, b]-factor? If we
restrict our attention to a complete bipartite graph, which looks the simplest
case, then it is easy to get a sufficient condition for the largest eigenvalue.

Observation 4.3. Let G be the complete bipartite graph K, ,—, such that
n > 2x > 0. Then G has an [a, b]-factor if and only if

aln—a) ifn<a+bd,

M (G) >
i )_{ a—‘/ﬁn ifn>a+b.

Proof. G has an [a, b]-factor F if and only if

an
> dn—z—-bx < (n— — >
z>aand (n—x—b)x < (n—2x)(z a)(@x*a—i—b)
since §(F) > a and A(F) <b.
Thus we have the desired result with A\ (G) = v/z(n — ). O

Among n-vertex graphs G without an [a, b]-factor, we guess that the n-vertex
graph H,, , obtained from one vertex and a copy of K,,_; by adding a —1 edges
between them has the largest eigenvalue. Note that there are n — a vertices
with degree n — 2, a — 1 vertices with degree n — 1, and 1 vertex with degree
a — 1 in the graph H,, ,. Thus H, , cannot have an [a, b]-factor.

Conjecture 4.4. Let an be an even integer at least 2, where n > a + 1, and
let p(n,a) be the largest eigenvalue of Hy o. If G is an n-verter graph with
A1 (G) > p(n,a), then G has an [a, b]-factor.

We mention that A\i(H,,,) equals the largest root of 23 — (n — 3)2? — (a +
n—3)r —a®+ (a— 1)n+ 1 = 0 without giving a reason in detail.

Recently, the third author with Kim, Park, and Ree [6] proved a sharp
lower bound for the third largest eigenvalue in an n-vertex r-regular graph G
to guarantee the existence of an odd [1,b]-factor improving the bound in the
paper [13]. Also, the third author [15] found a sharp lower bound for the third
largest eigenvalue in an n-vertex r-regular graph G to have an even or odd
[a, b]-factor. When a = b, his result [15] implies the result of Gu [3] extending
the result of Bollobds, Saito, and Wormald [1] and the ones of Lu [11,12].
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