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DISCONNECTED POSETS AND LD-IRREDUCIBLE POSETS

Gab-Byung Chae, MinSeok Cheong, and Sang-Mok Kim

Abstract. Using ld-irreducible posets, we can easily characterize posets

with respect to linear discrepancy. However, it is difficult to have the list

of all the irreducible posets with respect to a given linear discrepancy.
In this paper, we investigate some properties of disconnected posets and

connected posets with respect to linear discrepancy, respectively and then
we find various relationships between ld-irreducibily and connectedness.

From these results, we suggest some methods to construct ld-irreducible

posets.

1. Introduction

For a poset P = (X,≤P), the linear discrepancy of a poset P, denoted by
ld(P), is defined as

ld(P) = min
f∈F

max
x||y∈X

|f(x)− f(y)|,

where F is the set of all injective order preserving maps from X to integers,
and x||y denotes that x and y are incomparable in P.

An `-ld-irreducible poset is the poset whose linear discrepancy is ` and de-
creases by at least one if any element is removed from it [1], which gives a
characterization method of posets with respect to linear discrepancy. Using
ld-irreducibility, we characterize posets with respect to linear discrepancy. In
2006, this characterization method was firstly suggested by G.-B. Chae, M.
Cheong, and S.-M. Kim [1], in which posets of linear discrepancy 1 was char-
acterized by providing all the 1- and 2-ld-irreducible posets.

To characterize a poset with respect to the linear discrepancy `, we need
all the `- and (` + 1)-ld-irreducible posets [4]. For example, to characterize
posets of linear discrepancy 2, D. M. Howard, et al. [4, 5] give all the 2- and
3-ld-irreducible posets.

However, for the characterization of posets of higher discrepancy `, it is very
difficult to find all the `- and (`+ 1)-ld-irreducible posets, respectively. Hence,

Received March 19, 2020; Revised September 1, 2020; Accepted November 16, 2020.

2010 Mathematics Subject Classification. 06A07.
Key words and phrases. Poset, disconnected poset, ld-irreducible poset, linear

discrepancy.
This paper was supported by Wonkwang University in 2020.

c©2021 Korean Mathematical Society

189



190 G.-B. CHAE, M. CHEONG, AND S.-M. KIM

in [2], for reducing this difficulty, simple posets are also used with ld-irreducible
posets for characterization of posets with respect to the linear discrepancy.

In this paper, we investigate properties of disconnected posets and connected
posets with respect to linear discrepancy. Using the properties which we found,
we suggest some methods to construct ld-irreducible posets with providing some
proper examples.

2. Some definitions and properties

Let P = (X,≤P) be a poset, where X has n elements. If there is no possibil-
ity of confusion, we write x ∈ P instead of x ∈ X. For a partial order relation
≤P ⊆ X ×X of P, and (x, y) ∈ ≤P, we write this as x ≤P y for convenience.
If x and y are incomparable, i.e., (x, y) 6∈ ≤P and (y, x) 6∈ ≤P, then we write
it as x‖Py. If there is no confusion, we just write it as x‖y.

The chain of order n, denoted by n = (X,≤n) (simply, n), is a poset such
that |X| = n and x ≤n y or y ≤n x for all x, y ∈ X. And the antichain of order
n, denoted by A(n) = (X,≤A(n)) (simply, A(n)), is a poset such that |X| = n
and x‖y for all x, y ∈ X. The linear discrepancy of a chain is defined as 0, i.e.,
ld(n) = 0. And the linear discrepancy of an antichain A(n) is clearly n− 1.

The disjoint union of posets U = (X,≤U) and V = (Y,≤V) is the poset
U+V = (X ∪Y,≤U ∪ ≤V). If a poset is a disjoint sum of two or more posets,
then the poset is called disconnected. If a poset is not disconnected, we call it
a connected poset.

In [6], Tanenbaum et al. dealt with a disjoint sum of chains which is a special
disconnected poset. The linear discrepancy of the poset is given as follows.

Theorem 1 ([6]). If P is a disjoint union r1 + r2 + · · · + rt of t ≥ 2 chains
with r1 ≥ r2 ≥ · · · ≥ rt, then ld(P) =

⌈
r1
2

⌉
+ r2 + · · ·+ rt − 1.

A disjoint sum of chains is very specific. Cheong [3] determines the lin-
ear discrepancy of a disjoint sum of more general posets other than chains as
follows.

Theorem 2 ([3]). For two posets Q1 and Q2, let P = Q1 + Q2, and let

li = max
{⌈
|Qi|
2

⌉
+ |P| − |Qi| − 1, ld(Qi) + |P| − |Qi|

}
for i = 1, 2. Then

ld(P) = min{l1, l2}.

From Theorem 2, we have the following useful inequality.

Lemma 3. For two posets Q1 and Q2 with |Q1| ≥ |Q2|, let P = Q1 + Q2.
Then

ld(P) ≥
⌈
|Q1|

2

⌉
+ |Q2| − 1.
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Proof. Let li = max
{⌈
|Qi|
2

⌉
+ |P| − |Qi| − 1, ld(Qi) + |P| − |Qi|

}
for i = 1,

2. If ld(P) = l1, then ld(P) ≥
⌈
|Q1|
2

⌉
+ |Q2| − 1. If ld(P) = l2, then ld(P) ≥⌈

|Q2|
2

⌉
+ |Q1| − 1 ≥

⌈
|Q1|
2

⌉
+ |Q2| − 1. Therefore, the lemma holds. �

3. Investigation on posets with respect to irreducibility and
connectedness

In this section, using Theorems 1 and 2, and Lemma 3, we investigate some
relation between ld-irreducibility and connectedness, and we find a way to
construct new irreducible posets from a given irreducible poset.

Lemma 4. Let P be a disconnected poset with |P| = n. Then we have

ld(P) ≥
⌈
n− 1

2

⌉
.

Proof. Since P is disconnected, there are two subposets Q1 and Q2 of P such
that Q1 + Q2 = P so that n = |P| = |Q1| + |Q2|. We may assume that
|Q1| ≥ |Q2|. Then

ld(P) ≥ |Q1|
2

+ |Q2| − 1 =
|Q1|

2
+ (n− |Q1|)− 1 = (n− 1)− |Q1|

2

from Lemma 3. Since |Q1| ≥ |Q2|, we have n
2 ≤ |Q1| ≤ n − 1. Therefore,

ld(P) ≥ n−1
2 . �

For a poset P, let I(x) be a set of incomparable elements to x in P. Then,
I(x) is a subposet of P, and it is clear that |I(x)| ≤ 2 ld(P) for any x ∈ P. For
an ld-irreducible poset P, we have the following useful lemma.

Lemma 5. Let P be an `-ld-irreducible poset. Then, for all x ∈ P, we have
|I(x)| ≤ 2`− 1.

Proof. Since ld(P) = `, we have |I(x)| ≤ 2` for all x ∈ P. If |I(x)| < 2`− 1 for
all x ∈ P, then the result holds.

Assume that there is x ∈ P such that |I(x)| = 2`. If there is no z 6∈ I(x) with
x 6= z, then P = {x}+I(x) and P is not ld-irreducible since ld(P\{y}) = ` for
y ∈ I(x). Hence, there is z ∈ P such that z 6∈ I(x). Then I(x) is a subposet of
P \ {z}.

Note that P is ld-irreducible and ld(P) = `. So, we have ld(P \ {z}) < `.
It is known that the linear discrepancy of a poset is greater than or equal to
1
2 |I(x)| for all x in the poset. Hence, we have

` > ld(P \ {z}) ≥ 1

2
|I(x)| = `.

This is a contradiction. Therefore, |I(x)| ≤ 2l−1 so that the lemma holds. �

For a connected ld-irreducible poset P and x ∈ P, we have another upper
bound of |I(x)| as follows.
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Lemma 6. Let P be a connected l-ld-irreducible poset. Then, we have |I(x)| ≤
2l − 2 for every x ∈ P.

Proof. Suppose that there is x0 ∈ P such that |I(x0)| = 2l − 1. Since P is
connected, there is y ∈ P with y 6= x0 and y 6∈ I(x0). Since P is l-ld-irreducible,
we have ld(P \ {y}) ≤ l − 1. However, we have

l = ld({x0}+ I(x0)) ≤ ld(P \ {y}) ≤ l − 1

since {x0}+ I(x0) is a subposet of P \ {y}. This is a contradiction. Therefore,
we have |I(x)| ≤ 2l − 2 for all x ∈ P. �

4. How to make ld-irreducible posets

If an ld-irreducible poset P is given, we make another ld-irreducible poset,
as follows.

Lemma 7. For a positive integer t, let P be an ld-irreducible poset with |P| =
2t− 1. Then 1 + P is also an ld-irreducible poset.

Proof. Let R = 1 + P. Then we have

ld(R) = max

{
ld(P) + 1,

⌈
2t− 1

2

⌉}
from Theorem 2. Hence, we have ld(R) ≥ ld(P) + 1.

In order to check the irreducibility of R, we consider ld(R \ {x}) for any
x ∈ R. If x ∈ 1 of R, then R \ {x} = P so that we easily obtain ld(R \ {x}) =
ld(P) ≤ ld(R)− 1 < ld(R).

If x ∈ P, then we have

ld(R \ {x}) = max

{
ld(P \ {x}) + 1,

⌈
2t− 2

2

⌉}
≤ max {ld(P), t− 1}(1)

since P is ld-irreducible. Suppose that ld(P) ≥ t− 1. Then, from (1),

ld(R \ {x}) ≤ ld(P) < ld(P) + 1 ≤ ld(R).

Suppose that ld(P) < t− 1. Then we have

ld(R) = max {ld(P) + 1, t} = t.

Since P is ld-irreducible, we have ld(P \ {x}) + 1 ≤ ld(P) < t− 1 so that

ld(R \ {x}) = max {ld(P \ {x}) + 1, t− 1} = t− 1 < ld(R).

Therefore, for all x ∈ R, we have ld(R \ {x}) + 1 ≤ ld(R) so that R is ld-
irreducible. �

For a poset P with even cardinality, Lemma 7 could not hold. In fact,
1+moth(10) is not ld-irreducible in spite of the irreducibility of moth(10) (see
Figure 1). In order that 1 + P is ld-irreducible for |P| = 2t and a positive
integer t, we needs more conditions than those of Lemma 7 as follows.
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Figure 1. moth(10) is 3-ld-irreducible, however, 1+moth(10)
is not ld-irreducible.

Lemma 8. For a positive integer t, let P be an ld-irreducible poset with |P| =
2t, and ld(P) ≥ t. Then 1 + P is also an ld-irreducible poset.

Proof. This follows from the proof of Lemma 7 by noting that ld(1 + P) =
ld(P) + 1 since ld(P) ≥ t. �

For a poset P with ld(P) ≥
⌈
|P|
2

⌉
, we have ld(1 + P) = ld(P) + 1, and

ld(1 + P) ≥
⌈
1+|P|

2

⌉
. From this property, Lemmas 7 and 8, we easily obtain

the following theorem.

Theorem 9. For a positive integer w, and an ld-irreducible poset P with

ld(P) ≥
⌈
|P|
2

⌉
, it is true that A(w) + P is ld-irreducible.

With the following theorem, we can also construct an ld-irreducible poset
from an ordinary poset.

Theorem 10. For a positive integer t with t ≥ 2, let P be a poset with |P| =
2t− 1 and ld(P) ≤ t− 2. Then 1 + P is t-ld-irreducible.

Proof. Since ld(P ) ≤ t− 2, we have

ld(1 + P) = max

{
ld(P ) + 1,

⌈
2t− 1

2

⌉}
= t.

Hence, ld(1 + P) = t > t− 2 = ld(P).
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Let x be an element in P. Then

ld(P \ {x}+ 1) = max

{
ld(P \ {x}) + 1,

⌈
2t− 2

2

⌉}
.

Since ld(P \ {x}) ≤ ld(P) ≤ t− 2, we have ld(P \ {x}+ 1) = t− 1.
Therefore, 1 + P is t-ld-irreducible. �

For a disconnected poset P, we can obtain the following lemma.

Lemma 11. Let P be a disconnected ld-irreducible poset with |P| = n ≥ 2.
Then ld(P) ≥

⌈
n
2

⌉
.

Proof. Since P is disconnected, we have ld(P) ≥ dn−12 e from Lemma 4. If n is

even, then
⌈
n
2

⌉
=
⌈
n−1
2

⌉
. Hence, the result holds. Otherwise, i.e., suppose that

n is odd. Since P is disconnected, it holds that P \ {x} is also disconnected
for some x ∈ P. Then, from Lemma 4, we have ld(P \ {x}) ≥ n−2

2 . Since P is
ld-irreducible, we have ld(P) ≥ ld(P \ {x}) + 1. Hence, we have

ld(P) ≥ ld(P \ {x}) + 1 ≥ n− 2

2
+ 1 =

n

2
.

Therefore, the result holds. �

From a connected ld-irreducible poset P, we can construct an ld-irreducible
poset whose linear discrepancy is higher than that of P. The following theorem
shows that it is possible.

Theorem 12. For a positive integer t, let P be an ld-irreducible and connected
poset with |P| = 2t and ld(P) < t. For x ∈ P, let U = P \ {x}+ {x}. Then U
is t-ld-irreducible.

Proof. For any x ∈ P, let U = P \ {x} + {x}. Then P is an extension of
U. Note that ld(P \ {x}) ≤ ld(P) − 1 < t − 1 since P is ld-irreducible and
ld(P) < t. From Theorem 2, we have

ld(P \ {x}+ {x}) = max

{⌈
2t− 1

2

⌉
, ld(P \ {x}) + 1

}
= t.

Take any z ∈ P. If z = x, then ld(U \ {z}) = ld(P \ {x}) ≤ ld(P)− 1 < t− 1.
Suppose that z 6= x. Then U \ {z} = P \ {x, z}+ {x} so that

ld(U \ {z}) = max

{⌈
2t− 2

2

⌉
, ld(P \ {x, z}) + 1

}
= t− 1

since ld(P \ {x, z}) ≤ ld(P \ {x}) < t− 1. Thus, ld(U) = t, and ld(U \ {z}) ≤
ld(U)− 1 for z ∈ X. Therefore, U is t-ld-irreducible. �

Example 13. Figure 2(a) is called a ladder, which is a 3-ld-irreducible con-
nected poset from [4]. We can produce 4-ld-irreducible posets from the ladder,
as seen in Figure 2. In fact, Figures 2(b), 2(c), and 2(d) are 4-ld-irreducible.
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)a(

)b(

)c(

)d(

Figure 2. Making ld-irreducible posets from a ladder

Table 1. The conditions and methods for constructing an ld-
irreducible poset from a given poset.

Conditions
Method

|P | ld(P) Connectness Irreducibility

2t− 1 - - © 1 + P

2t− 1 < t− 2 - - 1 + P

2t ≥ t - © 1 + P

n ≥ dn2 e - © A(w) + P

2t < t © © P \ {x}+ {x}

• t, n, w ∈ N, and x ∈ P.

5. Conclusion

An ld-irreducible poset plays an important role to determine the linear dis-
crepancy of a poset and to characterize a poset with respect to the given linear
discrepancy. Hence, if we can collect various ld-irreducible posets, then we can
characterize more posets and determine the ld of more posets. However, finding
ld-irreducible posets is very difficult. In this paper, we suggest some methods
to construct an ld-irreducible poset from a given irreducible poset and an or-
dinary poset. We summarize these as Table 1. In addition, we give a property
for the linear discrepancy of a disconnected poset. From these results, we can
suggest lower bounds for more posets.

Contract with disconnected posets, we guess that connected ld-irreducible
posets has the following property.
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Conjecture 14. Let P be a connected and ld-irreduble poset. Then, for x ∈ P,
we have

ld(P) = ld(P \ {x}) + 1.

For example, the linear discrepancies of both moth(10) in Figure 1 and the
ladder in Figure 2 are 3, and we can easily check the fact that the linear dis-
crepancies of posets obtained by removing any one element from moth(10) and
the ladder are always 2. This is a different property from that of disconnected
posets.

However, we expect that our results in this paper could help to prove Con-
jecture 14 is true.
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