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g-NATURAL METRIC AND HARMONICITY ON
THE COTANGENT BUNDLE

ABDERRAHIM ZAGANE AND MOHAMMED ZAGANE

ABSTRACT. In this paper, we introduce the harmonicity of a covector field
on a Riemannian manifold (M, g) to its cotangent bundle T* M equipped
with g-natural metric. Afterward we also construct some examples of
harmonic covector fields.

1. Introduction

The geometry of the cotangent bundle T*M has been studied by many
authors, for example, A. A. Salimov and F. Agca [2,10], K. Yano and S. Ishihara
[11], F. Agca [1], F. Ocak and S. Kazimova [8], A. Gezer and M. Altunbas [5]
(see [12,13]) etc.

We will study harmonicity on cotangent bundle equipped with g-natural
metric [1]. We establish necessary and sufficient conditions under which a
covector field is harmonic with respect to the g-natural metrics. Next we also
construct some examples of harmonic covector fields.

Consider a smooth map ¢ : (M™,g) — (N", h) between two Riemannian
manifolds. Then the second fundamental form of ¢ is defined by

(L1)  (Vd$)(X,Y) = Vidd(Y) — dp(VxY) = Vxdo(Y) — dp(VxY).
Here V, V/, V? are the Riemannian connections on M, N, ¢~'T'N (the pull-
back bundle) respectively, and

(1.2) 7(¢) = tracey,Vdo,

is the tension field of ¢.
The energy functional of ¢ is defined by

(1.3) E(g) = /K e(6)duy,
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136 A. ZAGANE AND M. ZAGANE

such that K is any compact of M, where

(1.4) e(¢) = %tmcegh(dqﬁ, do),

is the energy density of ¢.
A map is called harmonic if it is a critical point of the energy functional E.
For any smooth variation {¢;}+e; of ¢ with ¢ = ¢ and V = %¢t|t:0’ we have

(15) 4 B(60)

I RGORGT

Then ¢ is harmonic if and only if 7(¢) = 0.
One can refer to [3,4,6,9] for background on harmonic maps.

2. Cotangent bundles T*M

Let (M™,g) be an m-dimensional Riemannian manifold, 7* M be its cotan-
gent bundle and 7 : T*"M — M the natural projection. A local chart
(U, xz)z:m on M induces a local chart (7=}(U),2% 2° = Pi)imTom.i=m4i O1
T*M, where p; is the component of covector p in each cotangent space Ty M,
x € U with respect to the natural coframe dx?. Let C°°(M) (resp. C>=(T*M))
be the ring of real-valued C'*° functions on M (resp. T*M) and S%(M) (resp.
ST(T*M)) be the module over C*° (M) (resp. C*°(T*M)) of C* tensor fields
of type (r, s).

Denote by I‘fj the Christoffel symbols of g and by V the Levi-Civita con-
nection of g.

Let X = X 827; and w = w;dz® be a local expressions in U C M of a
vector and covector field X € S3(M) and w € 39(M), respectively. Then the
horizontal and the vertical lifts of X and w are defined, respectively by

. 0 .0
H_ x7 h xi
(2.1) X X p +phF”X ap;’
(2.2) WY = wiaipi

with respect to the natural frame {%, %}, where F?j are components of the
Levi-Civita connection V on M. (See [11] for more details.)

Lemma 2.1 ([11]). Let (M, g) be a Riemannian manifold, V be the Levi-Civita
connection and R be the Riemannian curvature tensor. Then the Lie bracket
of the cotangent bundle T*M of M satisfies the following

(1) [W¥,8v] =0,
(2) [X*7,0V] = (Vx0)Y,
(3) [XH, Y] =[X,Y]# — (pR(X,Y))V
for all vector fields X, Y € I§(M) and w,0 € I (M).



g-NATURAL METRIC AND HARMONICITY ON THE COTANGENT BUNDLE 137

For a Riemannian manifold (M, g), we define the map
£:31(M) — (M)
w = fw

by g(fw,X) = w(X) for all X € I3(M), where the map § is a C°(M)-
isomorphism.

Locally for all w = w;dz’ € SY(M), we have fw = g'w; 52, where (g/) is
the inverse matrix of the matrix (g;;).

For each 2 € M the scalar product g=! = (¢%/) is defined on the cotangent
space T M by g~ (w,0) = g(tw, 10) = g¥w;0;.

If V is the Levi-Civita connection of (M, g), we have

(2.3) Vx(fw) = #(Vxw),

(2.4) Xg Hw,0) =g (Vxw,0) + g~ (w, Vx0)
for all X € S(M) and w, 0 € IY(M).
From now on, we noted fw by @ for all w € 39(M).
3. g-natural metric
3.1. g-natural metric

Definition ([1]). Let (M,g) be a Riemannian manifold. On the cotangent
bundle T* M, we define a g-natural metric noted g by

(3.1) gXT YT =g(X, V) =g(X,Y)om,
(3.2) g(xH,0v) =0,
(3.3) Gw",0Y) = 0(2)g7 (w,0) + ¢(2)g " (w,p)g " (6,p))

for all X,Y € S$(M), w,0 € I9(M), where ¢ and ) are some functions of
argument z = $g~1(p, p) such that ¢ > 0 and ¢ + 22¢) > 0.

Remark 3.1. Since z = %g_l(p,p) >0, ¢ > 0 and ¢ + 221 > 0 then just
propose ¥ > 0.

Theorem 3.2 ([1]). Let (M,g) be a Riemannian manifold and (T*M,§) its
cotangent bundle equipped with the g-natural metric. If V (resp V) denote the
Levi-Civita connection of (M, g) (resp (T*M, g)), we have:

(1) VxuYH = (VxY)H + (pR(X,Y))V,

(2) VyxubY = (Vx0)Y + #(R(f), 0)X)H,

3) vt = 2D (rip @y,

(4) V¥ = G, P8V + (0", PV )w]

_ A[
+ By, 0V)YPV +C g, Pg(06v,PV)PV
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for all X,V € S{(M) and w,0 € SY(M), where PV denotes the canonical
vertical vector field on T*M, R denotes the curvature tensor of (M,g) and

. ¢'(2) g WE+()
20(2)(0(2) + 229(2)) 20(2) (0(2) + 229(2))

V(2 ) (2) = ¢'(2)¥(2) — 2¢%(2)

20(2)(p(2) +22¢4(2))

C =

4. g-natural metric and harmonicity
4.1. Harmonic sections w : (M, g) — (T*M, g)

Now we study the harmonicity of section w : (M,g) — (T*M,g), i.e., cov-
ector field w on M, and we give the necessary and sufficient conditions under
which a covector field is harmonic with respect to the g-natural metrics (for
tangent bundle version, see [7]).

Lemma 4.1 ([7,14]). Let (M, g) be a Riemannian manifold. If w € SY(M) is
a covector field (1-form) on M and (z,p) € T*M such that w, = p, then we
have:

where X € S{(M).

Proof. Let (U,z") be a local chart on M with z € M and (7= Y(U), 2%, p;) the
induced chart on T*M. If X, = X*(z)-%|, and w, = w;(x)dz*|, = p, then

dxl x
aw]‘
D (x)@kx,p)

) a i
dxw(Xm) =X (x)@‘(x,p) +X (:U)

0 , o

; 0 8w 0
— wip (@) (2) X ( ) gp @p) + X' (@) 5 Z(x)aipjkﬂc,p)

— X'(x)

i 9 j 9
=X (f)@‘(r,p) +pk‘F§i($)XJ(x)aT%|(x,p)

i\ Ow; 0 ; 0
X )G ) 5w — @ ()X ()5 e
- Ow; .
= X({i,p) + Xl(x)[amz () — wk(m)l"fj (x)X’(x)} (dz’ )(x )
= X{p) + (Vxw)(i ) O

Hence we have the following lemma.

Lemma 4.2. Let (M™, g) be a Riemannian m-dimensional manifold and
(T*M, g) its cotangent bundle equipped with the g-natural metric. If w €
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SY(M), then the energy density associated to w is given by:

(4.1) e(w) = % + %traceg [0(2)g™H(Vw, Vw) +1(2)g~ (Vw,w)?],

where ¢ and 1 are some functions of argument z = %g_l(p,p) such that ¢ >0
and ¢ > 0.

Proof. Let (z,p) € T*M, w € SY(M), w, = p and (E4,...,E,,) a local or-
thonormal frame on M. Then:

e(w)y = stracegg(dw, dw) (g p)

N~ N~

D G(dw(Ey), dw(Ei) o p)-
i=1

Using Lemma 4.1, we obtain:

3

g(EzH—i_(vaw)VszH—"_(szw)v)
1

DN | =

e(w) =

-
Il

Il
DN =

(GBS B +3(Vew), (Vew)"))]

=1

I
DN | =

[9(Ei, E;) + 0(2)97  (VE,w, VE,w) + ¢(2)g (VEw,w)?)]

1

+ %tmceg [0(2)g7 (Vw, Vw) +1(2)g™ ! (Vw, w)?].

7

SE

O

A direct consequence of usual calculations using Lemma 4.2 gives the fol-
lowing result.

Theorem 4.3. Let (M™,g) be a Riemannian m-dimensional manifold and
(T*M,g) its cotangent bundle equipped with the g-natural metric. If w €

SY(M), then the tension field associated to w is given by:

(4.2) T(w) = [traceg [o(2)R(@, %) * H " + [traceg [T(w)ﬂ V,

and T(w) is a bilinear map defined by
T(w) = V2w —243((Vw)V,w")Vw + Bg((Vw)", (Vw)¥ )w
+Cg((Vw)V,w")w,
where A, B and C are as in Theorem 3.2.

Proof. Let (x,p) € T*M, w € SY(M), w, = p and {E;},_1; be a local or-
thonormal frame on M such that (Vg,E;); = 0. Then

T(w)g = tracey(Vdw),
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= (V4. dw(E) — dw(VE,E)}e
=1
= Z{ﬁdw(Ez)dw(El)}(x,p)
i=1

- Z{V(Ef'HVEiW)V)(EZHJr(inw)V)}(w,p)
i=1

= > AVEHE + Vi (Vew) + Vv, wyv (E)"

=1
+V@p,0v (VEw) Y ep)-

Using Theorem 3.2, we obtain

m

(@) = 3 [(VEE)T + (pR(E, E))Y + (Vi Vpw)”

" 90(;) (R(@. Vo) B + 9”(;) (R, Vo))"
[3(Vew)Y, o) (VEw) +3(Vew), W )(Vew)]
g(( @) (Vi,w) "

(V@) o )a((Vrw) 0" )" |

= [traceg [o(2)R(@, %) * H "
+ [traceg [Viw — 24 J(Vw)V, W) Vw

+B3((V0) (V) Yo+ Cal(Ve) ¥ )] -

From that, we have the following result.

Theorem 4.4. Let (M™,g) be a Riemannian m-dimensional manifold and
(T*M,g) its cotangent bundle equipped with the g-natural metric. If w €
SY(M), then w is a harmonic covector field if and only if the following condi-
tions are verified

(4.3) tracegy [R(d},%) x| =0,

and

(44)  traceg[Viw —24§((Vw)",w")Vw + B §((Vw)Y, (Vw)" )w
+C g((Vw)V,wV)Zw] =0,

where A, B and C are as in Theorem 3.2.

Proof. The statement is a direct consequence of Theorem 4.3. (|
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The direct consequence of Theorem 4.4 is the following corollary.

Corollary 4.5. Let (M™,g) be a Riemannian m-dimensional manifold and
(T*M, g) its cotangent bundle equipped with the g-natural metric. Ifw € I§(M)
is a parallel covector field (i.e., Vw = 0), then w is harmonic.

The necessary and sufficient condition under which a covector field is har-
monic with respect to the g-natural metrics is given in the following theorem.

Theorem 4.6. Let (M™, g) be a Riemannian compact m-dimensional manifold
and (T*M, §) its cotangent bundle equipped with the g-natural metric.
Ifw e SY(M), then w is a harmonic covector field if and only if w is parallel.

Proof. If w is parallel from Corollary 4.5, we deduce that w is a harmonic
covector field.
Conversely, let ¢; be a compactly supported variation of w defined by:

RxM — T'M
(t,z) — o(x) =1+ t)w,

From Lemma 4.2 we have:

e(pr) = % + u _;t)2 o(2)trace,g ! (Vw, Vw)
+ %w(z)tracegg_l(Vw,w)Q,

E(p;) = %VOZ(M) + (1 _;t)z /M o(2) trace,g~ (Vw, Vw)duv,
N (1+1¢)*

5 Y(2) tracey,g~ ' (Vw, w)?duy,
1

w is harmonic, then we have:

0
0= 2 E(ei)li=0

ot
O m O 1(1+1t)? .
=5 [51/ (M )} - + a[ 5 /M @(z) tracegg™ (Vw, Vw)duvg -
0
a—[ z)trace,g " (Vw, w) dvg} »

_|_
/<p 2) traceyg™ (Vw, Vw)dvg+2/ Y(2) tracey,g~ (Vw, w)?dv,
M

= traceg [p(2)g~ " (Vw, Vw) + 2¢(2)g~ ! (Vw, w)?] dv,,
M

since ¢(z) > 0 and ¥(z) > 0 then
p(2)g7H (Vw, Vw) + 20 (2)g~ (Vw,w)* = 0,

which gives
“(Vw, Vw) = ¢ 1 (Vw,w)? =0,
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hence Vw = 0. O
As an application to the above, we give the following two examples.

Example 4.7. Let S! (Riemannian compact manifold) be equipped with the
metric:
gst = e®dx’.

The Christoffel symbols of the Levi-cita connection are given by:

1 dg11 | Og11 Ogn 1
o= L1 _ ——
1 29 ( 81‘1 + 6%‘1 6%‘1 ) 2

The 1-form w = f(z)dz, f € C*°(S') is harmonic if and only if w is parallel,
1
Vw=0 & f(z)— if(x) =0

& fl@)= kexp(g)  keR
f)i
27 dx’
Example 4.8. Let R? be equipped with the Riemannian metric in cylindrical
coordinates defined by:

& w=kexp( ke R.

grs = dr? + r2df + dt*.

The non-null Christoffel symbols of the Riemannian connection are:
1
F%z = Fgl = F%2 =T

then we have,

1 1

Vodr=0,Vadl=—-df, Vodt=0, Vodr=rdd, Vodi=——dr,
or or r or o0 o0 r

Vodt=0,Vadr=0, Vaoadld=0, Vadt=0,
30 ot ot ot

the covector field w = cos Odr — r sin 8df + dt is harmonic because w is parallel,
indeed,

Vagw:cosHVagdr—sianH—rsinOng9+Vagdt:0,
V%w = —sin0dr+cos9V%dr—rcos9d0—rsinHV%d0+V%dt:0,
V%UJ:COS@V%dT*TSin@V%d9+V%dt:0,

i.e., Vw = 0, then w is harmonic.

Remark 4.9. In general , using Corollary 4.5 and Theorem 4.6, we can construct
many examples for harmonic covector fields.

Now we study a special case on the flat Riemannian manifold which is the
real Euclidean space (R™, gq).
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Theorem 4.10. Let (R™,gg) be the real Euclidean space and (T*R™, go) its
cotangent bundle equipped with the go-natural metric. If w = (wi,...,wy) €
SYR™), then w is a harmonic covector field if and only if the following condi-
tions are verified

9 2 g+ 2 [ 2400+ 20 ko %
i=1
+B(e(e) + Yo x§i>w+a<>+hwafﬁﬁﬁﬁmﬂcm

for all k =1,m, where A, B and C are as in Theorem 3.2.

Proof. Let {32}
have:
T(w) = 0 equivalent the following conditions (4.3) and (4.4) are verified.
Since (R™, go) is flat i.e., R = 0, then the equation (4.3) is trivial.

+—17, be a canonical frame on R™. Using Theorem 4.4, we

(4.4) & tracey[Vw — 24 §((Vw)V,w")Vw + B §((Vw)", (Vw)" )w
+C§((Vw)V,w")’w] =0

& Z{vwv o w—2Ag((V o w)v WV o w

Ers Erg
=1

+ Bg(

—~

Vo.w),(Vo.w) )+ Ca((V ow) w" )} =0
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for all £k =1, m. O

Example 4.11. If R” is endowed with the canonical metric and T*R™ its

cotangent bundle equipped with the g-natural metric such as ¢(z) =1, ¢¥(z) =

5. From Theorem 4.10, we deduce that, w = (h(z1),0,...,0) € SYR™) is a

harmonic covector field if and only if the function A is a solution of differential

equation

(h')
h

a,beR,a<0and b > 0.

(4.6) ' —3

:07

1
Vazr; + 0’
4.2. Harmonicity of the map o : (M, g) — (T*N, h)

ie, h(z;) ==

Now we study the harmonicity of the map o : (M,g) — (T*N, iL) and we
give the necessary and sufficient conditions under which this map is harmonic
with respect to the g-natural metrics.

Lemma 4.12. Let (M™,g), (N™,h) be two Riemannian manifolds and ¢ :
(M™, g) = (N™ h) a smooth map. If o is a map that covers ¢, (¢ = 7y 0 0)
defined by

c:M — T*N
z — ((x),q)
where q € T(;‘(I)N and my : T*N — N is the canonical projection, then
(4.7) do(X) = (dp(X))" + (Vi0)Y
for all X € S{(M).

Proof. Let x € M, X € S{(M), w € T(T*N) such that Weh(z) = q € T(’;(I)N.
Using Lemma 4.1, we obtain:

de(Xw) = dw(w © (b)(Xw)
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= dy(a)w(dzp( X))
=(d ( ))(¢(x) o T Vagxyw )(qb(x) Q)
= (dp(X )) b)) T (VXU)(¢'(Z) Q) O

A direct consequence of usual calculations using Lemma 4.12 gives the fol-
lowing theorem.

Theorem 4.13. Let (M™,g), (N",h) be two Riemannian manifolds, (T*N, h)
the cotangent bundle of N equipped with the g-natural metric and ¢ : (M™, g) —
(N™, h) a smooth map. The tension field of the map

o:(M,g) — (T*N,h)
z — (¢(x),9)
such that q € T b(w )N is given by

(48) 7o) = [1(6) + trace () RN (5, Voo)do(+)| !
+ [traceg (V)% — 24 h(V?0)V,6")V?Pa
+ Bh((V?0)V, (V) )o + Ch((V?s)Y, UV)ZO'H ,

where A, B,C are as in Theorem 3.2 and RN denote the curvature tensor of
(N, h).

Proof. Let x € M and {E;},_1-, be a local orthonormal frame on M such that
(Y, Ei)a = 0 and o(x) = (6(2),q),q € T, N, we have

T(0)y = tracey(Vdo),

= Z{VE dG‘ o(x),q)
= Z{Vda(E o(Ei) (a).q)

:Z{V womyy (AOEN) + Vg ) n (V)"

+Vigs o [@ENT + VG 10 (V50 Yoo

From Theorem 3.2, we obtain:

m

() = 3 |[(Viendo(E))™ + (0R(dS(E), dd(E))Y + (Vi) V0"

i=1

+ 29 (1Y (6, v, )0 B + £ (R (6, V5, )0 5
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+B
+C

3 [(V4,d6(E)" + (V5 9%,0)" + o(2) (BY (5. V', 0)do(B) "
—240((Vi,0)Y,0V) (Ve o) +Bh(V0), (Vo) )o"

+ CB((V%iU)V,JV)zav}

= [7(¢>) + trace,p(2) RN (5, %)d¢(*)] !

+ {traceg [(V¢)20 —2Ah((V?0)V, 0"V
£ BI(V90)Y . (V90) )o + CR(V90)" .0V V0] .

From Theorem 4.13 we obtain:

Theorem 4.14. Let (M™,g), (N, h) be two Riemannian manifolds, (T*N, h)
the cotangent bundle of N equipped with the g-natural metric and ¢ : (M™, g)
— (N™, h) a smooth map. The map

c:(M,g9) — (T*N,B)
z — (é(2),q)

such that q € T;(x)N is harmonic if and only if the following conditions are
verified

7(#) = — trace,p(=)RN (5, V90)do(x),
and
0 = tracey[(V?)?0 — 24 (Vo) , 6" )VPa
+Bh((V?a)",(V?0)V)o + Ch((V?a)", V)],

where A, B,C are as in Theorem 3.2 and RN denote the curvature tensor of
(N, h).
Acknowledgment. We thank the reviewers for their insightful comments and
suggestions that helped us improve the paper.
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