Commun. Korean Math. Soc. 36 (2021), No. 1, pp. 135-147

https://doi.org/10.4134/CKMS.c190423 pISSN: 1225-1763 / eISSN: 2234-3024

g-NATURAL METRIC AND HARMONICITY ON THE COTANGENT BUNDLE

ABDERRAHIM ZAGANE AND MOHAMMED ZAGANE

ABSTRACT. In this paper, we introduce the harmonicity of a covector field on a Riemannian manifold (M,g) to its cotangent bundle T^*M equipped with g-natural metric. Afterward we also construct some examples of harmonic covector fields.

1. Introduction

The geometry of the cotangent bundle T^*M has been studied by many authors, for example, A. A. Salimov and F. Agca [2,10], K. Yano and S. Ishihara [11], F. Agca [1], F. Ocak and S. Kazimova [8], A. Gezer and M. Altunbas [5] (see [12,13]) etc.

We will study harmonicity on cotangent bundle equipped with g-natural metric [1]. We establish necessary and sufficient conditions under which a covector field is harmonic with respect to the g-natural metrics. Next we also construct some examples of harmonic covector fields.

Consider a smooth map $\phi:(M^m,g)\to (N^n,h)$ between two Riemannian manifolds. Then the second fundamental form of ϕ is defined by

$$(1.1) \qquad (\nabla d\phi)(X,Y) = \nabla_X^{\phi} d\phi(Y) - d\phi(\nabla_X Y) = \nabla_X' d\phi(Y) - d\phi(\nabla_X Y).$$

Here ∇ , ∇' , ∇^{ϕ} are the Riemannian connections on M, N, $\phi^{-1}TN$ (the pullback bundle) respectively, and

(1.2)
$$\tau(\phi) = trace_q \nabla d\phi,$$

is the tension field of ϕ .

The energy functional of ϕ is defined by

(1.3)
$$E(\phi) = \int_{K} e(\phi) dv_{g},$$

Received December 11, 2019; Revised October 13, 2020; Accepted November 3, 2020. 2010 Mathematics Subject Classification. 53A45, 53C20, 58E20.

 $Key\ words\ and\ phrases.$ Horizontal lift, vertical lift, cotangent bundles, g-natural metric, harmonic maps.

Partially supported by the Algerian National Research Agency PRFU and GMFAMI Laboratories.

such that K is any compact of M, where

(1.4)
$$e(\phi) = \frac{1}{2} trace_g h(d\phi, d\phi),$$

is the energy density of ϕ .

A map is called harmonic if it is a critical point of the energy functional E. For any smooth variation $\{\phi_t\}_{t\in I}$ of ϕ with $\phi_0 = \phi$ and $V = \frac{d}{dt}\phi_t|_{t=0}$, we have

(1.5)
$$\frac{d}{dt}E(\phi_t)\Big|_{t=0} = -\int_K h(\tau(\phi), V)dv_g.$$

Then ϕ is harmonic if and only if $\tau(\phi) = 0$.

One can refer to [3,4,6,9] for background on harmonic maps.

2. Cotangent bundles T^*M

Let (M^m, g) be an m-dimensional Riemannian manifold, T^*M be its cotangent bundle and $\pi: T^*M \to M$ the natural projection. A local chart $(U,x^i)_{i=\overline{1,m}}$ on M induces a local chart $(\pi^{-1}(U),x^i,x^{\overline{i}}=p_i)_{i=\overline{1,m},\overline{i}=m+i}$ on T^*M , where p_i is the component of covector p in each cotangent space T_x^*M , $x \in U$ with respect to the natural coframe dx^i . Let $C^{\infty}(M)$ (resp. $C^{\infty}(T^*M)$) be the ring of real-valued C^{∞} functions on $M(\text{resp. }T^*M)$ and $\mathfrak{F}_{\mathfrak{s}}^r(M)$ (resp. $\mathfrak{F}_{s}^{r}(T^{*}M)$ be the module over $C^{\infty}(M)$ (resp. $C^{\infty}(T^{*}M)$) of C^{∞} tensor fields of type (r, s).

Denote by Γ_{ij}^k the Christoffel symbols of g and by ∇ the Levi-Civita con-

Let $X = X^i \frac{\partial}{\partial x^i}$ and $\omega = \omega_i dx^i$ be a local expressions in $U \subset M$ of a vector and covector field $X \in \mathfrak{F}_0^1(M)$ and $\omega \in \mathfrak{F}_1^0(M)$, respectively. Then the horizontal and the vertical lifts of X and ω are defined, respectively by

(2.1)
$$X^{H} = X^{i} \frac{\partial}{\partial x^{i}} + p_{h} \Gamma^{h}_{ij} X^{j} \frac{\partial}{\partial p_{i}},$$

(2.2)
$$\omega^V = \omega_i \frac{\partial}{\partial p_i}$$

with respect to the natural frame $\{\frac{\partial}{\partial x^i}, \frac{\partial}{\partial p_i}\}$, where Γ^h_{ij} are components of the Levi-Civita connection ∇ on M. (See [11] for more details.)

Lemma 2.1 ([11]). Let (M,g) be a Riemannian manifold, ∇ be the Levi-Civita connection and R be the Riemannian curvature tensor. Then the Lie bracket of the cotangent bundle T*M of M satisfies the following

- $\begin{aligned} &(1) \ \ [\omega^V, \theta^V] = 0, \\ &(2) \ \ [X^H, \theta^V] = (\nabla_X \theta)^V, \\ &(3) \ \ [X^H, Y^H] = [X, Y]^H (pR(X, Y))^V \end{aligned}$

for all vector fields $X, Y \in \mathfrak{F}_0^1(M)$ and $\omega, \theta \in \mathfrak{F}_1^0(M)$.

For a Riemannian manifold (M, g), we define the map

$$\begin{array}{ccc} \sharp: \Im^0_1(M) & \longrightarrow & \Im^1_0(M) \\ \omega & \mapsto & \sharp \omega \end{array}$$

by $g(\sharp \omega, X) = \omega(X)$ for all $X \in \mathfrak{F}_0^1(M)$, where the map \sharp is a $C^{\infty}(M)$ isomorphism.

Locally for all $\omega = \omega_i dx^i \in \mathfrak{F}_1^0(M)$, we have $\sharp \omega = g^{ij} \omega_i \frac{\partial}{\partial x^j}$, where (g^{ij}) is the inverse matrix of the matrix (g_{ij}) .

For each $x \in M$ the scalar product $g^{-1} = (g^{ij})$ is defined on the cotangent space T_x^*M by $g^{-1}(\omega, \theta) = g(\sharp \omega, \sharp \theta) = g^{ij}\omega_i\theta_j$.

If ∇ is the Levi-Civita connection of (M, g), we have

(2.3)
$$\nabla_X(\sharp\omega) = \sharp(\nabla_X\omega),$$

(2.4)
$$Xg^{-1}(\omega,\theta) = g^{-1}(\nabla_X \omega, \theta) + g^{-1}(\omega, \nabla_X \theta)$$

for all $X \in \mathfrak{J}_0^1(M)$ and $\omega, \theta \in \mathfrak{J}_1^0(M)$.

From now on, we noted $\sharp \omega$ by $\tilde{\omega}$ for all $\omega \in \mathfrak{I}_1^0(M)$.

3. *q*-natural metric

3.1. g-natural metric

Definition ([1]). Let (M,g) be a Riemannian manifold. On the cotangent bundle T^*M , we define a q-natural metric noted \tilde{q} by

(3.1)
$$\tilde{g}(X^H, Y^H) = g(X, Y)^V = g(X, Y) \circ \pi,$$

$$\tilde{q}(X^H, \theta^V) = 0,$$

(3.3)
$$\tilde{g}(\omega^{V}, \theta^{V}) = \varphi(z)g^{-1}(\omega, \theta) + \psi(z)g^{-1}(\omega, p)g^{-1}(\theta, p)$$

for all $X,Y\in \Im_0^1(M),\ \omega,\theta\in \Im_1^0(M)$, where φ and ψ are some functions of argument $z=\frac{1}{2}g^{-1}(p,p)$ such that $\varphi>0$ and $\varphi+2z\psi>0$.

Remark 3.1. Since $z = \frac{1}{2}g^{-1}(p,p) > 0$, $\varphi > 0$ and $\varphi + 2z\psi > 0$ then just propose $\psi > 0$.

Theorem 3.2 ([1]). Let (M,g) be a Riemannian manifold and (T^*M, \tilde{g}) its cotangent bundle equipped with the q-natural metric. If ∇ (resp $\widetilde{\nabla}$) denote the Levi-Civita connection of (M,g) (resp (T^*M,\tilde{g})), we have:

$$(1) \ \widetilde{\nabla}_{X^H} Y^H = (\nabla_X Y)^H + (pR(X,Y))^V,$$

(2)
$$\widetilde{\nabla}_{X^H} \theta^V = (\nabla_X \theta)^V + \frac{\varphi(z)}{2} (R(\widetilde{p}, \widetilde{\theta})X)^H,$$

(3)
$$\widetilde{\nabla}_{\omega^V} Y^H = \frac{\varphi(z)}{2} (R(\widetilde{p}, \widetilde{\omega})Y)^H,$$

$$(3) \ \widetilde{\nabla}_{\omega^{V}}Y^{H} = \frac{\varphi(z)}{2} (R(\widetilde{p}, \widetilde{\omega})Y)^{H},$$

$$(4) \ \widetilde{\nabla}_{\omega^{V}}\theta^{V} = -A \left[\widetilde{g}(\omega^{V}, \mathcal{P}^{V})\theta^{V} + \widetilde{g}(\theta^{V}, \mathcal{P}^{V})\omega^{V}\right] + B\widetilde{g}(\omega^{V}, \theta^{V})\mathcal{P}^{V} + C\,\widetilde{g}(\omega^{V}, \mathcal{P}^{V})\widetilde{g}(\theta^{V}, \mathcal{P}^{V})\mathcal{P}^{V}$$

for all $X,Y \in \mathfrak{F}_0^1(M)$ and $\omega,\theta \in \mathfrak{F}_1^0(M)$, where \mathcal{P}^V denotes the canonical vertical vector field on T^*M , R denotes the curvature tensor of (M,g) and

$$\begin{split} A &= \frac{\varphi'(z)}{2\varphi(z)(\varphi(z)+2z\psi(z))}, \ B = \frac{2\psi(z)+\varphi'(z)}{2\varphi(z)(\varphi(z)+2z\psi(z))}, \\ C &= \frac{\psi'(z)\varphi(z)-\varphi'(z)\psi(z)-2\psi^2(z)}{2\varphi(z)(\varphi(z)+2z\psi(z))}. \end{split}$$

4. g-natural metric and harmonicity

4.1. Harmonic sections $\omega:(M,g)\to (T^*M,\tilde{g})$

Now we study the harmonicity of section $\omega:(M,g)\to (T^*M,\tilde{g})$, i.e., covector field ω on M, and we give the necessary and sufficient conditions under which a covector field is harmonic with respect to the g-natural metrics (for tangent bundle version, see [7]).

Lemma 4.1 ([7,14]). Let (M,g) be a Riemannian manifold. If $\omega \in \mathbb{S}^0_1(M)$ is a covector field (1-form) on M and $(x,p) \in T^*M$ such that $\omega_x = p$, then we have:

$$d_x \omega(X_x) = X_{(x,p)}^H + (\nabla_X \omega)_{(x,p)}^V,$$

where $X \in \mathfrak{J}_0^1(M)$.

Proof. Let (U, x^i) be a local chart on M with $x \in M$ and $(\pi^{-1}(U), x^i, p_i)$ the induced chart on T^*M . If $X_x = X^i(x) \frac{\partial}{\partial x^i}|_x$ and $\omega_x = \omega_i(x) dx^i|_x = p$, then

$$\begin{split} d_{x}\omega(X_{x}) &= X^{i}(x)\frac{\partial}{\partial x^{i}}|_{(x,p)} + X^{i}(x)\frac{\partial\omega_{j}}{\partial x^{i}}(x)\frac{\partial}{\partial p_{j}}|_{(x,p)} \\ &= X^{i}(x)\frac{\partial}{\partial x^{i}}|_{(x,p)} + \omega_{k}(x)\Gamma_{ji}^{k}(x)X^{j}(x)\frac{\partial}{\partial p_{i}}|_{(x,p)} \\ &- \omega_{k}(x)\Gamma_{ji}^{k}(x)X^{j}(x)\frac{\partial}{\partial p_{i}}|_{(x,p)} + X^{i}(x)\frac{\partial\omega_{j}}{\partial x^{i}}(x)\frac{\partial}{\partial p_{j}}|_{(x,p)} \\ &= X^{i}(x)\frac{\partial}{\partial x^{i}}|_{(x,p)} + p_{k}\Gamma_{ji}^{k}(x)X^{j}(x)\frac{\partial}{\partial p_{i}}|_{(x,p)} \\ &+ X^{i}(x)\frac{\partial\omega_{j}}{\partial x^{i}}(x)\frac{\partial}{\partial p_{j}}|_{(x,p)} - \omega_{k}(x)\Gamma_{ij}^{k}(x)X^{i}(x)\frac{\partial}{\partial p_{j}}|_{(x,p)} \\ &= X_{(x,p)}^{H} + X^{i}(x)\left[\frac{\partial\omega_{j}}{\partial x^{i}}(x) - \omega_{k}(x)\Gamma_{ij}^{k}(x)X^{i}(x)\right](dx^{i})_{(x,p)}^{V} \\ &= X_{(x,p)}^{H} + (\nabla_{X}\omega)_{(x,p)}^{V}. \end{split}$$

Hence we have the following lemma.

Lemma 4.2. Let (M^m,g) be a Riemannian m-dimensional manifold and (T^*M,\tilde{g}) its cotangent bundle equipped with the g-natural metric. If $\omega \in$

 $\Im_1^0(M)$, then the energy density associated to ω is given by:

(4.1)
$$e(\omega) = \frac{m}{2} + \frac{1}{2} trace_g \left[\varphi(z) g^{-1} (\nabla \omega, \nabla \omega) + \psi(z) g^{-1} (\nabla \omega, \omega)^2 \right],$$

where φ and ψ are some functions of argument $z = \frac{1}{2}g^{-1}(p,p)$ such that $\varphi > 0$ and $\psi > 0$.

Proof. Let $(x,p) \in T^*M$, $\omega \in \mathfrak{F}^0_1(M)$, $\omega_x = p$ and (E_1,\ldots,E_m) a local orthonormal frame on M. Then:

$$e(\omega)_{x} = \frac{1}{2} trace_{g} \tilde{g}(d\omega, d\omega)_{(x,p)}$$
$$= \frac{1}{2} \sum_{i=1}^{m} \tilde{g}(d\omega(E_{i}), d\omega(E_{i}))_{(x,p)}.$$

Using Lemma 4.1, we obtain:

$$e(\omega) = \frac{1}{2} \sum_{i=1}^{m} \tilde{g}(E_i^H + (\nabla_{E_i}\omega)^V, E_i^H + (\nabla_{E_i}\omega)^V)$$

$$= \frac{1}{2} \sum_{i=1}^{m} \left[(\tilde{g}(E_i^H, E_i^H) + \tilde{g}((\nabla_{E_i}\omega)^V, (\nabla_{E_i}\omega)^V)) \right]$$

$$= \frac{1}{2} \sum_{i=1}^{m} \left[g(E_i, E_i) + \varphi(z)g^{-1}(\nabla_{E_i}\omega, \nabla_{E_i}\omega) + \psi(z)g^{-1}(\nabla_{E_i}\omega, \omega)^2 \right) \right]$$

$$= \frac{m}{2} + \frac{1}{2} trace_g \left[\varphi(z)g^{-1}(\nabla\omega, \nabla\omega) + \psi(z)g^{-1}(\nabla\omega, \omega)^2 \right].$$

A direct consequence of usual calculations using Lemma 4.2 gives the following result.

Theorem 4.3. Let (M^m, g) be a Riemannian m-dimensional manifold and (T^*M, \tilde{g}) its cotangent bundle equipped with the g-natural metric. If $\omega \in \mathfrak{F}_0^0(M)$, then the tension field associated to ω is given by:

and $T(\omega)$ is a bilinear map defined by

$$T(\omega) = \nabla^2 \omega - 2A \, \tilde{g}((\nabla \omega)^V, \omega^V) \nabla \omega + B \, \tilde{g}((\nabla \omega)^V, (\nabla \omega)^V) \omega + C \, \tilde{g}((\nabla \omega)^V, \omega^V)^2 \omega,$$

where A, B and C are as in Theorem 3.2.

Proof. Let $(x,p) \in T^*M$, $\omega \in \mathfrak{F}_1^0(M)$, $\omega_x = p$ and $\{E_i\}_{i=\overline{1,m}}$ be a local orthonormal frame on M such that $(\nabla_{E_i}E_i)_x = 0$. Then

$$\tau(\omega)_x = trace_q(\nabla d\omega)_x$$

$$= \sum_{i=1}^{m} \{ \nabla_{E_i}^{\omega} d\omega(E_i) - d\omega(\nabla_{E_i} E_i) \}_x$$

$$= \sum_{i=1}^{m} \{ \widetilde{\nabla}_{d\omega(E_i)} d\omega(E_i) \}_{(x,p)}$$

$$= \sum_{i=1}^{m} \{ \widetilde{\nabla}_{(E_i^H + (\nabla_{E_i} \omega)^V)} (E_i^H + (\nabla_{E_i} \omega)^V) \}_{(x,p)}$$

$$= \sum_{i=1}^{m} \{ \widetilde{\nabla}_{E_i^H} E_i^H + \widetilde{\nabla}_{E_i^H} (\nabla_{E_i} \omega)^V + \widetilde{\nabla}_{(\nabla_{E_i} \omega)^V} (E_i)^H + \widetilde{\nabla}_{(\nabla_{E_i} \omega)^V} (\nabla_{E_i} \omega)^V \}_{(x,p)}.$$

Using Theorem 3.2, we obtain

$$\tau(\omega) = \sum_{i=1}^{m} \left[(\nabla_{E_{i}} E_{i})^{H} + (pR(E_{i}, E_{i}))^{V} + (\nabla_{E_{i}} \nabla_{E_{i}} \omega)^{V} \right.$$

$$+ \frac{\varphi(z)}{2} (R(\tilde{\omega}, \widetilde{\nabla_{E_{i}} \omega}) E_{i})^{H} + \frac{\varphi(z)}{2} (R(\tilde{\omega}, \widetilde{\nabla_{E_{i}} \omega}) E_{i})^{H}$$

$$- A \left[\tilde{g}((\nabla_{E_{i}} \omega)^{V}, \omega^{V}) (\nabla_{E_{i}} \omega)^{V} + \tilde{g}((\nabla_{E_{i}} \omega)^{V}, \omega^{V}) (\nabla_{E_{i}} \omega)^{V} \right]$$

$$+ B \, \tilde{g}((\nabla_{E_{i}} \omega)^{V}, (\nabla_{E_{i}} \omega)^{V}) \omega^{V}$$

$$+ C \, \tilde{g}((\nabla_{E_{i}} \omega)^{V}, \omega^{V}) \tilde{g}((\nabla_{E_{i}} \omega)^{V}, \omega^{V}) \omega^{V} \right]$$

$$= \left[trace_{g} \left[\varphi(z) R(\tilde{\omega}, \widetilde{\nabla \omega}) * \right] \right]^{H}$$

$$+ \left[trace_{g} \left[\nabla^{2} \omega - 2A \, \tilde{g}((\nabla \omega)^{V}, \omega^{V}) \nabla \omega \right.$$

$$+ B \, \tilde{g}((\nabla \omega)^{V}, (\nabla \omega)^{V}) \omega + C \, \tilde{g}((\nabla \omega)^{V}, \omega^{V})^{2} \omega \right] \right]^{V}.$$

From that, we have the following result.

Theorem 4.4. Let (M^m,g) be a Riemannian m-dimensional manifold and (T^*M,\tilde{g}) its cotangent bundle equipped with the g-natural metric. If $\omega \in \mathfrak{I}_1^0(M)$, then ω is a harmonic covector field if and only if the following conditions are verified

(4.3)
$$trace_g[R(\widetilde{\omega}, \widetilde{\nabla \omega}) *] = 0,$$

and

$$(4.4) \quad trace_g \left[\nabla^2 \omega - 2A \, \tilde{g}((\nabla \omega)^V, \omega^V) \nabla \omega + B \, \tilde{g}((\nabla \omega)^V, (\nabla \omega)^V) \omega \right. \\ \left. + C \, \tilde{g}((\nabla \omega)^V, \omega^V)^2 \omega \right] = 0,$$

where A, B and C are as in Theorem 3.2.

Proof. The statement is a direct consequence of Theorem 4.3. \Box

The direct consequence of Theorem 4.4 is the following corollary.

Corollary 4.5. Let (M^m, g) be a Riemannian m-dimensional manifold and (T^*M, \tilde{g}) its cotangent bundle equipped with the g-natural metric. If $\omega \in \mathfrak{F}_0^1(M)$ is a parallel covector field (i.e., $\nabla \omega = 0$), then ω is harmonic.

The necessary and sufficient condition under which a covector field is harmonic with respect to the g-natural metrics is given in the following theorem.

Theorem 4.6. Let (M^m, g) be a Riemannian compact m-dimensional manifold and (T^*M, \tilde{g}) its cotangent bundle equipped with the g-natural metric.

If $\omega \in \mathcal{F}_1^0(M)$, then ω is a harmonic covector field if and only if ω is parallel.

Proof. If ω is parallel from Corollary 4.5, we deduce that ω is a harmonic covector field.

Conversely, let φ_t be a compactly supported variation of ω defined by:

$$\begin{array}{ccc} \mathbb{R} \times M & \longrightarrow & T_x^* M \\ (t, x) & \longmapsto & \varphi_t(x) = (1+t)\omega_x \end{array}$$

From Lemma 4.2 we have:

$$e(\varphi_t) = \frac{m}{2} + \frac{(1+t)^2}{2} \varphi(z) trace_g g^{-1}(\nabla \omega, \nabla \omega)$$

$$+ \frac{(1+t)^4}{4} \psi(z) trace_g g^{-1}(\nabla \omega, \omega)^2,$$

$$E(\varphi_t) = \frac{m}{2} Vol(M) + \frac{(1+t)^2}{2} \int_M \varphi(z) trace_g g^{-1}(\nabla \omega, \nabla \omega) dv_g$$

$$+ \frac{(1+t)^4}{2} \int_M \psi(z) trace_g g^{-1}(\nabla \omega, \omega)^2 dv_g,$$

 ω is harmonic, then we have:

$$\begin{split} 0 &= \frac{\partial}{\partial t} E(\varphi_t)|_{t=0} \\ &= \frac{\partial}{\partial t} \Big[\frac{m}{2} Vol(M) \Big]_{t=0} + \frac{\partial}{\partial t} \Big[\frac{(1+t)^2}{2} \int_M \varphi(z) \operatorname{trace}_g g^{-1}(\nabla \omega, \nabla \omega) dv_g \Big]_{t=0} \\ &+ \frac{\partial}{\partial t} \Big[\frac{(1+t)^4}{2} \int_M \psi(z) \operatorname{trace}_g g^{-1}(\nabla \omega, \omega)^2 dv_g \Big]_{t=0} \\ &= \int_M \varphi(z) \operatorname{trace}_g g^{-1}(\nabla \omega, \nabla \omega) dv_g + 2 \int_M \psi(z) \operatorname{trace}_g g^{-1}(\nabla \omega, \omega)^2 dv_g \\ &= \int_M \operatorname{trace}_g \big[\varphi(z) g^{-1}(\nabla \omega, \nabla \omega) + 2 \psi(z) g^{-1}(\nabla \omega, \omega)^2 \big] dv_g, \end{split}$$

since $\varphi(z) > 0$ and $\psi(z) > 0$ then

$$\varphi(z)q^{-1}(\nabla\omega,\nabla\omega) + 2\psi(z)q^{-1}(\nabla\omega,\omega)^2 = 0,$$

which gives

$$g^{-1}(\nabla \omega, \nabla \omega) = g^{-1}(\nabla \omega, \omega)^2 = 0,$$

hence
$$\nabla \omega = 0$$
.

As an application to the above, we give the following two examples.

Example 4.7. Let \mathbb{S}^1 (Riemannian compact manifold) be equipped with the metric:

$$g_{\mathbb{S}^1} = e^x dx^2$$
.

The Christoffel symbols of the Levi-cita connection are given by:

$$\Gamma^1_{11} = \frac{1}{2}g^{11}(\frac{\partial g_{11}}{\partial x_1} + \frac{\partial g_{11}}{\partial x_1} - \frac{\partial g_{11}}{\partial x_1}) = \frac{1}{2}.$$

The 1-form $\omega = f(x)dx$, $f \in \mathcal{C}^{\infty}(\mathbb{S}^1)$ is harmonic if and only if ω is parallel,

$$\nabla \omega = 0 \quad \Leftrightarrow \quad f'(x) - \frac{1}{2}f(x) = 0$$

$$\Leftrightarrow \quad f(x) = k \exp(\frac{x}{2}) , \ k \in \mathbb{R}$$

$$\Leftrightarrow \quad \omega = k \exp(\frac{x}{2}) \frac{d}{dx} , \ k \in \mathbb{R}.$$

Example 4.8. Let \mathbb{R}^3 be equipped with the Riemannian metric in cylindrical coordinates defined by:

$$g_{\mathbb{R}^3} = dr^2 + r^2 d\theta + dt^2.$$

The non-null Christoffel symbols of the Riemannian connection are:

$$\Gamma_{12}^2 = \Gamma_{21}^2 = \frac{1}{r}, \ \Gamma_{22}^1 = -r,$$

then we have,

$$\begin{split} \nabla_{\frac{\partial}{\partial r}} dr &= 0, \ \nabla_{\frac{\partial}{\partial r}} d\theta = -\frac{1}{r} d\theta, \ \nabla_{\frac{\partial}{\partial r}} dt = 0, \ \nabla_{\frac{\partial}{\partial \theta}} dr = r d\theta, \ \nabla_{\frac{\partial}{\partial \theta}} d\theta = -\frac{1}{r} dr, \\ \nabla_{\frac{\partial}{\partial \theta}} dt &= 0, \ \nabla_{\frac{\partial}{\partial t}} dr = 0, \ \nabla_{\frac{\partial}{\partial t}} d\theta = 0, \ \nabla_{\frac{\partial}{\partial t}} dt = 0, \end{split}$$

the covector field $\omega = \cos \theta dr - r \sin \theta d\theta + dt$ is harmonic because ω is parallel, indeed,

$$\begin{split} &\nabla_{\frac{\partial}{\partial r}}\omega = \cos\theta\nabla_{\frac{\partial}{\partial r}}dr - \sin\theta d\theta - r\sin\theta\nabla_{\frac{\partial}{\partial r}}d\theta + \nabla_{\frac{\partial}{\partial r}}dt = 0,\\ &\nabla_{\frac{\partial}{\partial \theta}}\omega = -\sin\theta dr + \cos\theta\nabla_{\frac{\partial}{\partial \theta}}dr - r\cos\theta d\theta - r\sin\theta\nabla_{\frac{\partial}{\partial \theta}}d\theta + \nabla_{\frac{\partial}{\partial \theta}}d\theta + \nabla_{\frac$$

i.e., $\nabla \omega = 0$, then ω is harmonic.

 $Remark\ 4.9.$ In general , using Corollary 4.5 and Theorem 4.6, we can construct many examples for harmonic covector fields.

Now we study a special case on the flat Riemannian manifold which is the real Euclidean space (\mathbb{R}^m, g_0) .

Theorem 4.10. Let (\mathbb{R}^m, g_0) be the real Euclidean space and $(T^*\mathbb{R}^m, \tilde{g}_0)$ its cotangent bundle equipped with the g_0 -natural metric. If $\omega = (\omega_1, \ldots, \omega_m) \in \mathfrak{F}_0^0(\mathbb{R}^m)$, then ω is a harmonic covector field if and only if the following conditions are verified

$$(4.5) \quad \sum_{i=1}^{m} \left\{ \frac{\partial^{2} \omega_{k}}{\partial (x^{i})^{2}} + \sum_{j=1}^{m} \left[-2A(\varphi(z) + 2z\psi(z)) \frac{\partial \omega_{j}}{\partial x^{i}} \omega_{j} \frac{\partial \omega_{k}}{\partial x^{i}} + B(\varphi(z) + \psi(z)\omega_{j}^{2}) (\frac{\partial \omega_{j}}{\partial x^{i}})^{2} \omega_{k} + C(\varphi(z) + 2z\psi(z))^{2} (\frac{\partial \omega_{j}}{\partial x^{i}})^{2} \omega_{j}^{2} \omega_{k} \right] \right\} = 0$$

for all $k = \overline{1, m}$, where A, B and C are as in Theorem 3.2.

Proof. Let $\{\frac{\partial}{\partial x^i}\}_{i=\overline{1,m}}$ be a canonical frame on \mathbb{R}^m . Using Theorem 4.4, we have:

 $\tau(\omega) = 0$ equivalent the following conditions (4.3) and (4.4) are verified. Since (\mathbb{R}^m, g_0) is flat i.e., R = 0, then the equation (4.3) is trivial.

$$\begin{split} (4.4) &\Leftrightarrow trace_g \left[\nabla^2 \omega - 2A \, \tilde{g}((\nabla \omega)^V, \omega^V) \nabla \omega + B \, \tilde{g}((\nabla \omega)^V, (\nabla \omega)^V) \omega \right. \\ &\quad + C \, \tilde{g}((\nabla \omega)^V, \omega^V)^2 \omega \right] = 0 \\ &\Leftrightarrow \sum_{i=1}^m \left\{ \nabla_{\frac{\partial}{\partial x^i}} \nabla_{\frac{\partial}{\partial x^i}} \omega - 2A \, \tilde{g}((\nabla_{\frac{\partial}{\partial x^i}} \omega)^V, \omega^V) \nabla_{\frac{\partial}{\partial x^i}} \omega \right. \\ &\quad + B \, \tilde{g}((\nabla_{\frac{\partial}{\partial x^i}} \omega)^V, (\nabla_{\frac{\partial}{\partial x^i}} \omega)^V) \omega + C \, \tilde{g}((\nabla_{\frac{\partial}{\partial x^i}} \omega)^V, \omega^V)^2 \omega \right\} = 0 \\ &\Leftrightarrow \sum_{i=1}^m \left\{ \sum_{k=1}^m \frac{\partial^2 \omega_k}{\partial (x^i)^2} dx^k - 2A \left(\varphi(z) + 2z\psi(z) \right) \sum_{k=1}^m \left(\frac{\partial \omega_k}{\partial x^i} \omega_k \right) \sum_{j=1}^m \left(\frac{\partial \omega_j}{\partial x^i} dx^j \right) \right. \\ &\quad + B \, \sum_{k=1}^m (\varphi(z) + \psi(z) \omega_k^2) \left(\frac{\partial \omega_k}{\partial x^i} \right)^2 \sum_{j=1}^m \omega_j dx^j \\ &\quad + C \left(\varphi(z) + 2z\psi(z) \right)^2 \sum_{k=1}^m \left(\frac{\partial \omega_k}{\partial x^i} \right)^2 \omega_k^2 \sum_{j=1}^m \omega_j dx^j \right\} = 0 \\ &\Leftrightarrow \sum_{i=1}^m \left\{ \sum_{k=1}^m \frac{\partial^2 \omega_k}{\partial (x^i)^2} dx^k - 2A \left(\varphi(z) + 2z\psi(z) \right) \sum_{j=1}^m \left(\frac{\partial \omega_j}{\partial x^i} \omega_j \right) \sum_{k=1}^m \left(\frac{\partial \omega_k}{\partial x^i} dx^k \right) \right. \\ &\quad + B \, \sum_{j=1}^m (\varphi(z) + \psi(z) \omega_j^2) \left(\frac{\partial \omega_j}{\partial x^i} \right)^2 \sum_{k=1}^m \omega_k dx^k \\ &\quad + C \left(\varphi(z) + 2z\psi(z) \right)^2 \sum_{j=1}^m \left(\frac{\partial \omega_j}{\partial x^i} \right)^2 \omega_j^2 \sum_{k=1}^m \omega_k dx^k \right\} = 0 \\ &\Leftrightarrow \sum_{i=1}^m \left\{ \frac{\partial^2 \omega_k}{\partial (x^i)^2} - 2A \left(\varphi(z) + 2z\psi(z) \right) \sum_{j=1}^m \left(\frac{\partial \omega_j}{\partial x^i} \omega_j \right) \left(\frac{\partial \omega_k}{\partial x^i} \right) \right. \end{split}$$

$$+ B \sum_{j=1}^{m} (\varphi(z) + \psi(z)\omega_{j}^{2}) (\frac{\partial \omega_{j}}{\partial x^{i}})^{2} \omega_{k}$$

$$+ C (\varphi(z) + 2z\psi(z))^{2} \sum_{j=1}^{m} (\frac{\partial \omega_{j}}{\partial x^{i}})^{2} \omega_{j}^{2} \omega_{k} \Big\} = 0$$

$$\Leftrightarrow \sum_{i=1}^{m} \Big\{ \frac{\partial^{2} \omega_{k}}{\partial (x^{i})^{2}} + \sum_{j=1}^{m} \Big[-2A (\varphi(z) + 2z\psi(z)) \frac{\partial \omega_{j}}{\partial x^{i}} \omega_{j} \frac{\partial \omega_{k}}{\partial x^{i}} + B (\varphi(z) + \psi(z)\omega_{j}^{2}) (\frac{\partial \omega_{j}}{\partial x^{i}})^{2} \omega_{k} + C (\varphi(z) + 2z\psi(z))^{2} (\frac{\partial \omega_{j}}{\partial x^{i}})^{2} \omega_{j}^{2} \omega_{k} \Big] \Big\} = 0$$

for all $k = \overline{1, m}$.

Example 4.11. If \mathbb{R}^n is endowed with the canonical metric and $T^*\mathbb{R}^m$ its cotangent bundle equipped with the g-natural metric such as $\varphi(z) = 1$, $\psi(z) = \frac{1}{2z}$. From Theorem 4.10, we deduce that, $\omega = (h(x_1), 0, \dots, 0) \in \mathbb{S}^0_1(\mathbb{R}^m)$ is a harmonic covector field if and only if the function h is a solution of differential equation

(4.6)
$$h'' - 3\frac{(h')^2}{h} = 0,$$
 i.e., $h(x_1) = \pm \frac{1}{\sqrt{ax_1 + b}}, \quad a, b \in \mathbb{R}, \ a \le 0 \text{ and } b > 0.$

4.2. Harmonicity of the map $\sigma:(M,g)\to (T^*N,\tilde{h})$

Now we study the harmonicity of the map $\sigma:(M,g)\to (T^*N,\tilde{h})$ and we give the necessary and sufficient conditions under which this map is harmonic with respect to the g-natural metrics.

Lemma 4.12. Let (M^m,g) , (N^n,h) be two Riemannian manifolds and $\phi: (M^m,g) \to (N^n,h)$ a smooth map. If σ is a map that covers ϕ , $(\phi = \pi_N \circ \sigma)$ defined by

$$\begin{array}{ccc} \sigma: M & \longrightarrow & T^*N \\ x & \longmapsto & (\phi(x), q) \end{array}$$

where $q \in T_{\phi(x)}^*N$ and $\pi_N: T^*N \to N$ is the canonical projection, then

(4.7)
$$d\sigma(X) = (d\phi(X))^H + (\nabla_X^{\phi}\sigma)^V$$

for all $X \in \mathfrak{J}_0^1(M)$.

Proof. Let $x \in M$, $X \in \mathfrak{F}_0^1(M)$, $\omega \in \Gamma(T^*N)$ such that $\omega_{\phi(x)} = q \in T_{\phi(x)}^*N$. Using Lemma 4.1, we obtain:

$$d_x \sigma(X_x) = d_x(\omega \circ \phi)(X_x)$$

$$= d_{\phi(x)}\omega(d_x\phi(X_x))$$

$$= (d\phi(X))_{(\phi(x),q)}^H + (\nabla_{d\phi(X)}\omega)_{(\phi(x),q)}^V$$

$$= (d\phi(X))_{(\phi(x),q)}^H + (\nabla_X^\phi\sigma)_{(\phi(x),q)}^V.$$

A direct consequence of usual calculations using Lemma 4.12 gives the following theorem.

Theorem 4.13. Let (M^m, g) , (N^n, h) be two Riemannian manifolds, (T^*N, \tilde{h}) the cotangent bundle of N equipped with the g-natural metric and $\phi: (M^m, g) \to (N^n, h)$ a smooth map. The tension field of the map

$$\sigma: (M,g) \longrightarrow (T^*N, \tilde{h})$$
$$x \longmapsto (\phi(x), q)$$

such that $q \in T^*_{\phi(x)}N$ is given by

where A, B, C are as in Theorem 3.2 and \mathbb{R}^N denote the curvature tensor of (N, h).

Proof. Let $x \in M$ and $\{E_i\}_{i=\overline{1,m}}$ be a local orthonormal frame on M such that $(\nabla_{E_i}E_i)_x = 0$ and $\sigma(x) = (\phi(x),q), q \in T^*_{\phi(x)}N$, we have

$$\begin{split} \tau(\sigma)_{x} &= trace_{g}(\nabla d\sigma)_{x} \\ &= \sum_{i=1}^{m} \{\nabla^{\sigma}_{E_{i}} d\sigma(E_{i})\}_{(\phi(x),q)} \\ &= \sum_{i=1}^{m} \{\nabla^{T^{*}N}_{d\sigma(E_{i})} d\sigma(E_{i})\}_{(\phi(x),q)} \\ &= \sum_{i=1}^{m} \{\nabla^{T^{*}N}_{(d\phi(E_{i}))^{H}} (d\phi(E_{i}))^{H} + \nabla^{T^{*}N}_{(d\phi(E_{i}))^{H}} (\nabla^{\phi}_{E_{i}} \sigma)^{V} \\ &+ \nabla^{T^{*}N}_{(\nabla^{\phi}_{E_{i}} \sigma)^{V}} (d\phi(E_{i}))^{H} + \nabla^{T^{*}N}_{(\nabla^{\phi}_{E_{i}} \sigma)^{V}} (\nabla^{\phi}_{E_{i}} \sigma)^{V} \}_{(\phi(x),q)}. \end{split}$$

From Theorem 3.2, we obtain:

$$\tau(\sigma) = \sum_{i=1}^{m} \left[(\nabla_{d\phi(E_i)}^{N} d\phi(E_i))^{H} + (\sigma R(d\phi(E_i), d\phi(E_i)))^{V} + (\nabla_{d\phi(E_i)}^{N} \nabla_{E_i}^{\phi} \sigma)^{V} + \frac{\varphi(z)}{2} (R^{N}(\tilde{\sigma}, \widetilde{\nabla_{E_i}^{\phi} \sigma}) d\phi(E_i))^{H} + \frac{\varphi(z)}{2} (R^{N}(\tilde{\sigma}, \widetilde{\nabla_{E_i}^{\phi} \sigma}) d\phi(E_i))^{H} \right]$$

$$\begin{split} &-A\left[\tilde{h}((\nabla_{E_{i}}^{\phi}\sigma)^{V},\sigma^{V})(\nabla_{E_{i}}^{\phi}\sigma)^{V}+\tilde{h}((\nabla_{E_{i}}^{\phi}\sigma)^{V},\sigma^{V})(\nabla_{E_{i}}^{\sigma}\sigma)^{V}\right]\\ &+B\left.\tilde{h}((\nabla_{E_{i}}^{\phi}\sigma)^{V},(\nabla_{E_{i}}^{\phi}\sigma)^{V})\sigma^{V}\right.\\ &+C\left.\tilde{h}((\nabla_{E_{i}}^{\phi}\sigma)^{V},\sigma^{V})\tilde{h}((\nabla_{E_{i}}^{\phi}\sigma)^{V},\sigma^{V})\sigma^{V}\right]\\ &=\sum_{i=1}^{m}\left[(\nabla_{E_{i}}^{\phi}d\phi(E_{i}))^{H}+(\nabla_{E_{i}}^{\phi}\nabla_{E_{i}}^{\phi}\sigma)^{V}+\varphi(z)(R^{N}(\tilde{\sigma},\nabla_{E_{i}}^{\phi}\sigma)d\phi(E_{i}))^{H}\right.\\ &-2A\left.\tilde{h}((\nabla_{E_{i}}^{\phi}\sigma)^{V},\sigma^{V})(\nabla_{E_{i}}^{\phi}\sigma)^{V}+B\left.\tilde{h}((\nabla_{E_{i}}^{\phi}\sigma)^{V},(\nabla_{E_{i}}^{\phi}\sigma)^{V})\sigma^{V}\right.\\ &+C\left.\tilde{h}((\nabla_{E_{i}}^{\phi}\sigma)^{V},\sigma^{V})^{2}\sigma^{V}\right]\\ &=\left[\tau(\phi)+trace_{g}\varphi(z)R^{N}(\tilde{\sigma},\widetilde{\nabla^{\phi}\sigma})d\phi(*)\right]^{H}\\ &+\left[trace_{g}\left[(\nabla^{\phi})^{2}\sigma-2A\left.\tilde{h}((\nabla^{\phi}\sigma)^{V},\sigma^{V})\nabla^{\phi}\sigma\right.\right.\\ &+B\left.\tilde{h}((\nabla^{\phi}\sigma)^{V},(\nabla^{\phi}\sigma)^{V})\sigma+C\left.\tilde{h}((\nabla^{\phi}\sigma)^{V},\sigma^{V})^{2}\sigma\right]\right]^{V}. \end{split}$$

From Theorem 4.13 we obtain:

Theorem 4.14. Let (M^m, g) , (N^n, h) be two Riemannian manifolds, (T^*N, \tilde{h}) the cotangent bundle of N equipped with the g-natural metric and $\phi: (M^m, g) \to (N^n, h)$ a smooth map. The map

$$\sigma: (M,g) \longrightarrow (T^*N, \tilde{h})$$
$$x \longmapsto (\phi(x), q)$$

such that $q \in T^*_{\phi(x)}N$ is harmonic if and only if the following conditions are verified

$$\tau(\phi) = -trace_g \varphi(z) R^N(\tilde{\sigma}, \widetilde{\nabla^{\phi}\sigma}) d\phi(*),$$

and

$$0 = trace_g [(\nabla^{\phi})^2 \sigma - 2A \tilde{h}((\nabla^{\phi} \sigma)^V, \sigma^V) \nabla^{\phi} \sigma + B \tilde{h}((\nabla^{\phi} \sigma)^V, (\nabla^{\phi} \sigma)^V) \sigma + C \tilde{h}((\nabla^{\phi} \sigma)^V, \sigma^V)^2 \sigma],$$

where A, B, C are as in Theorem 3.2 and \mathbb{R}^N denote the curvature tensor of (N, h).

Acknowledgment. We thank the reviewers for their insightful comments and suggestions that helped us improve the paper.

References

- F. Ağca, g-natural metrics on the cotangent bundle, Int. Electron. J. Geom. 6 (2013), no. 1, 129–146.
- [2] F. Ağca and A. A. Salimov, Some notes concerning Cheeger-Gromoll metrics, Hacet. J. Math. Stat. 42 (2013), no. 5, 533-549.

- [3] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), no. 1, 1–68. https://doi.org/10.1112/blms/10.1.1
- [4] J. Eells, Jr., and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer.
 J. Math. 86 (1964), 109-160. https://doi.org/10.2307/2373037
- [5] A. Gezer and M. Altunbas, On the rescaled Riemannian metric of Cheeger-Gromoll type on the cotangent bundle, Hacet. J. Math. Stat. 45 (2016), no. 2, 355–365.
- [6] T. Ishihara, Harmonic sections of tangent bundles, J. Math. Tokushima Univ. 13 (1979), 23–27.
- [7] F. Latti, M. Djaa, and A. Zagane, Mus-Sasaki metric and harmonicity, Math. Sci. Appl. E-Notes 6 (2018), no. 1, 29-36. https://doi.org/10.36753/mathenot.421753
- [8] F. Ocak and S. Kazimova, On a new metric in the cotangent bundle, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 38 (2018), no. 1, Mathematics, 128–138.
- [9] V. Oproiu, Harmonic maps between tangent bundles, Rend. Sem. Mat. Univ. Politec. Torino 47 (1989), no. 1, 47–55 (1991).
- [10] A. A. Salimov and F. Agca, Some properties of Sasakian metrics in cotangent bundles, Mediterr. J. Math. 8 (2011), no. 2, 243-255. https://doi.org/10.1007/s00009-010-0080-x
- [11] K. Yano and S. Ishihara, Tangent and Cotangent Bundles: Differential Geometry, Marcel Dekker, Inc., New York, 1973.
- [12] K. Yano and E. M. Patterson, Vertical and complete lifts from a manifold to its cotangent bundle, J. Math. Soc. Japan 19 (1967), 91-113. https://doi.org/10.2969/jmsj/ 01910091
- [13] ______, Horizontal lifts from a manifold to its cotangent bundle, J. Math. Soc. Japan 19 (1967), 185-198. https://doi.org/10.2969/jmsj/01920185
- [14] A. Zagane and M. Djaa, On geodesics of warped Sasaki metric, Math. Sci. Appl. E-Notes 5 (2017), no. 1, 85–92. https://doi.org/10.36753/mathenot.421709

ABDERRAHIM ZAGANE

DEPARTMENT OF MATHEMATICS

University Center of Relizane

48000, Relizane-Algeria

Email address: abderrahim.zagane@cu-relizane.dz, Zaganeabr2018@gmail.com

Mohammed Zagane

DEPARTMENT OF COMPUTER SCIENCES

University Mustapha Stambouli of Mascara

29000, Mascara, Algeria

Email address: mohamed.zaagane@univ-mascara.dz