DOI QR코드

DOI QR Code

Ultrasound-Assisted Micellar Extraction for Paclitaxel Purification from Taxus chinensis

Taxus chinensis 유래 파클리탁셀 정제를 위한 초음파를 이용한 마이셀 추출

  • Park, Ji-Min (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Hyun (Department of Chemical Engineering, Kongju National University)
  • 박지민 (공주대학교 화학공학부) ;
  • 김진현 (공주대학교 화학공학부)
  • Received : 2020.09.10
  • Accepted : 2020.09.21
  • Published : 2021.01.25

Abstract

In this study, an ultrasound-assisted micellar extraction process was developed to efficiently purify the anticancer substance paclitaxel from the plant cell Taxus chinensis. The problem of many extraction steps and long phase separation time in the traditional micellar process could be dramatically improved. The highest paclitaxel yield (~96%, extracted twice) was obtained at 180 W of ultrasonic power and 1.5 h of ultrasonic irradiation time, which was 24.7% higher than that of the traditional method. In addition, the partition coefficient (K) showed a maximum value (24.0) at 180 W of ultrasonic power and 1.5 h of irradiation time. There was no significant difference in the purity of paclitaxel, and the purity of initial paclitaxel (6.81%) increased to 22.0% after purification. Compared to the traditional method, the phase separation time of the back extraction decreased by 40.7-56.2% (ultrasonic power 80 W), 46.3-67.6% (ultrasonic power 180 W), and 51.9-67.6% (ultrasonic power 250 W), respectively. The phase separation time decreased as the ultrasonic power (80-250 W) and irradiation time (0.5-2.5 h) increased.

본 연구에서는 식물세포 Taxus chinensis로부터 항암물질 파클리탁셀을 효율적으로 정제하기 위하여, 초음파 기반 마이셀 추출 공정을 개발하였다. 전통적 마이셀 공정(대조군)에서의 많은 추출 단계 및 긴 상 분리 시간 문제를 획기적으로 개선하였다. 초음파 파워 180 W, 초음파 조사 1.5 시간에서 가장 높은 파클리탁셀 수율(~96%, 2회 추출)을 얻었으며, 이는 대조군의 수율에 비해 24.7% 증가하였다. 또한 분배 계수(K)는 초음파 파워 180 W, 초음파 조사 1.5 시간에서 최대치(24.0)를 보였다. 파클리탁셀 순도에는 큰 차이가 없었으며, 초기 파클리탁셀의 순도(6.81%)가 정제 후 22%까지 증가하였다. 역 추출(back extraction)의 상 분리 시간은 대조군 대비 각각 40.7-56.2%(초음파 파워 80 W), 46.3-67.6%( 초음파 파워 180 W), 51.9-67.6%(초음파 파워 250 W) 감소하였다. 초음파 파워(80-250 W)와 초음파 조사 시간(0.5-2.5 시간)이 증가할수록 상 분리 시간이 감소하였다.

Keywords

References

  1. Kang, H. J. and Kim, J. H., "Removal of Residual Toluene and Methyl Tertiary Butyl Ether from Amorphous Paclitaxel by Simple Rotary Evaporation with Alcohol Pretreatment," Biotechnol. Bioprocess Eng., 25, 86-93(2020). https://doi.org/10.1007/s12257-019-0337-6
  2. Yang, J. W. and Kim, J. H., "Evaluation of Adsorption Characteristics of 2-picoline Onto Sylopute," Korean Chem. Eng. Res., 57, 210-218(2019).
  3. Hsiao, J. R., Leu, S. F. and Huang, B. M., "Apoptotic Mechanism of Paclitaxel Induced Cell Death in Human Head and Neck Tumor Cell Lines," J. Oral Pathol. Med., 38, 188-197(2009). https://doi.org/10.1111/j.1600-0714.2008.00732.x
  4. Rao, K. V., Hanuman, J. B., Alvarez, C., Stoy, M., Juchum, J., Davies, R. M. and Baxley, R., "A New Large-scale Process for Taxol and Related Taxanes from Taxus brevifolia", Pharm. Res., 12, 1003-1010(1995). https://doi.org/10.1023/A:1016206314225
  5. Baloglu, E. and Kingston, D. G., "A New Semisynthesis of Paclitaxel from Baccatin III," J. Nat. Prod., 62, 1068-1071(1999). https://doi.org/10.1021/np990040k
  6. Choi, H. K., Son, S. J., Na, G. H., Hong, S. S., Park, Y. S. and Song, J. Y., "Mass Production of Paclitaxel by Plant Cell Culture," Korean J. Plant Biotechnol., 29, 59-62(2002). https://doi.org/10.5010/JPB.2002.29.1.059
  7. Kang, H. J. and Kim, J. H., "Removal of Residual Chloroform from Amorphous Paclitaxel Pretreated by Alcohol," Korean J. Chem. Eng., 36, 1965-1970(2019). https://doi.org/10.1007/s11814-019-0413-9
  8. Jeon, K. Y. and Kim, J. H., "Optimization of Micellar Extraction for the Pre-purification of Paclitaxel from Taxus chinensis", Biotechnol. Bioprocess Eng., 12, 354-358(2007). https://doi.org/10.1007/BF02931056
  9. Pyo, S. H., Park, H. B., Song, B. K., Han, B. H. and Kim, J. H., "A Large-scale Purification of Paclitaxel from Cell Cultures of Taxus chinensis", Process Biochem., 39, 1985-1991(2004). https://doi.org/10.1016/j.procbio.2003.09.028
  10. Seo, H. W. and Kim, J. H., "Ultrasound-assisted Fractional Pre-Cipitation of Paclitaxel from Taxus chinensis Cell Cultures," Process Biochem., 87, 238-243(2019). https://doi.org/10.1016/j.procbio.2019.09.019
  11. Kim, J. H., "Prepurification of Paclitaxel by Micelle and Precipitation," Process Biochem., 39, 1567-1571(2004). https://doi.org/10.1016/j.procbio.2003.06.001
  12. Zhu, K. X., Sun, X. H. and Zhou, H. M., "Optimization of Ultrasound-assisted Extraction of Defatted Wheat Germ Proteins by Reverse Micelles," J. Cereal Sci., 50, 266-271(2009). https://doi.org/10.1016/j.jcs.2009.06.006
  13. Jeon, K. Y. and Kim, J. H., "Effect of Surfactant on the Micelle Process for the Pre-purification of Paclitaxel," Korean J. Biotechnol. Bioeng., 23, 557-560(2008).
  14. Han, M. G., Jeon, K. Y., Mun, S. and Kim, J. H., "Development of a Micelle-fractional Precipitation Hybrid Process for the Prepurification of Paclitaxel from Plant Cell Cultures," Process Biochem., 45, 1368-1374(2010). https://doi.org/10.1016/j.procbio.2010.05.010
  15. Ha, G. S. and Kim, J. H., "Ultrasound-assisted Liquid-liquid Extraction for Recovery of Paclitaxel from Plant Cell Cultures," Korean Chem. Eng. Res., 54, 229-233(2016). https://doi.org/10.9713/kcer.2016.54.2.229
  16. Tan, Z., Li, Q., Wang, C., Zhou, W., Yang, Y., Wang, H., Yi, Y. and Li, F., "Ultrasonic Assisted Extraction of Paclitaxel from Taxus x media Using Ionic Liquids as Adjuvants: Optimization of the Process by Response Surface Methodology," Molecules, 22, 1483-1493 (2017). https://doi.org/10.3390/molecules22091483
  17. Patil, S. S. and Rathod, V. K., "Synergistic Effect of Ultrasound and Three Phase Partitioning for the Extraction of Curcuminoids from Curcuma longa and Its Bioactivity Profile," Process Biochem., 93, 85-93(2020). https://doi.org/10.1016/j.procbio.2020.02.031
  18. Cao, J., Peng, L. Q., Du, L. J., Zhang, Q. D. and Xu, J. J., "Ultrasound-assisted Ionic Liquid-based Micellar Extraction Combined with Microcrystalline Cellulose as Sorbent in Dispersive Micro-extraction for the Determination of Phenolic Compounds in Propolis," Anal. Chim. Acta, 963, 24-32(2017). https://doi.org/10.1016/j.aca.2017.01.063
  19. Ziyatdinova, G., Ziganshina, E., Cong, P. N. and Budnikov, H., "Ultrasound-assisted Micellar Extraction of Phenolic Antioxidants from Spices and Antioxidant Properties of the Extracts Based on Coulometric Titration Data," Anal. Methods, 8, 7150-7157(2016). https://doi.org/10.1039/C6AY02112C
  20. Kim, J. H., "Comparison of Conventional Solvent Extraction, Microwave-assisted Extraction, and Ultrasound-assisted Extraction Methods for Paclitaxel Recovery from Biomass," Korean Chem. Eng. Res., 58, 273-279(2020).
  21. Guo, Y. X., Han, J., Zhang, D. Y., Wang, L. H. and Zhou, L. L., "An Ammonium Sulfate/ethanol Aqueous Two-phase System Combined with Ultrasonication for the Separation and Purification of Lithospermic Acid B from Salvia miltiorrhiza Bunge," Ultrason. Sonochem., 19, 719-724(2012). https://doi.org/10.1016/j.ultsonch.2011.12.017

Cited by

  1. Development of Drying Process for Removal of Residual Moisture from Biomass Pretreated with Ethanol and Its Kinetic and Thermodynamic Analysis vol.26, pp.5, 2021, https://doi.org/10.1007/s12257-021-0193-z