DOI QR코드

DOI QR Code

PDMS 블레이드 코팅법을 이용한 종이-기반 바이오센서칩 제작

Fabrication of Paper-based Biosensor Chip Using Polydimethylsiloxane Blade Coating Method

  • 정헌호 (전남대학교 공학대학 화공생명공학과) ;
  • 박차미 (전남대학교 공학대학 화공생명공학과)
  • Jeong, Heon-Ho (Department of Chemical and Biomolecular Engineering, Chonnam National University) ;
  • Park, Chami (Department of Chemical and Biomolecular Engineering, Chonnam National University)
  • 투고 : 2020.07.22
  • 심사 : 2020.09.21
  • 발행 : 2021.01.25

초록

본 연구는 적은 비용으로 분석 장치 없이 질병 진단 및 경과를 모니터링할 수 있는 종이-기반 분석 장치(paper-based analytical device, PAD)를 제작하기 위해 polydimethylsiloxane (PDMS) 블레이드 코팅 방법을 제안하였다. PAD 디자인은 레이저 커팅 기술로 쉽게 몰드에 적용할 수 있으며, 제작된 몰드로 블레이드 코팅을 수행하여 완전한 소수성 장벽 형성에 필요한 조건을 확립하였다. 코팅 조건인 잉크의 두께와 종이와의 접촉시간에 따라 PDMS 소수성 장벽의 구조와 친수성 채널의 크기 변화를 분석하여 안정적으로 소수성 장벽을 형성할 수 있는 조건을 최적화하였다. 최적화된 방법을 바탕으로 PAD를 제작하여 특별한 분석기기 없이 단백질, 당, 메탈이온을 검출하여 바이오센서에 응용가능함을 증명하였다.

This paper proposes the polydimethylsiloxane (PDMS) blade coating method for fabrication of paper-based analytical device (PAD) that is able to monitor the disease diagnosis and progress without special analytical equipment. The mold that has PAD design is easily modified by using laser cutting technique. And the fabricated mold is used for hydrophobic barrier formation by blade coating. We have optimized the stable formation of PDMS hydrophobic barrier as blade coating condition, which is established by analyzing the structure of the PDMS hydrophobic barrier and change of hydrophilic channel size as thickness of the ink and contact time with the chromatography paper. Based on optimal condition, we demonstrate that PAD as biosensor can apply to detect protein, glucose, and metal ion without special analysis equipment.

키워드

참고문헌

  1. Martinez, A. W., Phillips, S. T., Whitesides, G. M. and Carrilho, E., "Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices," Anal Chem, 82(1), 3-10(2010). https://doi.org/10.1021/ac9013989
  2. Yamada, K., Henares, T. G., Suzuki, K. and Citterio, D., "Paper-Based Inkjet-Printed Microfluidic Analytical Devices," Angew Chem Int Edit, 54(18), 5294-5310(2015). https://doi.org/10.1002/anie.201411508
  3. Yamada, K., Shibata, H., Suzuki, K. and Citterio, D., "Toward Practical Application of Paper-based Microfluidics for Medical Diagnostics: State-of-the-art and Challenges," Lab on a chip, 17(7), 1206-1249(2017). https://doi.org/10.1039/C6LC01577H
  4. Li, F., Hu, Y. T., Li, Z. M., Liu, J. C., Guo, L. and He, J. B., "Three-dimensional Microfluidic Paper-based Device for Multiplexed Colorimetric Detection of Six Metal Ions Combined with Use of a Smartphone," Anal Bioanal Chem, 411(24), 6497-6508(2019). https://doi.org/10.1007/s00216-019-02032-5
  5. Martinez, A. W., Phillips, S. T., Butte, M. J. and Whitesides, G. M., "Patterned Paper as a Platform for Inexpensive, Low-volume, Portable Bioassays," Angew Chem Int Edit, 46(8), 1318-1320(2007). https://doi.org/10.1002/anie.200603817
  6. Abe, K., Suzuki, K. and Citterio, D., "Inkjet-printed Microfluidic Multianalyte Chemical Sensing Paper," Anal Chem, 80(18), 6928-6934(2008). https://doi.org/10.1021/ac800604v
  7. Fenton, E. M., Mascarenas, M. R., Lopez, G. P. and Sibbett, S. S., "Multiplex Lateral-Flow Test Strips Fabricated by Two-Dimensional Shaping," Acs Appl Mater Inter, 1(1), 124-129(2009). https://doi.org/10.1021/am800043z
  8. Nie, J. F., Liang, Y. Z., Zhang, Y., Le, S. W., Li, D. N. and Zhang, S. B., "One-step Patterning of Hollow Microstructures in Paper by Laser Cutting to Create Microfluidic Analytical Devices," Analyst, 138(2), 671-676(2013). https://doi.org/10.1039/c2an36219h
  9. Evans, E., Gabriel, E. F. M., Coltro, W. K. T. and Garcia, C. D., "Rational Selection of Substrates to Improve Color Intensity and Uniformity on Microfluidic Paper-based Analytical Devices," Analyst, 139(9), 2127-2132(2014). https://doi.org/10.1039/c4an00230j
  10. Lu, Y., Shi, W. W., Jiang, L., Qin, J. H. and Lin, B. C., "Rapid Prototyping of Paper-based Microfluidics with Wax for Low-cost, Portable Bioassay," Electrophoresis, 30(9), 1497-1500(2009). https://doi.org/10.1002/elps.200800563
  11. Carrilho, E., Martinez, A. W. and Whitesides, G. M., "Understanding Wax Printing: A Simple Micropatterning Process for PaperBased Microfluidics," Anal Chem, 81(16), 7091-7095(2009). https://doi.org/10.1021/ac901071p
  12. Olkkonen, J., Lehtinen, K. and Erho, T., "Flexographically Printed Fluidic Structures in Paper," Anal Chem, 82(24), 10246-10250(2010). https://doi.org/10.1021/ac1027066
  13. Dungchai, W., Chailapakul, O. and Henry, C. S., "A Low-cost, Simple, and Rapid Fabrication Method for Paper-based Microfluidics Using Wax Screen-printing," Analyst, 136(1), 77-82(2011) https://doi.org/10.1039/c0an00406e
  14. Kim, D. H., Jeong, S. G. and Lee, C. S., "Angular-based Measurement for Quantitative Assay of Albumin in Three-dimensional Paper-based Analytical Device," Korean Chem Eng Res, 58(2), 286-292(2020).
  15. Chen, B., Kwong, P. and Gupta, M., "Patterned Fluoropolymer Barriers for Containment of Organic Solvents within Paper-Based Microfluidic Devices," Acs Appl Mater Inter, 5(23), 12701-12707 (2013). https://doi.org/10.1021/am404049x
  16. Dornelas, K. L., Dossi, N. and Piccin, E., "A Simple Method for Patterning Poly(dimethylsiloxane) Barriers in Paper Using Contact-printing with Low-cost Rubber Stamps," Anal Chim Acta, 858, 82-90(2015). https://doi.org/10.1016/j.aca.2014.11.025
  17. Wang, J. Y., Monton, M. R. N., Zhang, X., Filipe, C. D. M., Pelton, R. and Brennan, J. D., "Hydrophobic Sol-gel Channel Patterning Strategies for Paper-based Microfluidics," Lab on a chip, 14(4), 691-695(2014). https://doi.org/10.1039/C3LC51313K
  18. McDonald, J. C. and Whitesides, G. M., "Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices," Accounts Chem Res, 35(7), 491-499(2002). https://doi.org/10.1021/ar010110q
  19. Tanaka, H., Yamamoto, S., Nakamura, A., Nakashoji, Y., Okura, N., Nakamoto, N., Tsukagoshi, K. and Hashimoto, M., "Hands-Off Preparation of Monodisperse Emulsion Droplets Using a Poly (dimethylsiloxane) Microfluidic Chip for Droplet Digital PCR," Anal Chem, 87(8), 4134-4143(2015). https://doi.org/10.1021/ac503169h
  20. Baipaywad, P., Kim, Y., Wi, J. S., Paik, T. and Park, H., "Size-controlled Synthesis, Characterization, and Cytotoxicity Study of Monodisperse Poly(dimethylsiloxane) Nanoparticles," J Ind Eng Chem, 53, 177-182(2017). https://doi.org/10.1016/j.jiec.2017.04.023
  21. Jeong, H. H., "Controlled Production of Monodisperse Polycaprolactone Microparticles using Microfluidic Device," Clean Technol, 25(4), 283-288(2019).
  22. Shim, G., Jeong, S. G., Hong, W., Kang, K. K. and Lee, C. S., "Fabrication of Fluorescent Labeled Bi-compartmental Particles via the Micromolding Method," Korean Chem Eng Res, 56(6), 826-831(2018).
  23. Lee, J. N., Park, C. and Whitesides, G. M., "Solvent Compatibility of Poly(dimethylsiloxane)-based Microfluidic Devices," Anal Chem, 75(23), 6544-6554(2003). https://doi.org/10.1021/ac0346712
  24. Lee, J., Kim, M. J. and Lee, H. H., "Surface Modification of Poly(dimethylsiloxane) for Retarding Swelling in Organic Solvents," Langmuir : the ACS journal of surfaces and colloids, 22(5), 2090-2095(2006). https://doi.org/10.1021/la052621h
  25. Riekkola, M. L., "Recent Advances in Nonaqueous Capillary Electrophoresis," Electrophoresis, 23(22-23), 3865-3883(2002). https://doi.org/10.1002/elps.200290007
  26. Bao, D. D., Millare, B., Xia, W., Steyer, B. G., Gerasimenko, A. A., Ferreira, A., Contreras, A. and Vullev, V. I., "Electrochemical Oxidation of Ferrocene: A Strong Dependence on the Concentration of the Supporting Electrolyte for Nonpolar Solvents," J Phys Chem A, 113(7), 1259-1267(2009). https://doi.org/10.1021/jp809105f
  27. Bruzewicz, D. A., Reches, M. and Whitesides, G. M., "Low-cost Printing of Poly(dimethylsiloxane) Barriers to Define Microchannels in Paper," Anal Chem, 80(9), 3387-3392(2008). https://doi.org/10.1021/ac702605a