A NOTE ON SEMI-SLANT LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KENMOTSU MANIFOLD

Ramandeep Kaur, Gauree Shanker, Ankit Yadav, and Akram Ali*

Abstract

In this paper, we study the geometry of semi-slant lightlike submanifolds of an indefinite Kenmotsu manifold. The integrability conditions of distributions $D_{1} \oplus\{V\}, D_{2} \oplus\{V\}$ and RadTM on semi-slant lightlike submanifolds of an indefinite Kenmotsu manifold are defined. Furthermore, we derive necessary and sufficient conditions for the above distributions to have totally geodesic foliations.

1. Introduction

In the theory of submanifolds of semi-Riemannian manifolds, it is interesting to study the geometry of lightlike submanifolds since the intersection of the normal vector bundle, and the tangent bundle is non-trivial. For example, Duggal and Bejancu [1] first studied the geometry of lightlike submanifolds of indefinite Kähler manifolds, and Duggal and Sahin [2] introduced a general notion of lightlike submanifolds of indefinite Sasakian manifolds. In [14], Yano introduced the notion of a f-structure on a differential manifold M, i.e., a tensor field f of type $(1,1)$ and rank $2 n$ satisfying $f^{3}+f=0$ as a generalization of both almost contact (for $s=1$) and almost complex structures (for $s=0$). Nakagawa [10, 11] introduced the notion of globally framed f-manifolds, later developed and studied by Goldberg [4], Goldberg, and Yano [5, 6]. In 1972, Kenmotsu [9] studied a class of contact Riemannian manifolds satisfying some special conditions, which are known as Kenmotsu manifolds. A Kenmotsu manifold equipped with the non-degenerate indefinite metric is called Indefinite Kenmotsu manifold. On the other hand, Shukla and Yadav [13] introduced the geometry of semi-slant submanifolds of indefinite Sasakian manifolds. Recently, Gupta and Sharfuddin [8, 7] studied the geometry of slant lightlike submanifolds, invariant submanifolds, contact CR-lightlike submanifolds, and

[^0]contact SCR-lightlike submanifolds of indefinite Kenmotsu manifolds. In [12], Sachdeva et al. studied totally contact umbilical slant lightlike submanifolds of indefinite Kenmotsu manifolds. It should be noted that the integrability and totally geodesic foliation did not consider in previous literature. Therefore, in the present paper, we will fill up this gape.

The paper is organized as follows: In section 2, it includes basic information on the lightlike geometry as needed in this paper. In section 3, we introduce the concept of semi-slant lightlike submanifolds. We obtain integrability conditions of distributions $D_{1} \oplus\{V\}, D_{2} \oplus\{V\}$ and $R a d T M$. In section 4, we obtain necessary and sufficient conditions for the distributions to have totally geodesic foliation that involves the definition of semi-slant lightlike submanifolds

2. Preliminaries

An odd-dimensional semi-Riemannian manifold \bar{M} is called an indefinite almost contact metric manifold if there is an indefinite almost contact structure (ϕ, V, η, \bar{g}) consisting of a (1,1)-tensor field ϕ, a structure vector field V, a 1form η and \bar{g} is the semi-Riemannian metric on \bar{M} satisfying

$$
\begin{equation*}
\phi^{2} X=-X+\eta(X) V, \eta(V)=1, \eta \circ \phi=0, \phi V=0, \eta(V)=1 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\bar{g}(X, V)=\eta(V), \bar{g}(\phi X, \phi Y)=\bar{g}(X, Y)-\eta(X) \eta(Y) \tag{2}
\end{equation*}
$$

for $X, Y \in T \bar{M}$. An indefinite almost contact metric manifold \bar{M} is called an indefinite Kenmotsu manifold if [9],

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \phi\right) Y=-\bar{g}(\phi X, Y) V+\eta(Y) \phi X, \bar{\nabla}_{X} V=-X+\eta(X) V \tag{3}
\end{equation*}
$$

for $X, Y \in T \bar{M}$, where $\bar{\nabla}$ denotes the Levi-Civita connection on \bar{M}. A submanifold M^{m} immersed in a semi-Riemannian manifold $\left(\bar{M}^{m+n}, \bar{g}\right)$ is called a lightlike submanifold [1] if it admits a degenerate metric g induced from \bar{g} on M. If g is degenerate on the tangent bundle $T M$ of M, then M is called a lightlike submanifold. For a degenerate metric g on $M, T M^{\perp}$ is a degenerate n-dimensional subspace of $T_{x} \bar{M}$. Thus both $T_{x} M$ and $T_{x} M^{\perp}$ are degenerate orthogonal subspaces but not complementary to each other. Therefore there exists a subspace $\operatorname{Rad}(T M)=T_{x} M \cap T_{x} M^{\perp}$, known as Radical subspace. If the mapping $\operatorname{Rad}(T M): M \longrightarrow T M$, such that $x \in M \mapsto \operatorname{Rad}\left(T_{x} M\right)$, defines a smooth distribution of rank $r>0$ on M, then M is said to be an r-lightlike submanifold and the distribution $\operatorname{Rad}(T M)$ is said to be radical distribution on M. The non-degenerate complementary subbundles $S(T M)$ and $S\left(T M^{\perp}\right)$ of $\operatorname{Rad}(T M)$ are known as screen distribution in $T M$ and screen transversal distribution in $T M^{\perp}$ respectively, i.e.,

$$
\begin{equation*}
T M=\operatorname{Rad}(T M) \perp S(T M) \& T M^{\perp}=\operatorname{Rad}(T M) \perp S\left(T M^{\perp}\right) \tag{4}
\end{equation*}
$$

Let $\operatorname{ltr}(T M)$ (lightlike transversal bundle) and $\operatorname{tr}(T M)$ (transversal bundle) be complementary but not orthogonal vector bundles to $\operatorname{Rad}(T M)$ in $S\left(T M^{\perp}\right)^{\perp}$ and $T M$ in $\left.T \bar{M}\right|_{M}$ respectively. Then, the transversal vector bundle $\operatorname{tr}(T M)$ is given by $[3]$

$$
\begin{equation*}
\operatorname{tr}(T M)=\operatorname{ltr}(T M) \perp S\left(T M^{\perp}\right) \tag{5}
\end{equation*}
$$

From (4) and (5), we get
(6) $\left.T \bar{M}\right|_{M}=T M \oplus \operatorname{tr}(T M)=(\operatorname{Rad}(T M) \oplus \operatorname{ltr}(T M)) \perp S(T M) \perp S\left(T M^{\perp}\right)$.

Theorem 2.1. [1] Let $\left(M, g, S(T M), S\left(T M^{\perp}\right)\right)$ be an r-lightlike submanifold of a semi-Riemannian manifold (\bar{M}, \bar{g}). Then there exists a complementary vector bundle $\operatorname{ltr}(T M)$ of $\operatorname{Rad}(T M)$ in $S\left(T M^{\perp}\right)^{\perp}$ and a basis of $\Gamma(\operatorname{ltr}(T M) \mid u)$ consisting of a smooth section $\left\{N_{i}\right\}$ of $\left.S\left(T M^{\perp}\right)^{\perp}\right|_{u}$, where u is a coordinate neighbourhood of M such that

$$
\begin{equation*}
\bar{g}_{i j}\left(N_{i}, \xi_{j}\right)=\delta_{i j}, \quad \bar{g}_{i j}\left(N_{i}, N_{j}\right)=0 \tag{7}
\end{equation*}
$$

for any $i, j \in\{1,2, \ldots, r\}$.
A submanifold ($M, g, S(T M), S\left(T M^{\perp}\right)$) of \bar{M} is said to be
(i) r-lightlike if $r<\min \{m, n\}$;
(ii) coisotropic if $r=n<m, S\left(T M^{\perp}\right)=0$;
(iii) isotropic if $r=m=n, S(T M)=0$;
(iv) totally lightlike if $r=m=n, S(T M)=0=S\left(T M^{\perp}\right)$.

Let $\bar{\nabla}, \nabla$ and ∇^{t} denote the linear connections on \bar{M}, M and vector bundle $\operatorname{tr}(T M)$, respectively. Then the Gauss and Weingarten formulae are given by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \forall X, Y \in \Gamma(T M), \tag{8}\\
& \bar{\nabla}_{X} U=-A_{U} X+\nabla_{X}^{t} U, \forall U \in \Gamma(\operatorname{tr}(T M)), \tag{9}
\end{align*}
$$

where $\left\{\nabla_{X} Y, A_{U} X\right\}$ and $\left\{h(X, Y), \nabla_{X}^{t} U\right\}$ belong to $\Gamma(T M)$ and $\Gamma(\operatorname{tr}(T M))$ respectively, the linear connections ∇ and ∇^{t} are on M and on the vector bundle $\operatorname{tr}(T M)$ respectively, the second fundamental form h is a symmetric $F(M)$ bilinear form on $\Gamma(T M)$ with values in $\Gamma(\operatorname{tr}(T M))$ and the shape operator A_{V} is a linear endomorphism of $\Gamma(T M)$.
From (8) and (9), for any $X, Y \in \Gamma(\operatorname{tr}(T M)), N \in \Gamma(l t r(T M))$ and $W \in$ $\Gamma\left(S\left(T M^{\perp}\right)\right)$, we have

$$
\begin{align*}
\bar{\nabla}_{X} Y & =\nabla_{X} Y+h^{l}(X, Y)+h^{s}(X, Y) \tag{10}\\
\bar{\nabla}_{X} N & =-A_{N} X+\nabla_{X}^{l}(N)+D^{s}(X, N) \tag{11}\\
\bar{\nabla}_{X} W & =-A_{W} X+\nabla_{X}^{s}(W)+D^{l}(X, W), \tag{12}
\end{align*}
$$

where $D^{l}(X, W), D^{s}(X, N)$ are the projections of ∇^{t} on $\Gamma(l \operatorname{tr}(T M))$ and $\Gamma\left(S\left(T M^{\perp}\right)\right)$ respectively, ∇^{l}, ∇^{s} are linear connections on $\Gamma(l \operatorname{tr}(T M))$ and $\Gamma\left(S\left(T M^{\perp}\right)\right)$, respectively and A_{N}, A_{W} are shape operators on M with respect to N and W,
respectively.
Using (8) and (10)-(12), we obtain

$$
\begin{equation*}
\bar{g}\left(h^{s}(X, Y), W\right)+\bar{g}\left(Y, D^{1}(X, W)\right)=g\left(A_{W} X, Y\right) \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\bar{g}\left(D^{s}(X, N), W\right)=g\left(N, A_{W} X\right) \tag{14}
\end{equation*}
$$

for $X, Y \in \Gamma(T M), \xi \in \Gamma(\operatorname{Rad}(T M)), W \in \Gamma\left(S\left(T M^{\perp}\right)\right)$ and $N \in \Gamma(l t r(T M))$.
If the induced connection ∇ and transversal connection ∇_{X}^{t} are not metric connections, then for $X, Y, Z \in \Gamma(T M)$ and $U, U^{\prime} \in \Gamma(\operatorname{tr}(T M))$, following formulae represent induced connection and transversal connection respectively

$$
\begin{align*}
& \left(\nabla_{X} g\right)(Y, Z)=\bar{g}\left(h^{l}(X, Y), Z\right)+\bar{g}\left(h^{l}(X, Z), Y\right), \tag{15}\\
& \left(\nabla_{X}^{t} \bar{g}\right)\left(U, U^{\prime}\right)=-\left\{\bar{g}\left(A_{U} X, U^{\prime}\right)+\bar{g}\left(A_{U^{\prime}} X, U\right)\right\} . \tag{16}
\end{align*}
$$

Let \bar{P} denote the projection of $T M$ on $S(T M)$ and let $\nabla^{*}, \nabla^{* t}$ denote the linear connections on $S(T M)$ and $\operatorname{Rad}(T M)$, respectively. Then from the decomposition of tangent bundle of lightlike submanifolds, we have

$$
\begin{gather*}
\nabla_{X} \bar{P} Y=\nabla_{X}^{*} \bar{P} Y+h^{*}(X, \bar{P} Y) \tag{17}\\
\nabla_{X} \xi=-A_{\xi}^{*} X+\nabla_{X}^{* t}(\xi) \tag{18}
\end{gather*}
$$

for $X, Y \in \Gamma(T M)$ and $\xi \in \Gamma(\operatorname{RadTM})$, where h^{*}, A^{*} are the second fundamental form and shape operator of distributions $S(T M)$ and $\operatorname{Rad}(T M)$, respectively. From (14) and (15), we get

$$
\begin{align*}
\bar{g}\left(h^{l}(X, \bar{P} Y), \xi\right) & =g\left(A_{\xi}^{*} X, \bar{P} Y\right), \tag{19}\\
\bar{g}\left(h^{*}(X, \bar{P} Y), N\right) & =g\left(A_{N} X, \bar{P} Y\right), \tag{20}
\end{align*}
$$

$$
\bar{g}\left(h^{l}(X, \xi), \xi\right)=0, A_{\xi}^{*} \xi=0
$$

3. Semi-Slant Lightlike Submanifolds

In this section, before introducing the semi-slant lightlike submanifolds of an indefinite Kenmotsu manifold, we state the following Lemmas for later use:

Lemma 3.1. [8] Let M be a q-lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} of index $2 q$ with structure vector field V tangent to M. Suppose that $\phi R a d T M$ is a distribution on M such that $\operatorname{RadTM} \cap \phi \operatorname{RadTM}=\{0\}$. Then $\phi l t r T M$ is a subbundle of the screen distribution $S(T M)$ and $\phi R a d T M \cap$ $\phi l t r T M=\{0\}$.

Lemma 3.2. [8] Let M be a q-lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} of index $2 q$ with structure vector field V tangent to M. Suppose that $\phi \operatorname{RadTM}$ is a distribution on M such that $\operatorname{RadTM} \cap \phi \operatorname{RadTM}=\{0\}$. Then any complementary distribution to $\phi \operatorname{RadTM} \oplus \phi \operatorname{ltr}(T M)$ in $S(T M)$ is Riemannian.

Definition 3.3. Let M be a q-lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} of index $2 q$ such that $2 q<\operatorname{dim}(M)$ with structure vector field V tangent to M. Then we say that M is a semi-slant lightlike submanifold of \bar{M} if the following conditions are satisfied:
(i) $\phi \operatorname{RadTM}$ is distribution on M such that $\operatorname{RadTM} \cap \phi \operatorname{RadTM}=\{0\}$,
(ii) there exist non-degenerate orthogonal distributions D_{1} and D_{2} on M such that

$$
S(T M)=(\phi \operatorname{RadTM} \oplus \phi l \operatorname{tr}(T M)) \oplus_{\text {orth }} D_{1} \oplus_{\text {orth }} D_{2} \oplus_{\text {orth }}\{V\},
$$

(iii) the distribution \underline{D}_{1} is an invariant distribution, i.e. $\phi D_{1}=D_{1}$,
(iv) the distribution $\bar{D}_{2}=D_{2} \perp\{V\}$ is slant with angle $\theta(\neq 0)$, i.e. for each $x \in M$ and each non-zero vector $X \in\left(\bar{D}_{2}\right)_{x}$, if X and V are linearly independent, then the angle θ between ϕX and the vector subspace $\left(\bar{D}_{2}\right)_{x}$ is a non-zero constant, which is independent of choice of $x \in M$ and $X \in\left(\bar{D}_{2}\right)_{x}$.
This constant angle θ is called the slant angle of distribution \bar{D}_{2}. A semislant lightlike submanifold is said to be proper if $D_{1} \neq\{0\}, \bar{D}_{2} \neq\{0\}$ and $\theta \neq\{0\}$.

Example 3.4. Let $\left(\bar{M}=R_{2}^{11}, \bar{g}\right)$ be a semi-Euclidean space of signature $(-,+,+,+,+,+,+,+,+,+,+)$ with respect to the canonical basis

$$
\left\{\partial x_{1}, \partial x_{2}, \partial x_{3}, \partial x_{4}, \partial x_{5}, \partial x_{6}, \partial x_{7}, \partial x_{8}, \partial x_{9}, \partial x_{10}, \partial Z\right\}
$$

Consider a submanifold M of R_{2}^{11}, defined by $x_{1}=x_{8}=u_{1}, x_{2}=u_{2}, x_{3}=$ $\operatorname{sinu}_{3}, x_{4}=\operatorname{cosu}_{3}, x_{5}=u_{5}, x_{6}=-u_{3} \sin u_{6}, x_{7}=-u_{3} \cos u_{6}, x_{9}=u_{7}, x_{10}=$ $u_{8}, \partial Z=V$. The local frame of $T M$ is given by

$$
\begin{aligned}
& Z_{1}=e^{-z}\left(\partial x_{1}+\partial x_{8}\right) \\
& Z_{2}=e^{-z} \partial x_{2} \\
& Z_{3}=e^{-z}\left(\cos u_{3} \partial x_{3}-\sin u_{3} \partial x_{4}-\sin _{6} \partial x_{6}-\cos u_{6} \partial x_{7}\right) \\
& Z_{4}=e^{-z}\left(-u_{3} \cos _{6} \partial x_{6}+u_{3} \sin u_{6} \partial x_{7}\right) \\
& Z_{5}=e^{-z} \partial x_{9} \\
& Z_{6}=e^{-z} \partial x_{10} \\
& Z_{7}=e^{-z} \partial x_{5} \\
& Z_{8}=V=\partial Z
\end{aligned}
$$

Hence, $\operatorname{RadTM}=\operatorname{span}\left\{Z_{1}\right\}$ and $\phi R a d T M=\operatorname{span}\left\{Z_{2}+Z_{7}\right\}$.
Next, we have $\overline{D_{2}}=D_{2} \perp\{V\}=\left\{Z_{3}, Z_{4}\right\} \perp V$.
Then M is slant lightlike with slant angle $\pi / 4$. By direct calculations, we get $S\left(T M^{\perp}\right)=$ span

$$
\left\{\begin{array}{l}
W_{1}=e^{-z}\left(\cos _{3} \partial x_{3}-\sin u_{3} \partial x_{4}-\sin _{6} \partial x_{6}-\cos _{6} \partial x_{7}\right) \\
W_{2}=e^{-z}\left(-u_{3} \cos u_{6} \partial x_{6}+u_{3} \sin u_{6} \partial x_{7}\right)
\end{array}\right.
$$

and $\operatorname{ltr}(T M)$ is spanned by $N=e^{-z} / 2\left(-\partial x_{1}+\partial x_{9}\right)$ such that $\phi N=-Z_{2}+Z_{7} \in$ $S(T M)$.
Now, $\phi Z_{5}=-Z_{6}$, which implies that $D_{1}=\left\{Z_{5}, Z_{6}\right\}$ is invariant with respect to ϕ.
Hence, M is semi-slant lightlike submanifold of R_{2}^{11}.
From above definition, we have the following decomposition:
(22) $T M=\operatorname{RadTM} \oplus_{\text {orth }}(\phi \operatorname{RadTM} \oplus \phi l t r(T M)) \oplus_{\text {orth }} D_{1} \oplus_{\text {orth }} D_{2} \oplus_{\text {orth }}\{V\}$.

For any vector field X tangent to M, we put

$$
\begin{equation*}
\phi X=f X+F X \tag{23}
\end{equation*}
$$

where $f X$ and $F X$ are tangential and transversal part of ϕX respectively. we denote the projections on $\operatorname{RadTM}, \phi \operatorname{RadTM}, \phi \operatorname{ltr}(T M), D_{1}$ and $D_{2} \perp\{V\}$ in $T M$ by $P_{1}, P_{2}, P_{3}, Q_{1}$ and \bar{Q}_{2} respectively. Then, for any $X \in \Gamma(T M)$, we get

$$
\begin{equation*}
X=P_{1} X+P_{2} X+P_{3} X+Q_{1} X+\bar{Q}_{2} X \tag{24}
\end{equation*}
$$

where $\bar{Q}_{2} X=Q_{2} X+\eta(X) V$. Now applying ϕ to (24), we get

$$
\begin{equation*}
\phi X=\phi P_{1} X+\phi P_{2} X+F P_{3} X+f Q_{1} X+f Q_{2} X+F Q_{2} X \tag{25}
\end{equation*}
$$

where $\phi P_{1} X \in \Gamma(\phi R a d T M), \quad \phi P_{2} X \in \Gamma(R a d T M), \quad F P_{3} X \in \Gamma(l t r T M)$, $f Q_{1} X \in \Gamma\left(D_{1}\right), \quad f Q_{2} X \in \Gamma\left(D_{2}\right), \quad F Q_{2} X \in \Gamma\left(S\left(T M^{\perp}\right)\right)$. Using (3), (25) and (9) -(11) and identifying the components on
$\operatorname{RadTM}, \phi \operatorname{RadTM}, \phi \operatorname{ltr}(T M), D_{1}, D_{2}, l \operatorname{tr}(T M),\left(S\left(T M^{\perp}\right)\right)$ and $\{V\}$, we obtain

$$
\begin{align*}
& P_{1}\left(\nabla_{X} \phi P_{1} Y\right)+P_{1}\left(\nabla_{X} \phi P_{2} Y\right)+P_{1}\left(\nabla_{X} f Q_{1} Y\right)+P_{1}\left(\nabla_{X} f Q_{2} Y\right) \\
& =P_{1}\left(A_{F P_{3} Y} X\right)+P_{1}\left(A_{F Q_{2} Y} X\right)+\phi P_{2} \nabla_{X} Y+\eta(Y) \phi P_{2} X, \tag{26}\\
& P_{2}\left(\nabla_{X} \phi P_{1} Y\right)+P_{2}\left(\nabla_{X} \phi P_{2} Y\right)+P_{2}\left(\nabla_{X} f Q_{1} Y\right)+P_{2}\left(\nabla_{X} f Q_{2} Y\right) \\
& =P_{2}\left(A_{F P_{3} Y} X\right)+P_{2}\left(A_{F Q_{2} Y} X\right)+\phi P_{1} \nabla_{X} Y+\eta(Y) \phi P_{1} X, \tag{27}\\
& P_{3}\left(\nabla_{X} \phi P_{1} Y\right)+P_{3}\left(\nabla_{X} \phi P_{2} Y\right)+P_{3}\left(\nabla_{X} f Q_{1} Y\right)+P_{3}\left(\nabla_{X} f Q_{2} Y\right) \\
& =P_{3}\left(A_{F P_{3} Y} X\right)+P_{3}\left(A_{F Q_{2} Y} X\right)+B h^{l}(X, Y), \tag{28}\\
& Q_{1}\left(\nabla_{X} \phi P_{1} Y\right)+Q_{1}\left(\nabla_{X} \phi P_{2} Y\right)+Q_{1}\left(\nabla_{X} f Q_{1} Y\right)+Q_{1}\left(\nabla_{X} f Q_{2} Y\right) \\
& =Q_{1}\left(A_{F P_{3} Y} X\right)+Q_{1}\left(A_{F Q_{2} Y} X\right)+f Q_{1} \nabla_{X} Y+\eta(Y) f Q_{1} X, \tag{29}
\end{align*}
$$

(30)
$Q_{2}\left(\nabla_{X} \phi P_{1} Y\right)+Q_{2}\left(\nabla_{X} \phi P_{2} Y\right)+Q_{2}\left(\nabla_{X} f Q_{1} Y\right)+Q_{2}\left(\nabla_{X} f Q_{2} Y\right)$
$=Q_{2}\left(A_{F P_{3} Y} X\right)+Q_{2}\left(A_{F Q_{2} Y} X\right)+f Q_{2} \nabla_{X} Y+B h^{s}(X, Y)+\eta(Y) f Q_{2} X$,
$h^{l}\left(X, \phi P_{1} Y\right)+h^{l}\left(X, \phi P_{2} Y\right)+h^{l}\left(X, f Q_{1} Y\right)+h^{l}\left(X, f Q_{2} Y\right)$
$=F P_{3} \nabla_{X} Y-\nabla_{X}^{l}\left(X, F P_{3} Y\right)-D^{l}\left(X, F Q_{2} Y\right)+\eta(Y) F P_{3} X$,
$h^{s}\left(X, \phi P_{1} Y\right)+h^{s}\left(X, \phi P_{2} Y\right)+h^{s}\left(X, f Q_{1} Y\right)+h^{s}\left(X, f Q_{2} Y\right)$
$=F Q_{2} \nabla_{X} Y-\nabla_{X}^{s}\left(X, F Q_{2} Y\right)-D^{s}\left(X, F P_{3} Y\right)+C h^{s}(X, Y)$,
$\eta\left(\nabla_{X} \phi P_{1} Y\right)+\eta\left(\nabla_{X} \phi P_{2} Y\right)+\eta\left(\nabla_{X} f Q_{1} Y\right)+\eta\left(\nabla_{X} f Q_{2} Y\right)$
$=\eta\left(A_{F P_{3} Y} X\right)+\eta\left(A_{F Q_{2} Y} X\right)-\bar{g}(\phi X, Y) V$.
Theorem 3.5. Let M be a semi-slant lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} with structure vector field V tangent to M. Then, for any $X, Y \in \Gamma($ RadTM $)$, RadTM is integrable if and only if
(i) $P_{1}\left(\nabla_{X} \phi P_{1} Y\right)=P_{1}\left(\nabla_{Y} \phi P_{1} X\right), Q_{1}\left(\nabla_{X} \phi P_{1} Y\right)=Q_{1}\left(\nabla_{Y} \phi P_{1} X\right)$ and $Q_{2}\left(\nabla_{X} \phi P_{1} Y\right)=Q_{2}\left(\nabla_{Y} \phi P_{1} X\right)$,
(ii) $h^{l}\left(Y, \phi P_{1} X\right)=h^{l}\left(X, \phi P_{1} Y\right)$ and $h^{s}\left(Y, \phi P_{1} X\right)=h^{s}\left(X, \phi P_{1} Y\right)$.

Proof. Let M be a semi-slant lightlike submanifold of an indefinite Kenmotsu manifold \bar{M}. Let $X, Y \in \Gamma(\operatorname{RadTM})$. From (26), we have

$$
\begin{equation*}
P_{1}\left(\nabla_{X} \phi P_{1} Y\right)=\phi P_{2} \nabla_{X} Y \tag{34}
\end{equation*}
$$

Interchanging X and Y in (34) and subtracting resulting equation from (34) we obtain

$$
\begin{equation*}
P_{1}\left(\nabla_{X} \phi P_{1} Y\right)-P_{1}\left(\nabla_{Y} \phi P_{1} X\right)=\phi P_{2}[X, Y] . \tag{35}
\end{equation*}
$$

From (29), we have

$$
\begin{equation*}
Q_{1}\left(\nabla_{X} \phi P_{1} Y\right)=\phi Q_{1} \nabla_{X} Y \tag{36}
\end{equation*}
$$

Interchanging X and Y in (36) and subtracting resulting equation from (36), we get

$$
\begin{equation*}
Q_{1}\left(\nabla_{X} \phi P_{1} Y\right)-Q_{1}\left(\nabla_{Y} \phi P_{1} X\right)=\phi Q_{1}[X, Y] . \tag{37}
\end{equation*}
$$

From (30), we obtain

$$
\begin{equation*}
Q_{2}\left(\nabla_{X} \phi P_{1} Y\right)=f Q_{2} \nabla_{X} Y+B h^{s}(X, Y) \tag{38}
\end{equation*}
$$

Interchanging X and Y in (38) and subtracting resulting equation from (38), we get

$$
\begin{equation*}
Q_{2}\left(\nabla_{X} \phi P_{1} Y\right)-Q_{2}\left(\nabla_{Y} \phi P_{1} X\right)=f Q_{2}[X, Y] . \tag{39}
\end{equation*}
$$

In view of (31), we obtain

$$
\begin{equation*}
h^{l}\left(X, \phi P_{1} Y\right)=F P_{3} \nabla_{X} Y . \tag{40}
\end{equation*}
$$

Interchanging X and Y in (40) and subtracting resulting equation from (40), we have

$$
\begin{equation*}
h^{l}\left(X, \phi P_{1} Y\right)-h^{l}\left(Y, \phi P_{1} X\right)=F P_{3}[X, Y] . \tag{41}
\end{equation*}
$$

Similarly, from (32), we get

$$
\begin{equation*}
h^{s}\left(X, \phi P_{1} Y\right)=C h^{s}(X, Y)+F Q_{2} \nabla_{X} Y \tag{42}
\end{equation*}
$$

which gives

$$
\begin{equation*}
h^{s}\left(X, \phi P_{1} Y\right)-h^{s}\left(Y, \phi P_{1} X\right)=F Q_{2}[X, Y] . \tag{43}
\end{equation*}
$$

From equations (35), (37), (39), (41) and (43), we conclude that $\operatorname{Rad}(T M)$ is integrable.

Theorem 3.6. Let M be a semi-slant lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} with structure vector field V tangent to M. Then, for any $X, Y \in \Gamma\left(D_{1} \oplus\{V\}\right), D_{1} \oplus\{V\}$ is integrable if and only if
(i) $P_{1}\left(\nabla_{X} f Q_{1} Y\right)=P_{1}\left(\nabla_{Y} f Q_{1} X\right), P_{2}\left(\nabla_{X} f Q_{1} Y\right)=P_{2}\left(\nabla_{Y} f Q_{1} X\right)$ and $Q_{2}\left(\nabla_{X} f Q_{1} Y\right)=Q_{2}\left(\nabla_{Y} f Q_{1} X\right)$,
(ii) $h^{l}\left(Y, f Q_{1} X\right)=h^{l}\left(X, f Q_{1} Y\right)$ and $h^{s}\left(Y, f Q_{1} X\right)=h^{s}\left(X, f Q_{1} Y\right)$.

Proof. Let M be a semi-slant lightlike submanifold of an indefinite Kenmotsu manifold \bar{M}. Let $X, Y \in \Gamma\left(D_{1} \oplus\{V\}\right)$. From (26), we have

$$
\begin{equation*}
P_{1}\left(\nabla_{X} f Q_{1} Y\right)=\phi P_{2} \nabla_{X} Y \tag{44}
\end{equation*}
$$

Interchanging X and Y in (44) and subtracting resulting equation from (44), we get

$$
\begin{equation*}
P_{1}\left(\nabla_{X} f Q_{1} Y\right)-P_{1}\left(\nabla_{Y} f Q_{1} X\right)=\phi P_{2}[X, Y] . \tag{45}
\end{equation*}
$$

From (27), we obtain

$$
\begin{equation*}
P_{2}\left(\nabla_{X} f Q_{1} Y\right)=\phi P_{1} \nabla_{X} Y \tag{46}
\end{equation*}
$$

Interchanging X and Y in (46) and subtracting resulting equation from (46), we get

$$
\begin{equation*}
P_{2}\left(\nabla_{X} f Q_{1} Y\right)-P_{2}\left(\nabla_{Y} f Q_{1} X\right)=\phi P_{1}[X, Y] . \tag{47}
\end{equation*}
$$

From (30), we have

$$
\begin{equation*}
Q_{2}\left(\nabla_{X} f Q_{1} Y\right)=f Q_{2} \nabla_{X} Y+B h^{s}(X, Y) \tag{48}
\end{equation*}
$$

Interchanging X and Y in (48) and subtracting resulting equation from (48), we get

$$
\begin{equation*}
Q_{2}\left(\nabla_{X} f Q_{1} Y\right)-Q_{2}\left(\nabla_{Y} f Q_{1} X\right)=f Q_{2}[X, Y] \tag{49}
\end{equation*}
$$

In view of (31), we get

$$
\begin{equation*}
h^{l}\left(X, f Q_{1} Y\right)=F P_{3} \nabla_{X} Y \tag{50}
\end{equation*}
$$

Interchanging X and Y in (50) and subtracting resulting equation from (50), we obtain

$$
\begin{equation*}
h^{l}\left(X, f Q_{1} Y\right)-h^{l}\left(Y, f Q_{1} X\right)=F P_{3}[X, Y] \tag{51}
\end{equation*}
$$

Similarly, from (32), we get

$$
\begin{equation*}
h^{s}\left(X, f Q_{1} Y\right)=C h^{s}(X, Y)+F Q_{2} \nabla_{X} Y \tag{52}
\end{equation*}
$$

which gives

$$
\begin{equation*}
h^{s}\left(X, f Q_{1} Y\right)-h^{s}\left(Y, f Q_{1} X\right)=F Q_{2}[X, Y] \tag{53}
\end{equation*}
$$

From equations (45), (47), (49), (51) and (53), we find that $D_{1} \oplus\{V\}$ is integrable.

Theorem 3.7. Let M be a semi-slant lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} with structure vector field V tangent to M. Then, for all $X, Y \in \Gamma\left(D_{2} \oplus\{V\}\right), D_{2} \oplus\{V\}$ is integrable if and only if
(i) $P_{1}\left(\nabla_{X} f Q_{2} Y-\nabla_{Y} f Q_{2} X\right)=P_{1}\left(A_{F Q_{2} Y} X-A_{F Q_{2} X} Y\right)$,
(ii) $P_{2}\left(\nabla_{X} f Q_{2} Y-\nabla_{Y} f Q_{2} X\right)=P_{2}\left(A_{F Q_{2} Y} X-A_{F Q_{2} X} Y\right)$,
(iii) $Q_{1}\left(\nabla_{X} f Q_{2} Y-\nabla_{Y} f Q_{2} X\right)=Q_{1}\left(A_{F Q_{2} Y} X-A_{F Q_{2} X} Y\right)$,
(iv) $h^{l}\left(X, f Q_{2} Y\right)-h^{l}\left(Y, f Q_{2} X\right)=D^{l}\left(Y, F Q_{2} X\right)-D^{l}\left(X, F Q_{2} Y\right)$.

Proof. Let M be a semi-slant lightlike submanifold of an indefinite Kenmotsu manifold \bar{M}. Let $X, Y \in \Gamma\left(D_{1} \oplus\{V\}\right)$.
From (26), we have

$$
\begin{equation*}
P_{1}\left(\nabla_{X} f Q_{2} Y\right)-P_{1}\left(A_{F Q_{2} Y} X\right)=\phi P_{2} \nabla_{X} Y \tag{54}
\end{equation*}
$$

Interchanging X and Y in (54) and subtracting resulting equation from (54), we obtain

$$
\begin{equation*}
P_{1}\left(\nabla_{X} f Q_{2} Y-\nabla_{Y} f Q_{2} X\right)-P_{1}\left(A_{F Q_{2} Y} X-\left(A_{F Q_{2} X} Y\right)\right)=\phi P_{2}[X, Y] \tag{55}
\end{equation*}
$$

From (27), we get

$$
\begin{equation*}
P_{2}\left(\nabla_{X} f Q_{2} Y\right)-P_{2}\left(A_{F Q_{2} Y} X\right)=\phi P_{1} \nabla_{X} Y \tag{56}
\end{equation*}
$$

Interchanging X and Y in (56) and subtracting resulting equation from (56), we have

$$
\begin{equation*}
P_{2}\left(\nabla_{X} f Q_{2} Y-\nabla_{Y} f Q_{2} X\right)-P_{2}\left(A_{F Q_{2} Y} X-\left(A_{F Q_{2} X} Y\right)\right)=\phi P_{1}[X, Y] \tag{57}
\end{equation*}
$$

In view of (29), we obtain

$$
\begin{equation*}
Q_{1}\left(\nabla_{X} f Q_{2} Y\right)-Q_{1}\left(A_{F Q_{2} Y} X\right)=f Q_{1} \nabla_{X} Y \tag{58}
\end{equation*}
$$

Interchanging X and Y in (58) and subtracting resulting equation from (58), we have
(59) $Q_{1}\left(\nabla_{X} f Q_{2} Y-\left(\nabla_{Y} f Q_{2} X\right)-Q_{1}\left(A_{F Q_{2} Y} X-\left(A_{F Q_{2} X} Y\right)\right)=f Q_{1}[X, Y]\right.$.

Similarly, from (31), we get

$$
\begin{equation*}
h^{l}\left(X, f Q_{2} Y\right)+D^{l}\left(X, F Q_{2} Y\right)=F P_{3} \nabla_{X} Y, \tag{60}
\end{equation*}
$$

which gives

$$
\begin{equation*}
h^{l}\left(X, f Q_{2} Y\right)-h^{l}\left(Y, f Q_{2} X\right)+D^{l}\left(X, F Q_{2} Y\right)-D^{l}\left(Y, F Q_{2} X\right)=F P_{3}[X, Y] \tag{61}
\end{equation*}
$$

From equations (55), (57), (59) and (61), we find that $D_{2} \oplus\{V\}$ is integrable.

4. Foliations Determined by Distributions

In this section, we obtain necessary and sufficient conditions for foliations determined by distributions on a semi-slant lightlike submanifold of an indefinite Kenmotsu manifold to be totally geodesic.

Definition 4.1. [13] A semi-slant lightlike submanifold M of an indefinite Kenmotsu manifold \bar{M} is said to be mixed geodesic if its second fundamental form h satisfies $h(X, Y)=0, \forall X \in \Gamma\left(D_{1}\right)$ and $Y \in \Gamma\left(D_{2}\right)$. Thus M is a mixed geodesic semi-slant lightlike submanifold if $h^{l}(X, Y)=0, h^{s}(X, Y)=0$, $\forall X \in \Gamma\left(D_{1}\right)$ and $Y \in \Gamma\left(D_{2}\right)$.

Theorem 4.2. Let M be a semi-slant lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} with structure vector field V tangent to M. Then, for any $X, Y \in \Gamma(R a d T M)$ and $Z \in \Gamma(S(T M))$, RadTM defines a totally geodesic foliation if and only if

$$
\begin{gathered}
\bar{g}\left(\nabla_{X} \phi P_{2} Z+\nabla_{X} f Q_{1} Z+\nabla_{X} f Q_{2} Z-\eta(Z) \phi P_{1} X, \phi Y\right) \\
=\bar{g}\left(A_{F P_{3} Z} X+A_{F Q_{2} Z} X, \phi Y\right) .
\end{gathered}
$$

Proof. Let M be a semi-slant lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} with structure vector field V tangent to M. To prove that RadTM defines totally geodesic foliation it is sufficient to show that $\nabla_{X} Y \in \Gamma(\operatorname{Rad} T M), \forall X, Y \in \Gamma(\operatorname{Rad} T M)$. Since $\bar{\nabla}$ is a metric connection, using equation (10), we get

$$
\begin{equation*}
g\left(\nabla_{X} Y, Z\right)=\bar{g}\left(\bar{\nabla}_{X} Y, Z\right) \tag{62}
\end{equation*}
$$

which implies

$$
-\bar{g}\left(\nabla_{X} Y, Z\right)=\bar{g}\left(Y, \bar{\nabla}_{X} Z\right)
$$

Using (2) in $\bar{g}\left(\nabla_{X} Y, Z\right)$, we obtain

$$
g\left(\bar{\nabla}_{X} Z, Y\right)=g\left(\phi \bar{\nabla}_{X} Z, \phi Y\right)+\eta\left(\bar{\nabla}_{X} Z\right) \eta(Y),
$$

Since $\eta(Y)=g(Y, V)=0$, above equation reduces to

$$
\begin{equation*}
g\left(\nabla_{X} Y, Z\right)=-\bar{g}\left(\phi \bar{\nabla}_{X} Z, \phi Y\right) \tag{63}
\end{equation*}
$$

From (3), we have

$$
\bar{\nabla}_{X} \phi Z-\phi \bar{\nabla}_{X} Z=-\bar{g}(\phi X, Z) V+\eta(Z) \phi X
$$

which implies

$$
\begin{equation*}
\bar{\nabla}_{X} \phi Z+\bar{g}(\phi X, Z) V-\eta(Z) \phi X=\phi \bar{\nabla}_{X} Z, \tag{64}
\end{equation*}
$$

using (64) in (63), we get

$$
\begin{aligned}
-\bar{g}\left(\phi \bar{\nabla}_{X} Z, \phi Y\right)= & -\bar{g}\left(\bar{\nabla}_{X} \phi Z\right. \\
& +\bar{g}(\phi X, Z) V-\eta(Z) \phi X, \phi Y) .
\end{aligned}
$$

Using (25), we obtain

$$
\begin{aligned}
-\bar{g}\left(\phi \bar{\nabla}_{X} Z, \phi Y\right)= & -\bar{g}\left(\bar{\nabla}_{X}\left(\phi P_{2} Z+F P_{3} Z+f Q_{1} Z+f Q_{2} Z+F Q_{2} Z\right)\right. \\
& +\bar{g}(\phi X, Z) V-\eta(Z) \phi X, \phi Y)
\end{aligned}
$$

which reduces to

$$
\begin{aligned}
\bar{g}\left(\nabla_{X} Y, Z\right)= & -\bar{g}\left(-A_{F P_{3} Z} X-A_{F Q_{2} Z} X+\nabla_{X} \phi P_{2} Z\right. \\
& \left.+\nabla_{X} f Q_{1} Z+\nabla_{X} f Q_{2} Z-\eta(Z) \phi P_{1} X, \phi Y\right) .
\end{aligned}
$$

This proves the theorem.
Theorem 4.3. Let M be a semi-slant lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} with structure vector field V tangent to M. Then, for any $X, Y \in \Gamma\left(D_{1} \oplus\{V\}\right), Z \in \Gamma\left(D_{2}\right), W \in \Gamma(\phi l \operatorname{tr}(T M))$ and $N \in \Gamma(\operatorname{ltr}(T M))$, $D_{1} \oplus\{V\}$ defines a totally geodesic foliation if and only if
(i) $\bar{g}\left(A_{F Q_{2} Z} X, \phi Y\right)=\bar{g}\left(\nabla_{X} f Q_{2} Z, \phi Y\right)$,
(ii) $A_{F P_{3} Y} X$ and $\nabla_{X} \phi N$ have no component in $D_{1} \oplus\{V\}$.

Proof. Let M be a semi-slant lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} with structure vector field V tangent to M.
To prove that $D_{1} \oplus\{V\}$ defines a totally geodesic foliation, it is sufficient to show that $\nabla_{X} Y \in \Gamma\left(D_{1} \oplus\{V\}\right), \forall X, Y \in \Gamma\left(D_{1} \oplus\{V\}\right)$.
Since $\bar{\nabla}$ is a metric connection, using equation (10), we get

$$
\begin{equation*}
g\left(\nabla_{X} Y, Z\right)=\bar{g}\left(\bar{\nabla}_{X} Y, Z\right) \tag{65}
\end{equation*}
$$

which implies

$$
-\bar{g}\left(\nabla_{X} Y, Z\right)=\bar{g}\left(Y, \bar{\nabla}_{X} Z\right)
$$

Using (2), we obtain

$$
\begin{equation*}
\bar{g}\left(\bar{\nabla}_{X} Z, Y\right)=\bar{g}\left(\phi \bar{\nabla}_{X} Z, \phi Y\right)+\eta\left(\bar{\nabla}_{X} Z\right) \eta(Y) . \tag{66}
\end{equation*}
$$

Using (3) in (66), we get

$$
\begin{aligned}
& \bar{g}\left(\bar{\nabla}_{X} Z, Y\right)=\bar{g}\left(\bar{\nabla}_{X} \phi Z, \phi Y\right)+\eta\left(\bar{\nabla}_{X} Z\right) \eta(Y), \\
= & \bar{g}\left(\bar{\nabla}_{X} f Q_{2} Z+\bar{\nabla}_{X} F Q_{2} Z, \phi Y\right)+\eta\left(\bar{\nabla}_{X} Z\right) \eta(Y)
\end{aligned}
$$

which reduces to
(67) $\quad-g\left(\nabla_{X} Y, Z\right)=\bar{g}\left(\nabla_{X} f Q_{2} Z-A_{F Q_{2} Z} X, \phi Y\right)+\eta\left(\nabla_{X} Z\right) \eta(Y)$.

Now, for any $X, Y \in D_{1} \oplus\{V\}$ and $N \in \Gamma(l \operatorname{tr}(T M))$, we obtain

$$
\bar{g}\left(\bar{\nabla}_{X} Y, N\right)=-g\left(\nabla_{X} N, Y\right)
$$

From (2), we obtain

$$
\begin{equation*}
\bar{g}\left(\bar{\nabla}_{X} N, Y\right)=\bar{g}\left(\phi \bar{\nabla}_{X} N, \phi Y\right)+\eta\left(\bar{\nabla}_{X} N\right) \eta(Y) . \tag{68}
\end{equation*}
$$

Using (3) in (68), we get

$$
\begin{equation*}
-g\left(\bar{\nabla}_{X} Y, N\right)=\bar{g}\left(\nabla_{X} \phi N, \phi Y\right)+\eta\left(\bar{\nabla}_{X} N\right) \eta(Y) . \tag{69}
\end{equation*}
$$

Now, for any $X, Y \in D_{1} \oplus\{V\}$ and $W \in \Gamma(\phi l t r(T M))$, we get

$$
\bar{g}\left(\bar{\nabla}_{X} Y, W\right)=-g\left(\nabla_{X} W, Y\right)
$$

From (2), we obtain

$$
\begin{equation*}
\bar{g}\left(\bar{\nabla}_{X} W, Y\right)=\bar{g}\left(\phi \bar{\nabla}_{X} W, \phi Y\right)+\eta\left(\bar{\nabla}_{X} W\right) \eta(Y) \tag{70}
\end{equation*}
$$

Using (3) in (70), we have

$$
\begin{gather*}
g\left(\bar{\nabla}_{X} W, Y\right)=\bar{g}\left(\nabla_{X} \phi W, \phi Y\right)+\eta\left(\bar{\nabla}_{X} W\right) \eta(Y), \tag{71}\\
=\bar{g}\left(\nabla_{X} F P_{3} Y, \phi Y\right)+\eta\left(-A_{W} X\right) \eta(Y)
\end{gather*}
$$

which reduces to

$$
\begin{equation*}
-g\left(\nabla_{X} Y, W\right)=\bar{g}\left(-A_{F P_{3} Y} X, \phi Y\right)-\eta\left(A_{W} X\right) \eta(Y) \tag{72}
\end{equation*}
$$

Thus, we obtain the required results.

Theorem 4.4. Let M be a semi-slant lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} with structure vector field V tangent to M. Then, for any $X, Y \in \Gamma\left(D_{2} \oplus\{V\}\right), Z \in \Gamma\left(D_{1}\right), W \in \Gamma(\phi l t r(T M))$ and $N \in \Gamma(\operatorname{ltr}(T M))$, $D_{2} \oplus\{V\}$ defines a totally geodesic foliation if and only if
(i) $\bar{g}\left(\nabla_{X} f Q_{1} Z, f Y\right)=-\bar{g}\left(h^{s}\left(X, f Q_{1} Z\right), F Y\right)$ and $\nabla_{X} Z$ has no component in $\{V\}$,
(ii) $\bar{g}\left(\nabla_{X} \phi N, f Y\right)=-\bar{g}\left(h^{s}(X, \phi N), F Y\right)$ and $\nabla_{X} N$ has no component in $\{V\}$,
(iii) $\bar{g}\left(A_{F P_{3} W} X, f Y\right)=\bar{g}\left(D^{s}\left(X, F P_{3} W\right), F Y\right)$ and $\nabla_{X} W$ has no component in $\{V\}$.

Proof. Let M be a semi-slant lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} with structure vector field V tangent to M. To prove that $D_{2} \oplus\{V\}$ defines a totally geodesic foliation, it is sufficient to show that $\nabla_{X} Y \in \Gamma\left(D_{2} \oplus\{V\}\right), \forall X, Y \in \Gamma\left(D_{2} \oplus\{V\}\right)$. Since $\bar{\nabla}$ is a metric connection, using equation (10), we get

$$
\begin{equation*}
g\left(\nabla_{X} Y, Z\right)=\bar{g}\left(\bar{\nabla}_{X} Y, Z\right) \tag{73}
\end{equation*}
$$

which implies

$$
-\bar{g}\left(\nabla_{X} Y, Z\right)=\bar{g}\left(Y, \bar{\nabla}_{X} Z\right)
$$

Using (2), we obtain

$$
\begin{equation*}
\bar{g}\left(\bar{\nabla}_{X} Z, Y\right)=\bar{g}\left(\phi \bar{\nabla}_{X} Z, \phi Y\right)+\eta\left(\bar{\nabla}_{X} Z\right) \eta(Y) \tag{74}
\end{equation*}
$$

using (3) in (74), we have

$$
\begin{aligned}
\bar{g}\left(\bar{\nabla}_{X} Z, Y\right) & =\bar{g}\left(\bar{\nabla}_{X} f Q_{1} Z, \phi Y\right)+\eta\left(\bar{\nabla}_{X} Z\right) \eta(Y) \\
& =\bar{g}\left(\bar{\nabla}_{X} f Q_{1} Z, f Y+F Y\right)+\eta\left(\bar{\nabla}_{X} Z\right) \eta(Y)
\end{aligned}
$$

which reduces to
(75) $-\bar{g}\left(\nabla_{X} Y, Z\right)=\bar{g}\left(\nabla_{X} f Q_{1} Z, f Y\right)+\bar{g}\left(h^{s}\left(X, f Q_{1} Z\right), F Y\right)+\eta\left(\bar{\nabla}_{X} Z\right) \eta(Y)$.

Now, for any $X, Y \in D_{2} \oplus\{V\}$ and $N \in \Gamma(l \operatorname{tr}(T M))$, we obtain

$$
\bar{g}\left(\bar{\nabla}_{X} Y, N\right)=-g\left(\nabla_{X} N, Y\right)
$$

Using (2), we obtain

$$
\begin{equation*}
\bar{g}\left(\bar{\nabla}_{X} N, Y\right)=\bar{g}\left(\phi \bar{\nabla}_{X} N, \phi Y\right)+\eta\left(\bar{\nabla}_{X} N\right) \eta(Y) . \tag{76}
\end{equation*}
$$

Inserting (3) in (76), we have

$$
\begin{align*}
\bar{g}\left(\bar{\nabla}_{X} N, Y\right) & =\bar{g}\left(\nabla_{X} \phi N, f Y+F Y\right)+\eta\left(\bar{\nabla}_{X} N\right) \eta(Y) \\
& =\bar{g}\left(\nabla_{X} \phi N+h^{s}(X, \phi N), f Y+F Y\right)+\eta\left(\bar{\nabla}_{X} N\right) \eta(Y) \\
g\left(\bar{\nabla}_{X} Y, N\right) & =\bar{g}\left(\nabla_{X} \phi N, f Y\right)+\bar{g}\left(h^{s}(X, \phi N), F Y\right)+\eta\left(\bar{\nabla}_{X} N\right) \eta(Y) . \tag{77}
\end{align*}
$$

From (2), we get

$$
\begin{equation*}
\bar{g}\left(\bar{\nabla}_{X} W, Y\right)=\bar{g}\left(\phi \bar{\nabla}_{X} W, \phi Y\right)+\eta\left(\bar{\nabla}_{X} W\right) \eta(Y) \tag{78}
\end{equation*}
$$

Using (3) in (78), we have

$$
\bar{g}\left(\bar{\nabla}_{X} W, Y\right)=\bar{g}\left(\bar{\nabla}_{X} F P_{3} W, f Y+F Y\right)+\eta\left(\bar{\nabla}_{X} W\right) \eta(Y)
$$

which implies

$$
\begin{equation*}
-g\left(\nabla_{X} Y, W\right)=\bar{g}\left(-A_{F P_{3} W} X, f Y\right)+\bar{g}\left(D^{s}\left(X, F P_{3} W\right), F Y\right)+\eta\left(\nabla_{X} W\right) \eta(Y) \tag{79}
\end{equation*}
$$

This completes the proof.

Theorem 4.5. Let M be a mixed geodesic semi-slant lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} with structure vector field V tangent to M. Then, for any $X, Y \in \Gamma\left(D_{2} \oplus\{V\}\right), Z \in \Gamma\left(D_{1}\right), W \in \Gamma(\phi \operatorname{ltr}(T M))$ and $N \in \Gamma(l \operatorname{tr}(T M)), D_{2} \oplus\{V\}$ defines a totally geodesic foliation if and only if
(i) $\nabla_{X} f Q_{1} Z$ has no component in $D_{2} \oplus\{V\}$,
(ii) $\bar{g}\left(\nabla_{X} \phi N, f Y\right)=-\bar{g}\left(h^{s}(X, \phi N), F Y\right)$ and $\nabla_{X} N$ has no component in $\{V\}$,
(iii) $\bar{g}\left(A_{F P_{3} W} X, f Y\right)=\bar{g}\left(D^{s}\left(X, F P_{3} W\right), F Y\right)$ and $\nabla_{X} W$ has no component in $\{V\}$.

Proof. Let M be a mixed geodesic semi-slant lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} with structure vector field V tangent to M. To prove that $D_{2} \oplus\{V\}$ defines a totally geodesic foliation, it is sufficient to show that $\nabla_{X} Y \in \Gamma\left(D_{2}\right), \forall X, Y \in \Gamma\left(D_{2}\right) \oplus\{V\}$. Since M is a mixed geodesic semi-slant lightlike submanifold of an indefinite Kenmotsu manifold, $h(X, Y)=$ $0 \forall X \in \Gamma\left(D_{1}\right), Y \in \Gamma\left(D_{2}\right)$, we get

$$
h^{l}(X, Y)=0, h^{s}(X, Y)=0
$$

Putting $h^{s}(X, Y)=0$, in (75), we get

$$
-\bar{g}\left(\nabla_{X} Y, Z\right)=\bar{g}\left(\nabla_{X} f Q_{1} Z, f Y\right)+\eta\left(\bar{\nabla}_{X} Z\right) \eta(Y)
$$

This gives $\nabla_{X} f Q_{1} Z$ has no component in D_{2} and $\nabla_{X} Z$ has no component in $\{V\}$.
(ii) $\bar{g}\left(\nabla_{X} \phi N, f Y\right)=-\bar{g}\left(h^{s}(X, \phi N), F Y\right)$ and $\nabla_{X} N$ has no component in $\{V\}$,
(iii) $\bar{g}\left(A_{F P_{3} W} X, f Y\right)=\bar{g}\left(D^{s}\left(X, F P_{3} W\right), F Y\right)$ and $\nabla_{X} W$ has no component in $\{V\}$,
are same as $(i i),(i i i)$ part of Theorem 4.4.

5. Acknowledgments

The second author is thankful to CSIR for providing financial assistance in terms of JRF scholarship vide letter with Ref. No. (09/1051(0026)/2018-EMR-1).

References

[1] Duggal, K. L.; Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic Publisher, 1996.
[2] Duggal, K. L.; Sahin, B., Lightlike submanifolds of indefinite Sasakian manifolds, International Journal of Mathematics and Mathematical Sciences, 2007 (2007), 1-21.
[3] Duggal, K. L.; Sahin, B., Differential Geometry of Lightlike Submanifolds, Birkhauser Verlag AG, Berlin, 2010.
[4] Goldberg, S. I., On the existence of manifolds with an f-structure, Tensor N. S., 26 (1972), 323-329.
[5] Goldberg, S. I.; Yano, K., Globally framed f-manifolds III, Journal of Mathematics., 15 (1971), 456-474.
[6] Goldberg, S. I.; Yano, K., On normal globally framed f-manifolds, Tohoku Mathematical Journal, 22 (1972), 362-370.
[7] Gupta, R. S.; Sharfuddin, A., Lightlike submanifolds of indefinite Kenmotsu manifolds, Int. J. Contemp. Math. Sciences, 5 (2010), 475-496.
[8] Gupta, R. S.; Sharfuddin, A., Slant lightlike submanifolds of indefinite Kenmotsu manifolds, Turk. J. Math., 35 (2011), 115-127.
[9] Kenmotsu, K., A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93-103.
[10] Nakagawa, H., f-structures induced on submanifolds in spaces, almost Hermitian or Kählerian, Kodai Math. Sem. Rep., 18 (1966), 161-183.
[11] Nakagawa, H., On framed f-manifolds, Kodai Math. Sem. Rep., 18 (1966), 293-306.
[12] Sachdeva, R.; Kumar, R.; Bhatia, S. S., Totally contact umbilical slant lightlike submanifolds of indefinite Kenmotsu manifolds, Tamkang Journal of Mathematics, 46 (2015), 179-191.
[13] Shukla, S. S.; Yadav, A., Semi-slant lighlike submanifolds of indefinite Sasakian manifolds, Kyungpook Mathematical Journal, 56 (2016), 625-638.
[14] Yano, K., On a structure defined by a tensor field f of type $(1,1)$ satisfying $f^{3}+f=0$, Tensor N. S., 14 (1963), 99-109.

Ramandeep Kaur
Department of Mathematics and Statistics, Central University of Punjab Bathinda, Punjab-151 001, India.
E-mail: ramanaulakh1966@gmail.com
Gauree Shanker
Department of Mathematics and Statistics, Central University of Punjab Bathinda, Punjab-151 001, India.
E-mail: grshnkr2007@gmail.com

Ankit Yadav

Department of Mathematics and Statistics, Central University of Punjab Bathinda, Punjab-151 001, India.

Akram Ali
Department of Mathematics, College of Science, King Khalid University 9004 Abha, Saudi Arabia.
E-mail: akali@kku.edu.sa

[^0]: Received November 13, 2020. Revised January 4, 2021. Accepted January 21, 2021.
 2020 Mathematics Subject Classification. 53C15, 53C40, 53C50.
 Key words and phrases. Semi-Riemannian manifold, indefinite Kenmotsu manifold, semi-slant lightlike submanifolds, integral distribution.

 The second author is thankful to CSIR for providing financial assistance in terms of JRF scholarship vide letter with Ref. No. (09/1051(0026)/2018-EMR-1).
 *Corresponding author

