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ON TRIGONOMETRICALLY QUASI-CONVEX FUNCTIONS

Selim Numan and İmdat İşcan∗

Abstract. In this paper, we introduce and study the concept of trigono-

metrically quasi-convex function. We prove Hermite-Hadamard type in-
equalities for the newly introduced class of functions and obtain some

new Hermite-Hadamard inequalities for functions whose first derivative

in absolute value, raised to a certain power which is greater than one,
respectively at least one, is trigonometrically quasi-convex convex. We

also extend our initial results to functions of several variables. Next, we

point out some applications of our results to give estimates for the ap-
proximation error of the integral the function in the trapezoidal formula.

1. Introduction

Let I be a non-empty interval in R and f : I → R be a convex function.
Then the following inequalities hold

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f (a) + f(b)

2

for all a, b ∈ I with a < b. This double inequality is well known as the Hermite-
Hadamard inequality (for more information, see [4]). Since then, some refine-
ments of the Hermite-Hadamard inequality for convex functions have been
obtained [2, 12].

We recall that the notion of quasi-convex function generalizes the notion
of convex function. More exactly, a function f : [a, b] ⊂ R → R is said to be
quasi-convex on [a, b] if

f(tx+ (1− t)y) ≤ max{f(x), f(y)}
for all x, y ∈ [a, b] and t ∈ [0, 1] . Clearly, any convex function is a quasi-convex
function. Furthermore, there exist quasi-convex functions which are not convex
([5]).
In [11], Kadakal gave the concept of trigonometrically convex function as fol-
lows:
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Definition 1.1 ([11]). A non-negative function f : I → R is called trigono-
metrically convex if for every x, y ∈ I and t ∈ [0, 1],

f (tx+ (1− t)y) ≤
(

sin
πt

2

)
f(x) +

(
cos

πt

2

)
f(y).

The class of all trigonometrically convex functions is denoted by TC (I) on
interval I.

Throughout this paper, we will use the following notation for brevity:

Qf (x, y) = max {f(x), f(y)} .

The main purpose of this paper is to introduce the concept of trigonomet-
rically quasi-convex function which is connected with the concepts of quasi-
convex function and trigonometrically convex convex function and establish
some new Hermite-Hadamard type inequality for this class of functions. In
recent years, for some related Hermite-Hadamard type inequalities, see [5, 6,
7, 8, 9, 10].

2. Main Results

In this section, we introduce a new concept, which is called trigonometrically
quasi-convex function and we give by setting some algebraic properties for the
trigonometrically quasi-convex functions.

Definition 2.1. A function f : I → R is called trigonometrically quasi-
convex functions if for every x, y ∈ I and t ∈ [0, 1],

f (tx+ (1− t)y) ≤
(

sin
πt

2
+ cos

πt

2

)
max {f(x), f(y)} .

We discuss some connections between the class of trigonometrically quasi-
convex functions and other classes of generalized convex functions.

Remark 2.2. Clearly, every nonnegative quasi-convex function is a trigono-
metrically quasi-convex function. Indeed, if f : I → R is an arbitrary nonneg-
ative quasi-convex function, then since sinπt2 + cosπt2 ≥ 1 for all t ∈ [0, 1], for
every x, y ∈ I and t ∈ [0, 1] we have

f (tx+ (1− t)y) ≤ Qf (x, y) ≤
(

sin
πt

2
+ cos

πt

2

)
Qf (x, y).

Moerever, Since every convex function is a quasi-convex function, we say
that every nonnegative convex function is a trigonometrically quasi-convex
function.

Proposition 2.3. Every trigonometrically convex function is trigonomet-
rically quasi-convex functions.
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Proof. Let f : I → R be an arbitrary trigonometrically convex function,
then we can write

f (tx+ (1− t)y) ≤
(

sin
πt

2

)
f(x) +

(
cos

πt

2

)
f(y)

≤
(

sin
πt

2

)
Qf (x, y) +

(
cos

πt

2

)
Qf (x, y)

=

(
sin

πt

2
+ cos

πt

2

)
Qf (x, y).

Theorem 2.4. Let f : [a, b] → R and c ∈ R (c ≥ 0). If f is trigono-
metrically quasi-convex functions, then cf is trigonometrically quasi-convex
function.

Proof. Let f be trigonometrically quasi-convex function and c ∈ R ( c ≥ 0),
then

(cf) (tx+ (1− t)y) ≤ c

(
sin

πt

2
+ cos

πt

2

)
Qf (x, y)

=

(
sin

πt

2
+ cos

πt

2

)
Qcf (x, y).

Theorem 2.5. If f : I → J is convex and g : J → R is trigonometrically
quasi-convex function and nondecreasing then g ◦ f : I → R is a trigonometri-
cally quasi-convex function.

Proof. For x, y ∈ I and t ∈ [0, 1] , we get

(g ◦ f) (tx+ (1− t)y) = g (f (tx+ (1− t)y))

≤ g (tf(x) + (1− t)f(y))

≤
(

sin
πt

2
+ cos

πt

2

)
Qg(f(x), f(y))

=

(
sin

πt

2
+ cos

πt

2

)
Qg◦f (x, y) .

This completes the proof of theorem.

3. Hermite-Hadamard inequality for trigonometrically quasi-convex
functions

The goal of this paper is to establish some inequalities of Hermite-Hadamard
type for trigonometrically quasi-convex functions.

We will denote by L [a, b] the space of (Lebesgue) integrable functions on
[a, b] .
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Theorem 3.1. Let f : [a, b] → R be a trigonometrically quasi-convex
function. If a < b and f ∈ L [a, b], then the following inequality holds:

1

b− a

∫ b

a

f(x)dx ≤ 4

π
Qf (a, b).

Proof. By using the property of the trigonometrically quasi-convex function
of the function f , if the variable is changed as u = ta+ (1− t)b, then

1

b− a

∫ b

a

f(u)du =

∫ 1

0

f (ta+ (1− t)b) dt

≤ Qf (a, b)

∫ 1

0

(
sin

πt

2
+ cos

πt

2

)
dt

=
4

π
Qf (a, b).

This completes the proof of theorem.

Theorem 3.2. Let the function f : [a, b]→ R,be a trigonometrically quasi-
convex function. If a < b and f ∈ L [a, b], then the following inequality holds:

f

(
a+ b

2

)
≤ 2
√

2

b− a

∫ b

a

f(x)dx.

Proof. From the propery of the trigonometrically P -function of the function
f , we get

f

(
a+ b

2

)
= f

(
[ta+ (1− t)b] + [(1− t)a+ tb]

2

)
= f

(
1

2
[ta+ (1− t)b] +

1

2
[(1− t)a+ tb]

)
≤

(
sin

π

4
+ cos

π

4

)
Qf (ta+ (1− t)b, (1− t)a+ tb)

=
√

2Qf (ta+ (1− t)b, (1− t)a+ tb).

Now, if we take integral in the last inequality with respect to t ∈ [0, 1], we
deduce that

f

(
a+ b

2

)
≤
√

2

[∫ 1

0

f (ta+ (1− t)b) dt+

∫ 1

0

f ((1− t)a+ tb) dt

]
=
√

2

[
1

a− b

∫ a

b

f(x)dx+
1

b− a

∫ b

a

f(y)dy

]

=
2
√

2

b− a

∫ b

a

f(x)dx.

This completes the proof of theorem.
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4. Some new inequalities for trigonometrically quasi-convex func-
tion

The main purpose of this section is to establish new estimates that refine
Hermite-Hadamard inequality for functions whose first derivative in absolute
value, raised to a certain power which is greater than one, respectively at least
one, is trigonometrically quasi-convex function. Dragomir and Agrawal [1] used
the following lemma:

Lemma 4.1. Let f : I◦ ⊆ R → R be a differentiable mapping on I◦,
a, b ∈ I◦ with a < b. If f ′ ∈ L [a, b], then

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx =
b− a

2

∫ 1

0

(1− 2t)f ′ (ta+ (1− t)b) dt.

Note that we will use the following integrals in this section:∫ 1

0

sin
πt

2
dt =

∫ 1

0

cos
πt

2
dt =

2

π
,

∫ 1

0

|1− 2t|p dt =
1

p+ 1∫ 1

0

|1− 2t| sinπt
2
dt =

∫ 1

0

|1− 2t| cos
πt

2
dt =

2

π2

(
π − 4

(√
2− 1

))
.

Theorem 4.2. Let f : I → R be a differentiable mapping on I◦, a, b ∈ I◦
with a < b and assume that f ′ ∈ L [a, b]. If |f ′| is trigonometrically quasi-
convex function on interval [a, b], then the following inequality holds∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ 2 (b− a)

[
1

π
− 4

π2

(√
2− 1

)]
Q|f ′|(a, b).

Proof. Using Lemma 4.1 and the inequality

|f ′ (ta+ (1− t)b)| ≤
(

sin
πt

2
+ cos

πt

2

)
Q|f ′|(a, b),

we get ∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ b− a

2

∫ 1

0

|1− 2t| |f ′ (ta+ (1− t)b)| dt

≤ b− a
2

Q|f ′|(a, b)

∫ 1

0

|1− 2t|
(

sin
πt

2
+ cos

πt

2

)
dt

=
b− a

2
Q|f ′|(a, b)

[∫ 1

0

|1− 2t| sinπt
2
dt+

∫ 1

0

|1− 2t| cos
πt

2
dt

]
= 2 (b− a)

[
1

π
− 4

π2

(√
2− 1

)]
Q|f ′|(a, b).

This completes the proof of theorem.
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Theorem 4.3. Let f : I → R be a differentiable mapping on I◦, a, b ∈ I◦
with a < b and assume that f ′ ∈ L [a, b]. If |f ′|q , q > 1, is an trigonometrically
quasi-convex function on interval [a, b], then the following inequality holds∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a
2

(
1

p+ 1

) 1
p
(

4

π

) 1
q

Q|f ′|(a, b),

where 1
p + 1

q = 1.

Proof. Using Lemma 4.1, Hölder’s integral inequality and the following in-
equality

|f ′ (ta+ (1− t)b)|q ≤
(

sin
πt

2
+ cos

πt

2

)
Q|f ′|q (a, b)

which is the trigonometrically quasi-convex function of |f ′|q, we get∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ b− a

2

(∫ 1

0

|1− 2t|p dt
) 1

p
(∫ 1

0

|f ′ (ta+ (1− t)b)|q dt
) 1

q

≤ b− a
2

(
1

p+ 1

) 1
p
(∫ 1

0

[(
sin

πt

2
+ cos

πt

2

)
Q|f ′|q (a, b)

]
dt

) 1
q

=
b− a

2

(
1

p+ 1

) 1
p
(

4

π

) 1
q

Q|f ′|(a, b).

This completes the proof of theorem.

Theorem 4.4. Let f : I ⊆ R → R be a differentiable mapping on I◦,
a, b ∈ I◦ with a < b and assume that f ′ ∈ L [a, b]. If |f ′|q , q ≥ 1, is an
trigonometrically quasi-convex function on the interval [a, b], then the following
inequality holds ∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ b− a

22− 2
q

Q|f ′|(a, b)

(
1

π
− 4

π2

(√
2− 1

)) 1
q

Proof. Assume first that q > 1. From Lemma 4.1, Hölder integral inequality
and the property of the trigonometrically quasi-convex function of |f ′|q, we
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obtain ∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ b− a

2

(∫ 1

0

|1− 2t| dt
)1− 1

q
(∫ 1

0

|1− 2t| |f ′ (ta+ (1− t)b)|q dt
) 1

q

=
b− a

2

(∫ 1

0

|1− 2t| dt
)1− 1

q

×
(∫ 1

0

|1− 2t|
[(

sin
πt

2
+ cos

πt

2

)
Q|f ′|q (a, b)

]
dt

) 1
q

=
b− a
22− 3

q

Q|f ′|(a, b)

(
1

π
− 4

π2

(√
2− 1

)) 1
q

.(1)

It can be seen that

(2)

∫ 1

0

|1− 2t| sinπt
2
dt =

∫ 1

0

|1− 2t| cos
πt

2
dt =

2

π2

(
π − 4

(√
2− 1

))
.

By substituting (2) in (1), the desired result is obtained.

For q = 1 we use the estimates from the proof of Theorem 4.2, which also
follow step by step the above estimates.

This completes the proof of theorem.

Corollary 4.5. Under the assumption of Theorem 4.4 with q = 1, we get
the conclusion of Theorem 4.2.

5. An extention of Theorem 4.2

In this section we will denote by A an open and convex set of Rn (n ≥ 1).

We say that a function f : A→ R is trigonometrically quasi-convex on A if

f (tx+ (1− t)y) ≤
(

sin
πt

2
+ cos

πt

2

)
Qf (x, y)

for all x, y ∈ A and t ∈ [0, 1].

Lemma 5.1. Let f : A → R be a function. Then f is trigonometrically
quasi-convex on A if and only if for all x, y ∈ A the function Φ : [0, 1] → R,
Φ(t) = f (tx+ (1− t)y) is trigonometrically quasi-convex on [0, 1] .

Proof. ”⇐=”Let x, y ∈ A be fixed. Assume that Φ : [0, 1] → R, Φ(t) =
f (tx+ (1− t)y) is trigonometrically quasi-convex on [0, 1] .
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Let t ∈ [0, 1] be arbitrary, but fixed. Clearly, t = (1− t).0 + t.1 and thus,

f (tx+ (1− t)y) = Φ(t) = Φ((1− t).0 + t.1)

≤
(

sin
πt

2
+ cos

πt

2

)
QΦ(0, 1)

=

(
sin

πt

2
+ cos

πt

2

)
Qf (x, y).

It follows that f is quasi-convex on A.
”=⇒” Assume that f is trigonometrically quasi-convex on A. Let x, y ∈ A

be fixed and define Φ : [0, 1]→ R, Φ(t) = f (tx+ (1− t)y) . We must show that
Φ is trigonometrically quasi-convex on [0, 1] .

Let u1, u2 ∈ [0, 1] and t ∈ [0, 1]. Then

Φ(tu1 + (1− t)u2) = f ((tu1 + (1− t)u2)x+ (1− tu1 − (1− t)u2)y)

= f (t(u1x+ (1− u1)y + (1− t)(u2x+ (1− u2)y)

≤
(

sin
πt

2
+ cos

πt

2

)
Qf (u1x+ (1− u1)y, u2x+ (1− u2)y)

=

(
sin

πt

2
+ cos

πt

2

)
QΦ(u1, u2).

We deduce that Φ is quasi-convex on [0, 1].
The proof of Lemma 5.1 is complete.

Using the above lemma we will prove an extension of Theorem 4.2 to func-
tions of several variables.

Proposition 5.2. Assume f : A ⊆ Rn → R+ is a trigonometrically quasi-
convex function on A. Then for any x, y ∈ A and any u, v ∈ (0, 1) with u < v
the following inequality holds true∣∣∣∣12

∫ u

0

f (sx+ (1− s)y) ds+
1

2

∫ v

0

f (sx+ (1− s)y) ds

− 1

v − u

∫ v

u

(∫ θ

0

f (sx+ (1− s)y) ds

)
dθ

∣∣∣∣∣(3)

≤ 2 (v − u)

[
1

π
− 4

π2

(√
2− 1

)]
Qf (ux+ (1− u)y, vx+ (1− v)y).

Proof. We fix x, y ∈ A and u, v ∈ (0, 1) with u < v. Since f is trigonomet-
rically quasi-convex, by Lemma 5.1 it follows that the function

Φ : [0, 1]→ R,Φ(t) = f (tx+ (1− t)y) ,

is trigonometrically quasi-convex on [0, 1] .
Define Ψ : [0, 1]→ R,

Ψ(t) =

∫ t

0

Φ(s)ds =

∫ t

0

f (sx+ (1− s)y) ds.
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Obviously, Ψ′(t) = Φ(t) for all t ∈ (0, 1) .

Since f(A) ⊆ R+ it results that Φ ≥ 0 on [0, 1] and thus, Ψ′ ≥ 0 on (0, 1) .

Applying Theorem 4.2 to the function Ψ we obtain∣∣∣∣Ψ(u) + Ψ(v)

2
− 1

v − u

∫ v

u

Ψ(θ)dθ

∣∣∣∣ ≤ 2 (v − u)

[
1

π
− 4

π2

(√
2− 1

)]
Q|Ψ′|(u, v),

and we deduce that relation (3) holds true.

Remark 5.3. We point out that a similar result as those of Proposition
5.2 can be stated by using Theorem 4.3 and Theorem 4.4 .

6. Applications to the trapezoidal formula

Assume ℘ is a division of the interval [a, b] such that

℘ : a = x0 < x1 < ... < xn−1 < xn = b.

For a given function f : [a, b]→ R we consider the trapezoidal formula

T (f, ℘) =

n−1∑
i=0

f(xi) + f(xi+1)

2
(xi+1 − xi) .

It is well known that if f is twice differentiable on (a, b) andM = supx∈(a,b) |f ′′(x)| <
∞ then ∫ b

a

f(x)dx = T (f, ℘) + E (f, ℘) ,

where E (f, ℘) is the approximation error of the integral
∫ b
a
f(x)dx by the

trapezoidal formula and satisfies,

(4) |E (f, ℘)| ≤ M

12

n−1∑
i=0

(xi+1 − xi)3
.

Clearly, if the function f is not twice differentiable or the second derivative
is not bounded on (a, b), then (4) does not hold true. In that context, the
following results are important in order to obtain some estimates of E (f, ℘).

Proposition 6.1. Assume a, b ∈ R with a < b and f : [a, b] → R is a
differentiable function on (a, b). If |f ′| is trigonometrically quasi-convex on
[a, b] then for each division ℘ of the interval [a, b] we have,

(5) |E (f, ℘)| ≤ 2
√

2

[
1

π
− 4

π2

(√
2− 1

)]
Q|f ′|(a, b)

n−1∑
i=0

(xi+1 − xi)2
.
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Proof. We apply Theorem 4.2 on the sub-intervals [xi, xi+1], i = 0, 1, ..., n−1
given by the division ℘. Adding from i = 0 to i = n− 1 we deduce
(6)∣∣∣∣∣T (f, ℘)−

∫ b

a

f(x)dx

∣∣∣∣∣ ≤
n−1∑
i=0

(xi+1 − xi)2
2

[
1

π
− 4

π2

(√
2− 1

)]
Q|f ′|(xi, xi+1).

On the other hand, for each xi ∈ [a, b] there exists ti ∈ [0, 1] such that xi = tia+

(1 − ti)b. Since |f ′| is trigonometrically quasi-convex and sinπt2 + cosπt2 ≤
√

2
for all t ∈ [0, 1], we deduce

(7) |f ′(xi)| ≤
(

sin
πt

2
+ cos

πt

2

)
Q|f ′|(a, b) ≤

√
2Q|f ′|(a, b)

for each i = 0, 1, ..., n − 1. Relations (6) and (7) imply that relation (5) holds
true. Thus, Proposition 5.2 is completely proved.

A similar method as that used in the proof of Proposition 6.1 but based on
Theorem 4.3 and Theorem 4.4 shows that the following results are valid.

Proposition 6.2. Assume a, b ∈ R with a < b and f : [a, b] → R is a
differentiable function on (a, b). If |f ′|q , q > 1, is an trigonometrically quasi-
convex function on interval [a, b], then for each division ℘ of the interval [a, b]
we have,

|E (f, ℘)| ≤ 1√
2

(
1

p+ 1

) 1
p
(

4

π

) 1
q

Q|f ′|(a, b)

n−1∑
i=0

(xi+1 − xi)2
,

where 1
p + 1

q = 1.

Proposition 6.3. Assume a, b ∈ R with a < b and f : [a, b] → R is a
differentiable function on (a, b). If |f ′|q , q > 1, is an trigonometrically quasi-
convex function on interval [a, b], then for each division ℘ of the interval [a, b]
we have,

|E (f, ℘)| ≤ 1

2
3
2−

2
q

(
1

π
− 4

π2

(√
2− 1

)) 1
q

Q|f ′|(a, b)

n−1∑
i=0

(xi+1 − xi)2
.
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