Honam Mathematical J. 43 (2021), No. 1, pp. 123-129
https://doi.org/10.5831/HMJ.2021.43.1.123

CONNECTEDNESS IN IDEAL PROXIMITY SPACES

BEENU SINGH* AND DAVINDER SINGH

Abstract. Two new concepts, namely, §*-connectedness and §*-component
are introduced by using ideal in proximity spaces. A relation of §*-
connectedness with different types of connectedness that are considered
in literature before is studied. It is shown that §*-connectedness is a
contractive property.

1. Introduction

Kuratowski [6] and Vaidyanathaswamy [11] introduced the concept of ideal
topological spaces. Subsequently, Ekici et al. [2, 3] defined the notion of con-
nectedness in ideal topological spaces. Recently, various types of connectedness
in ideal topological spaces are further investigated by Modak et al. [7]. Also,
Hosny et al. [4] studied the notion of generalized proximity using ideal and
proximity.

The aim of this paper is to introduce the notion of §*-connectedness by using
ideal in proximity spaces that is analogous to the notion of *s-connectedness
in ideal topological spaces [2]. Also, we study 6*-component and the rela-
tion of it with d-component and *-component. In Section 2, we recall some
basic definitions and results which will be used in further sections. We de-
fine 6*-connectedness and examine the relationship between d*-connectedness
and different types of connectedness that are already in literature in Section
3. In the last section, we discuss the characterizations of §*-connectedness
and, examples are given for those characterizations that do not hold under this
connectedness.

Throughout this paper, by a proximity space (X, d) (or X) [10], we mean a
nonempty set X with an Efremovic¢ proximity §. Also, an ideal proximity space
(X,6,7) will denote a proximity space (X, ) with an ideal Z in X. Further,
a 0-closed (or 6*-closed) set in an ideal proximity space is a closed set with
respect to the topology Ts generated by § (or closed set with respect to Ts«).
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2. Preliminaries

Definition 2.1. [5] Let Z be an ideal in X and Y be a subset of X. Then
the collection Iy = {ANY : A€ T} isanidealinY.

Definition 2.2. [4] Let (X, d,Z) be an ideal proximity space. Then a subset
A is said to be locally in T at x € X if there is a 6-neighbourhood U of x such
that (UNA) € Z. Thus, the local function A* of A with respect to 0 and T is
defined as:

A*=J{z € X : (UNA) ¢ T for every d-neighbourhood U of x}.

Theorem 2.3. [4] Let (X,d,Z) be an ideal proximity space and A, B be
the subsets of X. Then
(i) The operator C defined by C(A) = AU A* is Kuratowski closure operator.
(#4) The relation 6* defined by (A, B) € §* if and only if C(A) NC(B) # ¢ is
a basic proximity on X. Moreover, §* is finer than 0.
) 6% < (da)*, the equality holds if A is d-closed.
w) Ts« C (Ts)*.
(v) Cls«(A) C Cls(A) and every d-closed is 6*-closed.
Theorem 2.4. [4] Let (X, ) be a proximity space and Z, J be the ideals
in X. For A C X, the following statements hold:
(i) IfT C J, then A*(J) C A*(T).
(5) A*(INJ)=A*T)UA*(T).

Definition 2.5. [9, 10] Let (X,0) and (Y, (5l) be two proximity spaces, a
function f : (X,8) — (Y,48) is d-continuous if (f(A), f(B)) € § whenever
(A,B) €é forall A,B C X.

Theorem 2.6. [8] Let (X,0) be a proximity space. Then the following
statements are equivalent:
(i) X is 6-connected.
(i3) (A, X\A) € ¢ for each nonempty subset A with A # X.
(#i7) Every d-continuous function from X to a discrete space is constant.
(iv) If X = AU B and (A, B) ¢ ¢, then either A= ¢ or B = ¢.
Definition 2.7. [1] Let (X, ) be a proximity space. Then d-component of
x in X is the union of all 6-connected subsets of X containing x.
Definition 2.8. [1] Let C be a cover of proximity space X. Then C is called

proximity cover of X, if for any two near sets P, Q there is some U € C such
that PNU # ¢ and QNU # ¢.

Definition 2.9. [2] Let (X,7,Z) be an ideal space. A subset M is said to
be *s-connected if it cannot be written as M = P U Q with CI*(P)NQ = ¢
and PN ClI(Q) = ¢.

Definition 2.10. [2] Let (X,T,Z) be an ideal space and x € X. Then
x-component of x in X is the union of all *s-connected subsets containing x.
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3. *-Connectedness

In this section, the notion of §*-connectedness is defined and the relationship
between different connectednesses is studied.

Definition 3.1. Let (X,0,Z) be an ideal proximity space. Then a pair P,
Q of nonempty subsets of X is said to be §*-separation for X if X = PUQ
with (Cls(P), Q) ¢ 0*.

Definition 3.2. Let (X,0,Z) be an ideal proximity space. Then X is
called 6*-connected if it has no 6*-separation. Otherwise, X is said to be 0*-
disconnected.

Theorem 3.3. For an ideal proximity space (X, §,T), the following state-
ments are equivalent:

(1) X is §*-connected.
(#) (Cls(P),X\P) € §* for every nonempty subset P C X.
(#41) If X = PUQ with (Cls(P),Q) ¢ 6*, then either P = ¢ or Q = ¢.

Proof. (i) = (it). Let (Cls(P), X\P) ¢ 6* for some nonempty subset P of
X, then the pair P and X\ P forms §*-separation for X.

(i) = (¢it). Suppose there are two nonempty subsets P and @ such that
X = PUQ with (Cls(P),Q) ¢ 6*. Thus, (Cls(P), X\P) = (Cls(P),Q) ¢ 0%,
a contradiction.

(#91) = (i). If X is not 0*-connected, then there exists a pair P, @ of
nonempty subsets such that X = PUQ with (Cls(P),Q) ¢ 6*. O

Definition 3.4. Let (X,0,Z) be an ideal proximity space. Then a subset
Y of X is said to be:
(i) 0*-connected if Y = P U Q with (Cls(P),Q) ¢ 6*, then either P = ¢ or
Q=9
(#4) 03 -connected if Y = P U Q with (Cls, (P),Q) ¢ 65, then either P = ¢
or QQ = ¢.
(#it) (Oy)*-connected if Y = P U Q with (Cls, (P),Q) ¢ (dy)*, then either
P=¢orQ=¢.

We observe that every (dy)*-connected proximity subspace is d5--connected
as (dy)* > 6}. However, both connectedness are same if Y is d-closed. Also,
every dy--connected subspace is §*-connected.

A pair of nonempty subsets P, @ is said to be *,-separation [2] for a subset
Y of ideal space (X,7,Z)if Y = PUQ with CI*(P)NQ = PNCLQ) = ¢.

Proposition 3.5. Every *g-connected subset of ideal proximity space is
0*-connected.

Proof. Suppose the pair P, be a ¢*-separation for subspace Y of ideal
proximity space X. Then, Cls(P)NQ = ¢ and PN Cls«(Q) = ¢. Since
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Ts- C (Ts)*, therefore, Cl7; (P)NQ = ¢ = PN Cl7;)-(Q). Thus, the pair P,Q
forms a *¢-separation for Y. O

However, the converse of Proposition 3.5 may not be true.

Example 3.6. Let Q be the space of rational numbers with usual proximity
and Iy be an ideal consisting of all the finite subsets of Q. Then Q is ¢6*-
connected but not x4-connected.

Every é*-connected space is d-connected. Let Z be an ideal consisting of
empty set, then §*-connectedness and d-connectedness coincides. Thus, §*-
connectedness naturally generalizes the J-connectedness.

Following example shows that there may exist an ideal other than the empty
set for which §-connectedness and d*-connectedness are same.

Example 3.7. Let X be any compact T-proximity space and Z; be the
ideal consisting of all finite subsets of X. Then §-connectedness and §*-
connectedness are same. A similar result holds for X if the ideal Z., consists
all closed discrete subsets of X.

An example of §-connected proximity space which is not §*-connected.

Example 3.8. (i). Let X = [0,1] U (Q\(Q N [0,1])) with usual subspace
proximity induced from R. Let I. be an ideal consisting of all countable subsets
of X. Then X is d-connected but not 0*-connected. To verify the latter, take
A = [0,1] then Cls(A) = A. Therefore, (Cls(A), X\A) € §* if and only if
C(Cls(A)) NC(X\A) # ¢, that is, C(A) N C(X\A) # ¢. Since C(A) = A and
C(X\A) = X\A, therefore (Cls(A), X\A) ¢ 6*.

(#4). Let R be the Real line with usual proximity 6 and I be the ideal
consisting of all subsets of R. Then the proximity §*(generated by T) is discrete
proximity. Therefore, R is §-connected but not §*-connected.

Following diagram shows the relationship between connectednesses in an
ideal proximity space.

*g-connected connected

6*-connected d-connected

Proposition 3.9. Let 7 and J be two ideals in proximity space X such
that T C J. Then X is 6*(Z)-connected if it is §*(J)-connected.

Proof. Suppose X is 6*(J)-connected. Then, (Cls(P), X\P) € 6*(J) for
all nonempty proper subset P of X. Since Z C J, so by Theorem 2.4, P*(J) C
P*(Z). Therefore, C(5,7)(P) C C5,7)(P). Thus, (Cls(P), X\P) € §*(Z) for all
nonempty proper subset P of X. Therefore, X is 6*(Z)-connected. O
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Proposition 3.9 shows that §*-connectedness is a contractive property.

4. Characterizations of §*-Connectedness

Lemma 4.1. Let (Y,0y,Zy) be a 6*-connected subspace of (X,0,7). If P
and @ are subsets of X such that Y C PUQ with (Cls(P),Q) ¢ 6*, then either
YCPorY CQ.

Proof. Y = (PNY)U(QNY) with (Cls(PNY), (QNY)) ¢ 6* as Cls(PNY) C
Cls(P). Therefore, either PNY =g or QNY = ¢. O

Theorem 4.2. Let {(Y;,0y,,Zy;) : i € J} be a collection of §*-connected
subspaces of (X,8,Z). Suppose there is some iy such that (Y;,,Y;) € §* for
every i € J. ThenY = |J;c;Yi is 6*-connected.

Proof. Suppose Y is not d*-connected. Then there exists a pair P, @ of
nonempty subsets such that Y = P U Q with (Cl5(P),Q) ¢ ¢*. By Lemma
4.1, either V;, C Por Y;, C Q. If Y;, C P, then Y; C P for all ¢ € J because
if Y; € @ for some i € J, then (Y;,,Y;) ¢ 6%, a contradiction. Similarly, if
Y, CQ,thenY; C Q forall i € J. O

Corollary 4.3. Let {(Y;,0y,,Zy,) : i € J} be a collection of §*-connected
subspaces of (X,6,7). If Y;NY; # ¢ for alli,j € J, thenY = |J,.,;Y; is
0*-connected.

ieJ

Lemma 4.4. Let (Y, dy,Zy) be a 6*-connected subspace of (X,8,Z). Then
every subspace W such that Y C W C Cls-(Y) is 6*-connected.

Proof. Consider a collection {Y U {p} : p € W} of ¢*-connected subspaces
of X. By Corollary 4.3, W is §*-connected. O

Lemma 4.5. Let (X,6,7) be an ideal proximity space. Suppose for every
pair of points x,y € X, there is §*-connected subspace which joins them. Then
X is §*-connected.

Proof. Fix some zy € X. Assume that Y, be the 6*-connected subspace
joining x to xp. Then by Corollary 4.3, X being union of {Y, : z € X} is
0*-connected. O

Corollary 4.6. Let Z be an ideal in proximity space X and Y be another
proximity space such that f : (X,6x) — (Y,dy) is d-continuous surjective
map. Then Y is §-connected if X is §*-connected.

Proof. Since every §*-connected proximity space is J-connected and d-connectedness
is preserved under d-continuous map, therefore Y is §-connected. O
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Definition 4.7. A finite family {A; : 1 <i < n} of subsets of an ideal prox-
imity space X is called 6*-chain if (A;, Aj4+1) € 6* foreachi=1,2,3,--- ,n—1.
An arbitrary family F of subsets of X is said to be §*-chained if for every pair
A, B of elements ofF, there is a §*-chain in F which joins A and B.

Theorem 4.8. Let (X,d,Z) be an ideal proximity space. If each member
of the §*-chained family F = {A; : i € J} is *-connected, then A = |J,.; A;
is also 6*-connected.

Proof. Using Theorem 4.2, the result is true for J = {1,2}. By induction
the result can be proved for any finite set J = {1,2,--- ,n}.

For an arbitrary ordered set J, Let z,y € A. Then z € A; and y € A;
for some i,j € J. Therefore there is a ¢*-chain C in F joining A; and A; as
F is 0*-chained family. Since each member of C is §*-connected, therefore by
induction hypothesis (J, .o Ar is 0*-connected. Hence, by Lemma 4.5, A is
0*-connected. O

Theorem 4.9. Let (X,06,Z) be a §*-connected ideal proximity space. Then
every proximity cover of X is a §*-chained family.

Proof. Let F = {U; : i € J} be a proximity cover of X. Suppose there
exist U; and U; for some 4, j € J such that U; and U; cannot be joined by any
0*-chain.

Now put P = |J{Ur € F : Uy can be joined with U; by some d*-chain} and
Q@ as the union of all other elements of 7. Then, X = PU Q. It is to show
that (Cls5(P),Q) ¢ 6*. Let (Cls(P),Q) € §* which implies (P, Q) € 4. By the
definition of proximity cover there is some U € F such that U N P # ¢ and
UNQ # ¢. Therefore, there are U, C P and U, C @ such that UNU, # ¢ and
UNUg # ¢. Hence, U, can be joined with U; by some §*-chain. Thus, U; can
be joined with U; by some §*-chain, a contradiction. Hence, (Cls(P), Q) ¢ §*,
which is a contradiction. O

Definition 4.10. Let (X,d,Z) be an ideal proximity space and x € X.
Then the §*-component of x is the union of all §*-connected subsets of X
which contain x and it is denoted by Cs«(z).

By Corollary 4.3, for each x in ideal proximity space X, the d*-component
Cs+ () is §*-connected. Note that the §*-components of any two distinct points
of X are either same or 0*-far sets in X. The d*-components of an ideal
proximity space not necessarily coincide with the *-components with respect to
topology Ts. From Example 3.6, Q is §*-connected, therefore the §*-component
of any x € Q is Q itself. But *-component of any = € Q is {x} itself because
every x-component is contained in a component.

Also note that every d*-component is contained in some d-component and
every x-component is contained in some ¢*-component.

Corollary 4.11. For an ideal proximity space (X, d,Z), Every §*-component
of X is x-closed with respect to Ts. (In fact, 6*-closed)
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Proof. Let C be §*-component of X. Since CI*(C) C Cls«(C), therefore

by Lemma 4.4, C1*(C) is §*-connected. Thus, by maximality of §*-component

Cl*(C) C C, that is, C is *-closed in the topology Ts. O
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