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CONNECTEDNESS IN IDEAL PROXIMITY SPACES

Beenu Singh∗ and Davinder Singh

Abstract. Two new concepts, namely, δ∗-connectedness and δ∗-component

are introduced by using ideal in proximity spaces. A relation of δ∗-
connectedness with different types of connectedness that are considered

in literature before is studied. It is shown that δ∗-connectedness is a
contractive property.

1. Introduction

Kuratowski [6] and Vaidyanathaswamy [11] introduced the concept of ideal
topological spaces. Subsequently, Ekici et al. [2, 3] defined the notion of con-
nectedness in ideal topological spaces. Recently, various types of connectedness
in ideal topological spaces are further investigated by Modak et al. [7]. Also,
Hosny et al. [4] studied the notion of generalized proximity using ideal and
proximity.

The aim of this paper is to introduce the notion of δ∗-connectedness by using
ideal in proximity spaces that is analogous to the notion of ∗s-connectedness
in ideal topological spaces [2]. Also, we study δ∗-component and the rela-
tion of it with δ-component and ∗-component. In Section 2, we recall some
basic definitions and results which will be used in further sections. We de-
fine δ∗-connectedness and examine the relationship between δ∗-connectedness
and different types of connectedness that are already in literature in Section
3. In the last section, we discuss the characterizations of δ∗-connectedness
and, examples are given for those characterizations that do not hold under this
connectedness.

Throughout this paper, by a proximity space (X, δ) (or X) [10], we mean a
nonempty set X with an Efremovič proximity δ. Also, an ideal proximity space
(X, δ, I) will denote a proximity space (X, δ) with an ideal I in X. Further,
a δ-closed (or δ∗-closed) set in an ideal proximity space is a closed set with
respect to the topology Tδ generated by δ (or closed set with respect to Tδ∗).

Received October 28, 2020. Revised December 22, 2020. Accepted January 5, 2021.
2020 Mathematics Subject Classification. 03E15, 54E05.

Key words and phrases. δ-connected, δ-component, ∗s-connected, ∗-component, Ideal.

*Corresponding author



124 Beenu Singh, Davinder Singh

2. Preliminaries

Definition 2.1. [5] Let I be an ideal in X and Y be a subset of X. Then
the collection IY = {A ∩ Y : A ∈ I} is an ideal in Y .

Definition 2.2. [4] Let (X, δ, I) be an ideal proximity space. Then a subset
A is said to be locally in I at x ∈ X if there is a δ-neighbourhood U of x such
that (U ∩ A) ∈ I. Thus, the local function A∗ of A with respect to δ and I is
defined as:

A∗ =
⋃
{x ∈ X : (U ∩A) /∈ I for every δ-neighbourhood U of x}.

Theorem 2.3. [4] Let (X, δ, I) be an ideal proximity space and A, B be
the subsets of X. Then

(i) The operator C defined by C(A) = A∪A∗ is Kuratowski closure operator.
(ii) The relation δ∗ defined by (A,B) ∈ δ∗ if and only if C(A) ∩ C(B) 6= φ is

a basic proximity on X. Moreover, δ∗ is finer than δ.
(iii) δ∗A < (δA)∗, the equality holds if A is δ-closed.
(iv) Tδ∗ ⊂ (Tδ)∗.
(v) Clδ∗(A) ⊂ Clδ(A) and every δ-closed is δ∗-closed.

Theorem 2.4. [4] Let (X, δ) be a proximity space and I, J be the ideals
in X. For A ⊂ X, the following statements hold:

(i) If I ⊂ J , then A∗(J ) ⊂ A∗(I).
(ii) A∗(I ∩ J ) = A∗(I) ∪A∗(J ).

Definition 2.5. [9, 10] Let (X, δ) and (Y, δ
′
) be two proximity spaces, a

function f : (X, δ) −→ (Y, δ
′
) is δ-continuous if (f(A), f(B)) ∈ δ

′
whenever

(A,B) ∈ δ for all A,B ⊂ X.

Theorem 2.6. [8] Let (X, δ) be a proximity space. Then the following
statements are equivalent:

(i) X is δ-connected.
(ii) (A,X\A) ∈ δ for each nonempty subset A with A 6= X.

(iii) Every δ-continuous function from X to a discrete space is constant.
(iv) If X = A ∪B and (A,B) /∈ δ, then either A = φ or B = φ.

Definition 2.7. [1] Let (X, δ) be a proximity space. Then δ-component of
x in X is the union of all δ-connected subsets of X containing x.

Definition 2.8. [1] Let C be a cover of proximity space X. Then C is called
proximity cover of X, if for any two near sets P,Q there is some U ∈ C such
that P ∩ U 6= φ and Q ∩ U 6= φ.

Definition 2.9. [2] Let (X, T , I) be an ideal space. A subset M is said to
be ∗s-connected if it cannot be written as M = P ∪ Q with Cl∗(P ) ∩ Q = φ
and P ∩ Cl(Q) = φ.

Definition 2.10. [2] Let (X, T , I) be an ideal space and x ∈ X. Then
∗-component of x in X is the union of all ∗s-connected subsets containing x.
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3. δ∗-Connectedness

In this section, the notion of δ∗-connectedness is defined and the relationship
between different connectednesses is studied.

Definition 3.1. Let (X, δ, I) be an ideal proximity space. Then a pair P ,
Q of nonempty subsets of X is said to be δ∗-separation for X if X = P ∪ Q
with (Clδ(P ), Q) /∈ δ∗.

Definition 3.2. Let (X, δ, I) be an ideal proximity space. Then X is
called δ∗-connected if it has no δ∗-separation. Otherwise, X is said to be δ∗-
disconnected.

Theorem 3.3. For an ideal proximity space (X, δ, I), the following state-
ments are equivalent:

(i) X is δ∗-connected.
(ii) (Clδ(P ), X\P ) ∈ δ∗ for every nonempty subset P ( X.

(iii) If X = P ∪Q with (Clδ(P ), Q) /∈ δ∗, then either P = φ or Q = φ.

Proof. (i) ⇒ (ii). Let (Clδ(P ), X\P ) /∈ δ∗ for some nonempty subset P of
X, then the pair P and X\P forms δ∗-separation for X.

(ii) ⇒ (iii). Suppose there are two nonempty subsets P and Q such that
X = P ∪Q with (Clδ(P ), Q) /∈ δ∗. Thus, (Clδ(P ), X\P ) = (Clδ(P ), Q) /∈ δ∗,
a contradiction.

(iii) ⇒ (i). If X is not δ∗-connected, then there exists a pair P , Q of
nonempty subsets such that X = P ∪Q with (Clδ(P ), Q) /∈ δ∗.

Definition 3.4. Let (X, δ, I) be an ideal proximity space. Then a subset
Y of X is said to be:

(i) δ∗-connected if Y = P ∪ Q with (Clδ(P ), Q) /∈ δ∗, then either P = φ or
Q = φ.

(ii) δ∗Y -connected if Y = P ∪ Q with (ClδY (P ), Q) /∈ δ∗Y , then either P = φ
or Q = φ.

(iii) (δY )∗-connected if Y = P ∪ Q with (ClδY (P ), Q) /∈ (δY )∗, then either
P = φ or Q = φ.

We observe that every (δY )∗-connected proximity subspace is δ∗Y -connected
as (δY )∗ > δ∗Y . However, both connectedness are same if Y is δ-closed. Also,
every δ∗Y -connected subspace is δ∗-connected.

A pair of nonempty subsets P , Q is said to be ∗s-separation [2] for a subset
Y of ideal space (X, T , I) if Y = P ∪Q with Cl∗(P ) ∩Q = P ∩ Cl(Q) = φ.

Proposition 3.5. Every ∗s-connected subset of ideal proximity space is
δ∗-connected.

Proof. Suppose the pair P,Q be a δ∗-separation for subspace Y of ideal
proximity space X. Then, Clδ(P ) ∩ Q = φ and P ∩ Clδ∗(Q) = φ. Since
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Tδ∗ ⊂ (Tδ)∗, therefore, ClTδ(P )∩Q = φ = P ∩Cl(Tδ)∗(Q). Thus, the pair P,Q
forms a ∗s-separation for Y .

However, the converse of Proposition 3.5 may not be true.

Example 3.6. Let Q be the space of rational numbers with usual proximity
and If be an ideal consisting of all the finite subsets of Q. Then Q is δ∗-
connected but not ∗s-connected.

Every δ∗-connected space is δ-connected. Let I be an ideal consisting of
empty set, then δ∗-connectedness and δ-connectedness coincides. Thus, δ∗-
connectedness naturally generalizes the δ-connectedness.

Following example shows that there may exist an ideal other than the empty
set for which δ-connectedness and δ∗-connectedness are same.

Example 3.7. Let X be any compact T1-proximity space and If be the
ideal consisting of all finite subsets of X. Then δ-connectedness and δ∗-
connectedness are same. A similar result holds for X if the ideal Icd consists
all closed discrete subsets of X.

An example of δ-connected proximity space which is not δ∗-connected.

Example 3.8. (i). Let X = [0, 1] ∪ (Q\(Q ∩ [0, 1])) with usual subspace
proximity induced from R. Let Ic be an ideal consisting of all countable subsets
of X. Then X is δ-connected but not δ∗-connected. To verify the latter, take
A = [0, 1] then Clδ(A) = A. Therefore, (Clδ(A), X\A) ∈ δ∗ if and only if
C(Clδ(A)) ∩ C(X\A) 6= φ, that is, C(A) ∩ C(X\A) 6= φ. Since C(A) = A and
C(X\A) = X\A, therefore (Clδ(A), X\A) /∈ δ∗.

(ii). Let R be the Real line with usual proximity δ and I be the ideal
consisting of all subsets of R. Then the proximity δ∗(generated by I) is discrete
proximity. Therefore, R is δ-connected but not δ∗-connected.

Following diagram shows the relationship between connectednesses in an
ideal proximity space.

∗s-connected connected

δ∗-connected δ-connected

Proposition 3.9. Let I and J be two ideals in proximity space X such
that I ⊂ J . Then X is δ∗(I)-connected if it is δ∗(J )-connected.

Proof. Suppose X is δ∗(J )-connected. Then, (Clδ(P ), X\P ) ∈ δ∗(J ) for
all nonempty proper subset P of X. Since I ⊂ J , so by Theorem 2.4, P ∗(J ) ⊂
P ∗(I). Therefore, C(δ,J )(P ) ⊂ C(δ,I)(P ). Thus, (Clδ(P ), X\P ) ∈ δ∗(I) for all
nonempty proper subset P of X. Therefore, X is δ∗(I)-connected.
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Proposition 3.9 shows that δ∗-connectedness is a contractive property.

4. Characterizations of δ∗-Connectedness

Lemma 4.1. Let (Y, δY , IY ) be a δ∗-connected subspace of (X, δ, I). If P
and Q are subsets of X such that Y ⊂ P ∪Q with (Clδ(P ), Q) /∈ δ∗, then either
Y ⊂ P or Y ⊂ Q.

Proof. Y = (P∩Y )∪(Q∩Y ) with (Clδ(P∩Y ), (Q∩Y )) /∈ δ∗ as Clδ(P∩Y ) ⊂
Clδ(P ). Therefore, either P ∩ Y = φ or Q ∩ Y = φ.

Theorem 4.2. Let {(Yi, δYi , IYi) : i ∈ J} be a collection of δ∗-connected
subspaces of (X, δ, I). Suppose there is some i0 such that (Yi0 , Yi) ∈ δ∗ for
every i ∈ J . Then Y =

⋃
i∈J Yi is δ∗-connected.

Proof. Suppose Y is not δ∗-connected. Then there exists a pair P , Q of
nonempty subsets such that Y = P ∪ Q with (Clδ(P ), Q) /∈ δ∗. By Lemma
4.1, either Yi0 ⊂ P or Yi0 ⊂ Q. If Yi0 ⊂ P , then Yi ⊂ P for all i ∈ J because
if Yi ⊂ Q for some i ∈ J , then (Yi0 , Yi) /∈ δ∗, a contradiction. Similarly, if
Yi0 ⊂ Q, then Yi ⊂ Q for all i ∈ J .

Corollary 4.3. Let {(Yi, δYi , IYi) : i ∈ J} be a collection of δ∗-connected
subspaces of (X, δ, I). If Yi ∩ Yj 6= φ for all i, j ∈ J , then Y =

⋃
i∈J Yi is

δ∗-connected.

Lemma 4.4. Let (Y, δY , IY ) be a δ∗-connected subspace of (X, δ, I). Then
every subspace W such that Y ⊂W ⊂ Clδ∗(Y ) is δ∗-connected.

Proof. Consider a collection {Y ∪ {p} : p ∈ W} of δ∗-connected subspaces
of X. By Corollary 4.3, W is δ∗-connected.

Lemma 4.5. Let (X, δ, I) be an ideal proximity space. Suppose for every
pair of points x, y ∈ X, there is δ∗-connected subspace which joins them. Then
X is δ∗-connected.

Proof. Fix some x0 ∈ X. Assume that Yx be the δ∗-connected subspace
joining x to x0. Then by Corollary 4.3, X being union of {Yx : x ∈ X} is
δ∗-connected.

Corollary 4.6. Let I be an ideal in proximity space X and Y be another
proximity space such that f : (X, δX) −→ (Y, δY ) is δ-continuous surjective
map. Then Y is δ-connected if X is δ∗-connected.

Proof. Since every δ∗-connected proximity space is δ-connected and δ-connectedness
is preserved under δ-continuous map, therefore Y is δ-connected.
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Definition 4.7. A finite family {Ai : 1 ≤ i ≤ n} of subsets of an ideal prox-
imity space X is called δ∗-chain if (Ai, Ai+1) ∈ δ∗ for each i = 1, 2, 3, · · · , n−1.
An arbitrary family F of subsets of X is said to be δ∗-chained if for every pair
A, B of elements ofF , there is a δ∗-chain in F which joins A and B.

Theorem 4.8. Let (X, δ, I) be an ideal proximity space. If each member
of the δ∗-chained family F = {Ai : i ∈ J} is δ∗-connected, then A =

⋃
i∈J Ai

is also δ∗-connected.

Proof. Using Theorem 4.2, the result is true for J = {1, 2}. By induction
the result can be proved for any finite set J = {1, 2, · · · , n}.

For an arbitrary ordered set J , Let x, y ∈ A. Then x ∈ Ai and y ∈ Aj
for some i, j ∈ J . Therefore there is a δ∗-chain C in F joining Ai and Aj as
F is δ∗-chained family. Since each member of C is δ∗-connected, therefore by
induction hypothesis

⋃
k∈C Ak is δ∗-connected. Hence, by Lemma 4.5, A is

δ∗-connected.

Theorem 4.9. Let (X, δ, I) be a δ∗-connected ideal proximity space. Then
every proximity cover of X is a δ∗-chained family.

Proof. Let F = {Ui : i ∈ J} be a proximity cover of X. Suppose there
exist Ui and Uj for some i, j ∈ J such that Ui and Uj cannot be joined by any
δ∗-chain.
Now put P =

⋃
{Uk ∈ F : Uk can be joined with Ui by some δ∗-chain} and

Q as the union of all other elements of F . Then, X = P ∪ Q. It is to show
that (Clδ(P ), Q) /∈ δ∗. Let (Clδ(P ), Q) ∈ δ∗ which implies (P,Q) ∈ δ. By the
definition of proximity cover there is some U ∈ F such that U ∩ P 6= φ and
U ∩Q 6= φ. Therefore, there are Up ⊂ P and Uq ⊂ Q such that U ∩Up 6= φ and
U ∩ Uq 6= φ. Hence, Uq can be joined with Ui by some δ∗-chain. Thus, Uj can
be joined with Ui by some δ∗-chain, a contradiction. Hence, (Clδ(P ), Q) /∈ δ∗,
which is a contradiction.

Definition 4.10. Let (X, δ, I) be an ideal proximity space and x ∈ X.
Then the δ∗-component of x is the union of all δ∗-connected subsets of X
which contain x and it is denoted by Cδ∗(x).

By Corollary 4.3, for each x in ideal proximity space X, the δ∗-component
Cδ∗(x) is δ∗-connected. Note that the δ∗-components of any two distinct points
of X are either same or δ∗-far sets in X. The δ∗-components of an ideal
proximity space not necessarily coincide with the ∗-components with respect to
topology Tδ. From Example 3.6, Q is δ∗-connected, therefore the δ∗-component
of any x ∈ Q is Q itself. But ∗-component of any x ∈ Q is {x} itself because
every ∗-component is contained in a component.

Also note that every δ∗-component is contained in some δ-component and
every ∗-component is contained in some δ∗-component.

Corollary 4.11. For an ideal proximity space (X, δ, I), Every δ∗-component
of X is ∗-closed with respect to Tδ. (In fact, δ∗-closed)
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Proof. Let C be δ∗-component of X. Since Cl∗(C) ⊂ Clδ∗(C), therefore
by Lemma 4.4, Cl∗(C) is δ∗-connected. Thus, by maximality of δ∗-component
Cl∗(C) ⊂ C, that is, C is ∗-closed in the topology Tδ.
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