Honam Mathematical J. ${\bf 43}$ (2021), No. 1, pp. 123–129 https://doi.org/10.5831/HMJ.2021.43.1.123

CONNECTEDNESS IN IDEAL PROXIMITY SPACES

BEENU SINGH* AND DAVINDER SINGH

Abstract. Two new concepts, namely, δ^* -connectedness and δ^* -component are introduced by using ideal in proximity spaces. A relation of δ^* connectedness with different types of connectedness that are considered in literature before is studied. It is shown that δ^* -connectedness is a contractive property.

1. Introduction

Kuratowski [6] and Vaidyanathaswamy [11] introduced the concept of ideal topological spaces. Subsequently, Ekici *et al.* [2, 3] defined the notion of connectedness in ideal topological spaces. Recently, various types of connectedness in ideal topological spaces are further investigated by Modak *et al.* [7]. Also, Hosny *et al.* [4] studied the notion of generalized proximity using ideal and proximity.

The aim of this paper is to introduce the notion of δ^* -connectedness by using ideal in proximity spaces that is analogous to the notion of $*_s$ -connectedness in ideal topological spaces [2]. Also, we study δ^* -component and the relation of it with δ -component and *-component. In Section 2, we recall some basic definitions and results which will be used in further sections. We define δ^* -connectedness and examine the relationship between δ^* -connectedness and different types of connectedness that are already in literature in Section 3. In the last section, we discuss the characterizations of δ^* -connectedness and, examples are given for those characterizations that do not hold under this connectedness.

Throughout this paper, by a proximity space (X, δ) (or X) [10], we mean a nonempty set X with an Efremovič proximity δ . Also, an ideal proximity space (X, δ, \mathcal{I}) will denote a proximity space (X, δ) with an ideal \mathcal{I} in X. Further, a δ -closed (or δ^* -closed) set in an ideal proximity space is a closed set with respect to the topology \mathcal{T}_{δ} generated by δ (or closed set with respect to \mathcal{T}_{δ^*}).

Received October 28, 2020. Revised December 22, 2020. Accepted January 5, 2021.

²⁰²⁰ Mathematics Subject Classification. $03E15,\,54E05.$

Key words and phrases. $\delta\text{-connected},$ $\delta\text{-component},$ $*_s\text{-connected},$ *-component, Ideal. *Corresponding author

2. Preliminaries

Definition 2.1. [5] Let \mathcal{I} be an ideal in X and Y be a subset of X. Then the collection $\mathcal{I}_Y = \{A \cap Y : A \in \mathcal{I}\}$ is an ideal in Y.

Definition 2.2. [4] Let (X, δ, \mathcal{I}) be an ideal proximity space. Then a subset A is said to be locally in \mathcal{I} at $x \in X$ if there is a δ -neighbourhood U of x such that $(U \cap A) \in \mathcal{I}$. Thus, the local function A^* of A with respect to δ and \mathcal{I} is defined as:

 $A^* = \bigcup \{ x \in X : (U \cap A) \notin \mathcal{I} \text{ for every } \delta \text{-neighbourhood } U \text{ of } x \}.$

Theorem 2.3. [4] Let (X, δ, \mathcal{I}) be an ideal proximity space and A, B be the subsets of X. Then

- (i) The operator C defined by $C(A) = A \cup A^*$ is Kuratowski closure operator.
- (ii) The relation δ^* defined by $(A, B) \in \delta^*$ if and only if $\mathcal{C}(A) \cap \mathcal{C}(B) \neq \phi$ is a basic proximity on X. Moreover, δ^* is finer than δ .
- (*iii*) $\delta_A^* < (\delta_A)^*$, the equality holds if A is δ -closed.

$$(iv) \ \mathcal{T}_{\delta^*} \subset (\mathcal{T}_{\delta})^*.$$

(v) $Cl_{\delta^*}(A) \subset Cl_{\delta}(A)$ and every δ -closed is δ^* -closed.

Theorem 2.4. [4] Let (X, δ) be a proximity space and \mathcal{I}, \mathcal{J} be the ideals in X. For $A \subset X$, the following statements hold:

- (i) If $\mathcal{I} \subset \mathcal{J}$, then $A^*(\mathcal{J}) \subset A^*(\mathcal{I})$.
- (*ii*) $A^*(\mathcal{I} \cap \mathcal{J}) = A^*(\mathcal{I}) \cup A^*(\mathcal{J}).$

Definition 2.5. [9, 10] Let (X, δ) and (Y, δ') be two proximity spaces, a function $f : (X, \delta) \longrightarrow (Y, \delta')$ is δ -continuous if $(f(A), f(B)) \in \delta'$ whenever $(A, B) \in \delta$ for all $A, B \subset X$.

Theorem 2.6. [8] Let (X, δ) be a proximity space. Then the following statements are equivalent:

(i) X is δ -connected.

- (*ii*) $(A, X \setminus A) \in \delta$ for each nonempty subset A with $A \neq X$.
- (*iii*) Every δ -continuous function from X to a discrete space is constant.
- (iv) If $X = A \cup B$ and $(A, B) \notin \delta$, then either $A = \phi$ or $B = \phi$.

Definition 2.7. [1] Let (X, δ) be a proximity space. Then δ -component of x in X is the union of all δ -connected subsets of X containing x.

Definition 2.8. [1] Let C be a cover of proximity space X. Then C is called proximity cover of X, if for any two near sets P, Q there is some $U \in C$ such that $P \cap U \neq \phi$ and $Q \cap U \neq \phi$.

Definition 2.9. [2] Let $(X, \mathcal{T}, \mathcal{I})$ be an ideal space. A subset M is said to be $*_s$ -connected if it cannot be written as $M = P \cup Q$ with $Cl^*(P) \cap Q = \phi$ and $P \cap Cl(Q) = \phi$.

Definition 2.10. [2] Let $(X, \mathcal{T}, \mathcal{I})$ be an ideal space and $x \in X$. Then *-component of x in X is the union of all $*_s$ -connected subsets containing x.

124

3. δ^* -Connectedness

In this section, the notion of δ^* -connectedness is defined and the relationship between different connectednesses is studied.

Definition 3.1. Let (X, δ, \mathcal{I}) be an ideal proximity space. Then a pair P, Q of nonempty subsets of X is said to be δ^* -separation for X if $X = P \cup Q$ with $(Cl_{\delta}(P), Q) \notin \delta^*$.

Definition 3.2. Let (X, δ, \mathcal{I}) be an ideal proximity space. Then X is called δ^* -connected if it has no δ^* -separation. Otherwise, X is said to be δ^* -disconnected.

Theorem 3.3. For an ideal proximity space (X, δ, \mathcal{I}) , the following statements are equivalent:

(i) X is δ^* -connected.

(*ii*) $(Cl_{\delta}(P), X \setminus P) \in \delta^*$ for every nonempty subset $P \subsetneq X$.

(*iii*) If $X = P \cup Q$ with $(Cl_{\delta}(P), Q) \notin \delta^*$, then either $P = \phi$ or $Q = \phi$.

Proof. $(i) \Rightarrow (ii)$. Let $(Cl_{\delta}(P), X \setminus P) \notin \delta^*$ for some nonempty subset P of X, then the pair P and $X \setminus P$ forms δ^* -separation for X.

 $(ii) \Rightarrow (iii)$. Suppose there are two nonempty subsets P and Q such that $X = P \cup Q$ with $(Cl_{\delta}(P), Q) \notin \delta^*$. Thus, $(Cl_{\delta}(P), X \setminus P) = (Cl_{\delta}(P), Q) \notin \delta^*$, a contradiction.

 $(iii) \Rightarrow (i)$. If X is not δ^* -connected, then there exists a pair P, Q of nonempty subsets such that $X = P \cup Q$ with $(Cl_{\delta}(P), Q) \notin \delta^*$.

Definition 3.4. Let (X, δ, \mathcal{I}) be an ideal proximity space. Then a subset Y of X is said to be:

- (i) δ^* -connected if $Y = P \cup Q$ with $(Cl_{\delta}(P), Q) \notin \delta^*$, then either $P = \phi$ or $Q = \phi$.
- (ii) δ_Y^* -connected if $Y = P \cup Q$ with $(Cl_{\delta_Y}(P), Q) \notin \delta_Y^*$, then either $P = \phi$ or $Q = \phi$.
- (*iii*) $(\delta_Y)^*$ -connected if $Y = P \cup Q$ with $(Cl_{\delta_Y}(P), Q) \notin (\delta_Y)^*$, then either $P = \phi$ or $Q = \phi$.

We observe that every $(\delta_Y)^*$ -connected proximity subspace is δ_Y^* -connected as $(\delta_Y)^* > \delta_Y^*$. However, both connectedness are same if Y is δ -closed. Also, every δ_Y^* -connected subspace is δ^* -connected.

A pair of nonempty subsets P, Q is said to be $*_s$ -separation [2] for a subset Y of ideal space $(X, \mathcal{T}, \mathcal{I})$ if $Y = P \cup Q$ with $Cl^*(P) \cap Q = P \cap Cl(Q) = \phi$.

Proposition 3.5. Every $*_s$ -connected subset of ideal proximity space is δ^* -connected.

Proof. Suppose the pair P, Q be a δ^* -separation for subspace Y of ideal proximity space X. Then, $Cl_{\delta}(P) \cap Q = \phi$ and $P \cap Cl_{\delta^*}(Q) = \phi$. Since

 $\mathcal{T}_{\delta^*} \subset (\mathcal{T}_{\delta})^*$, therefore, $Cl_{\mathcal{T}_{\delta}}(P) \cap Q = \phi = P \cap Cl_{(\mathcal{T}_{\delta})^*}(Q)$. Thus, the pair P, Q forms a $*_s$ -separation for Y.

However, the converse of Proposition 3.5 may not be true.

Example 3.6. Let \mathbb{Q} be the space of rational numbers with usual proximity and \mathcal{I}_f be an ideal consisting of all the finite subsets of \mathbb{Q} . Then \mathbb{Q} is δ^* -connected but not $*_s$ -connected.

Every δ^* -connected space is δ -connected. Let \mathcal{I} be an ideal consisting of empty set, then δ^* -connectedness and δ -connectedness coincides. Thus, δ^* -connectedness naturally generalizes the δ -connectedness.

Following example shows that there may exist an ideal other than the empty set for which δ -connectedness and δ^* -connectedness are same.

Example 3.7. Let X be any compact T_1 -proximity space and \mathcal{I}_f be the ideal consisting of all finite subsets of X. Then δ -connectedness and δ^* -connectedness are same. A similar result holds for X if the ideal \mathcal{I}_{cd} consists all closed discrete subsets of X.

An example of δ -connected proximity space which is not δ^* -connected.

Example 3.8. (i). Let $X = [0,1] \cup (\mathbb{Q} \setminus (\mathbb{Q} \cap [0,1]))$ with usual subspace proximity induced from \mathbb{R} . Let I_c be an ideal consisting of all countable subsets of X. Then X is δ -connected but not δ^* -connected. To verify the latter, take A = [0,1] then $Cl_{\delta}(A) = A$. Therefore, $(Cl_{\delta}(A), X \setminus A) \in \delta^*$ if and only if $\mathcal{C}(Cl_{\delta}(A)) \cap \mathcal{C}(X \setminus A) \neq \phi$, that is, $\mathcal{C}(A) \cap \mathcal{C}(X \setminus A) \neq \phi$. Since $\mathcal{C}(A) = A$ and $\mathcal{C}(X \setminus A) = X \setminus A$, therefore $(Cl_{\delta}(A), X \setminus A) \notin \delta^*$.

(*ii*). Let \mathbb{R} be the Real line with usual proximity δ and \mathcal{I} be the ideal consisting of all subsets of \mathbb{R} . Then the proximity δ^* (generated by \mathcal{I}) is discrete proximity. Therefore, \mathbb{R} is δ -connected but not δ^* -connected.

Following diagram shows the relationship between connectednesses in an ideal proximity space.

Proposition 3.9. Let \mathcal{I} and \mathcal{J} be two ideals in proximity space X such that $\mathcal{I} \subset \mathcal{J}$. Then X is $\delta^*(\mathcal{I})$ -connected if it is $\delta^*(\mathcal{J})$ -connected.

Proof. Suppose X is $\delta^*(\mathcal{J})$ -connected. Then, $(Cl_{\delta}(P), X \setminus P) \in \delta^*(\mathcal{J})$ for all nonempty proper subset P of X. Since $\mathcal{I} \subset \mathcal{J}$, so by Theorem 2.4, $P^*(\mathcal{J}) \subset P^*(\mathcal{I})$. Therefore, $\mathcal{C}_{(\delta,\mathcal{J})}(P) \subset \mathcal{C}_{(\delta,\mathcal{I})}(P)$. Thus, $(Cl_{\delta}(P), X \setminus P) \in \delta^*(\mathcal{I})$ for all nonempty proper subset P of X. Therefore, X is $\delta^*(\mathcal{I})$ -connected.

```
\delta^*-connectedness
```

Proposition 3.9 shows that δ^* -connectedness is a contractive property.

4. Characterizations of δ^* -Connectedness

Lemma 4.1. Let $(Y, \delta_Y, \mathcal{I}_Y)$ be a δ^* -connected subspace of (X, δ, \mathcal{I}) . If P and Q are subsets of X such that $Y \subset P \cup Q$ with $(Cl_{\delta}(P), Q) \notin \delta^*$, then either $Y \subset P$ or $Y \subset Q$.

Proof. $Y = (P \cap Y) \cup (Q \cap Y)$ with $(Cl_{\delta}(P \cap Y), (Q \cap Y)) \notin \delta^*$ as $Cl_{\delta}(P \cap Y) \subset Cl_{\delta}(P)$. Therefore, either $P \cap Y = \phi$ or $Q \cap Y = \phi$.

Theorem 4.2. Let $\{(Y_i, \delta_{Y_i}, \mathcal{I}_{Y_i}) : i \in J\}$ be a collection of δ^* -connected subspaces of (X, δ, \mathcal{I}) . Suppose there is some i_0 such that $(Y_{i_0}, Y_i) \in \delta^*$ for every $i \in J$. Then $Y = \bigcup_{i \in J} Y_i$ is δ^* -connected.

Proof. Suppose Y is not δ^* -connected. Then there exists a pair P, Q of nonempty subsets such that $Y = P \cup Q$ with $(Cl_{\delta}(P), Q) \notin \delta^*$. By Lemma 4.1, either $Y_{i_0} \subset P$ or $Y_{i_0} \subset Q$. If $Y_{i_0} \subset P$, then $Y_i \subset P$ for all $i \in J$ because if $Y_i \subset Q$ for some $i \in J$, then $(Y_{i_0}, Y_i) \notin \delta^*$, a contradiction. Similarly, if $Y_{i_0} \subset Q$, then $Y_i \subset Q$ for all $i \in J$.

Corollary 4.3. Let $\{(Y_i, \delta_{Y_i}, \mathcal{I}_{Y_i}) : i \in J\}$ be a collection of δ^* -connected subspaces of (X, δ, \mathcal{I}) . If $Y_i \cap Y_j \neq \phi$ for all $i, j \in J$, then $Y = \bigcup_{i \in J} Y_i$ is δ^* -connected.

Lemma 4.4. Let $(Y, \delta_Y, \mathcal{I}_Y)$ be a δ^* -connected subspace of (X, δ, \mathcal{I}) . Then every subspace W such that $Y \subset W \subset Cl_{\delta^*}(Y)$ is δ^* -connected.

Proof. Consider a collection $\{Y \cup \{p\} : p \in W\}$ of δ^* -connected subspaces of X. By Corollary 4.3, W is δ^* -connected.

Lemma 4.5. Let (X, δ, \mathcal{I}) be an ideal proximity space. Suppose for every pair of points $x, y \in X$, there is δ^* -connected subspace which joins them. Then X is δ^* -connected.

Proof. Fix some $x_0 \in X$. Assume that Y_x be the δ^* -connected subspace joining x to x_0 . Then by Corollary 4.3, X being union of $\{Y_x : x \in X\}$ is δ^* -connected.

Corollary 4.6. Let \mathcal{I} be an ideal in proximity space X and Y be another proximity space such that $f : (X, \delta_X) \longrightarrow (Y, \delta_Y)$ is δ -continuous surjective map. Then Y is δ -connected if X is δ^* -connected.

Proof. Since every δ^* -connected proximity space is δ -connected and δ -connectedness is preserved under δ -continuous map, therefore Y is δ -connected.

Beenu Singh, Davinder Singh

Definition 4.7. A finite family $\{A_i : 1 \le i \le n\}$ of subsets of an ideal proximity space X is called δ^* -chain if $(A_i, A_{i+1}) \in \delta^*$ for each $i = 1, 2, 3, \dots, n-1$. An arbitrary family \mathcal{F} of subsets of X is said to be δ^* -chained if for every pair A, B of elements of \mathcal{F} , there is a δ^* -chain in \mathcal{F} which joins A and B.

Theorem 4.8. Let (X, δ, \mathcal{I}) be an ideal proximity space. If each member of the δ^* -chained family $\mathcal{F} = \{A_i : i \in J\}$ is δ^* -connected, then $A = \bigcup_{i \in J} A_i$ is also δ^* -connected.

Proof. Using Theorem 4.2, the result is true for $J = \{1, 2\}$. By induction the result can be proved for any finite set $J = \{1, 2, \dots, n\}$.

For an arbitrary ordered set J, Let $x, y \in A$. Then $x \in A_i$ and $y \in A_j$ for some $i, j \in J$. Therefore there is a δ^* -chain \mathcal{C} in \mathcal{F} joining A_i and A_j as \mathcal{F} is δ^* -chained family. Since each member of \mathcal{C} is δ^* -connected, therefore by induction hypothesis $\bigcup_{k \in \mathcal{C}} A_k$ is δ^* -connected. Hence, by Lemma 4.5, A is δ^* -connected. \Box

Theorem 4.9. Let (X, δ, \mathcal{I}) be a δ^* -connected ideal proximity space. Then every proximity cover of X is a δ^* -chained family.

Proof. Let $\mathcal{F} = \{U_i : i \in J\}$ be a proximity cover of X. Suppose there exist U_i and U_j for some $i, j \in J$ such that U_i and U_j cannot be joined by any δ^* -chain.

Now put $P = \bigcup \{U_k \in \mathcal{F} : U_k \text{ can be joined with } U_i \text{ by some } \delta^*\text{-chain}\}$ and Q as the union of all other elements of \mathcal{F} . Then, $X = P \cup Q$. It is to show that $(Cl_{\delta}(P), Q) \notin \delta^*$. Let $(Cl_{\delta}(P), Q) \in \delta^*$ which implies $(P, Q) \in \delta$. By the definition of proximity cover there is some $U \in \mathcal{F}$ such that $U \cap P \neq \phi$ and $U \cap Q \neq \phi$. Therefore, there are $U_p \subset P$ and $U_q \subset Q$ such that $U \cap U_p \neq \phi$ and $U \cap U_q \neq \phi$. Hence, U_q can be joined with U_i by some $\delta^*\text{-chain}$. Thus, U_j can be joined with U_i by some $\delta^*\text{-chain}$. Thus, $U_j \notin \delta^*$, which is a contradiction.

Definition 4.10. Let (X, δ, \mathcal{I}) be an ideal proximity space and $x \in X$. Then the δ^* -component of x is the union of all δ^* -connected subsets of X which contain x and it is denoted by $C_{\delta^*}(x)$.

By Corollary 4.3, for each x in ideal proximity space X, the δ^* -component $C_{\delta^*}(x)$ is δ^* -connected. Note that the δ^* -components of any two distinct points of X are either same or δ^* -far sets in X. The δ^* -components of an ideal proximity space not necessarily coincide with the *-components with respect to topology \mathcal{T}_{δ} . From Example 3.6, \mathbb{Q} is δ^* -connected, therefore the δ^* -component of any $x \in \mathbb{Q}$ is \mathbb{Q} itself. But *-component of any $x \in \mathbb{Q}$ is $\{x\}$ itself because every *-component is contained in a component.

Also note that every δ^* -component is contained in some δ -component and every *-component is contained in some δ^* -component.

Corollary 4.11. For an ideal proximity space (X, δ, \mathcal{I}) , Every δ^* -component of X is *-closed with respect to \mathcal{T}_{δ} . (In fact, δ^* -closed)

128

Proof. Let C be δ^* -component of X. Since $Cl^*(C) \subset Cl_{\delta^*}(C)$, therefore by Lemma 4.4, $Cl^*(C)$ is δ^* -connected. Thus, by maximality of δ^* -component $Cl^*(C) \subset C$, that is, C is *-closed in the topology \mathcal{T}_{δ} .

References

- R. Dimitrijević and Lj. Kočinac, On Connectedness of Proximity Spaces, Mat. Vesnik 39 (1) (1987), 27 - 35.
- [2] Erdal Ekici and Takashi Noiri, Connectedness in Ideal Topological Spaces, Novi Sad J. Math. 38 (2) (2008), 65 - 70.
- [3] Erdal Ekici and Takashi Noiri, *-hyperconnected ideal topological spaces, Analele Stiintifice Ale Universitatii Al. I. Cuza Din Iasi (S.N.) Matematica Tomul LVIII, (2012), f. 1, 121 – 129.
- [4] R.A. Hosny and O.A.E. Tantawy, New Proximities from old via Ideals, Acta Math. Hungar. 110 (1-2) (2006), 37 – 50.
- [5] D. Janković and T. R. Hamlett, New Topologies from old via Ideals, Amer. Math. Monthly 97 1990, 295 - 310.
- [6] K. Kuratowski, Topology Vol.1, New York Academic Press, 1966.
- [7] S. Modak and T. Noiri, Connectedness of Ideal Topological Spaces, Filomat 29 (4) 2015, 661-665.
- [8] S. G. Mrówka and W. J. Pervin, On Uniform Connectedness, Proc. Amer. Math. Soc. 15 (1964), 446 – 449.
- [9] S. Naimpally, Proximity Approach to Problems in Topology and Analysis, Oldenbourg Verlag, München, 2009.
- [10] S. Naimpally, B.D. Warrack, Proximity Spaces, Cambridge Univ. Press, 1970.
- [11] R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci. 20 (1944), 51 - 61.

Beenu Singh Department of Mathematics, University of Delhi, Delhi-110007, India. E-mail: singhbeenu47@gmail.com

Davinder Singh Department of Mathematics, Sri Aurobindo College, University of Delhi, Delhi-110017, India. E-mail: dstopology@gmail.com