DOI QR코드

DOI QR Code

Low-light Image Enhancement Method Using Decomposition-based Deep-Learning

분해 심층 학습을 이용한 저조도 영상 개선 방식

  • Oh, Jong-Geun (Dept. of Electronics and information Engineering, Soongsil University) ;
  • Hong, Min-Cheol (Dept. of Electronics and information Engineering, Soongsil University)
  • Received : 2021.02.23
  • Accepted : 2021.03.24
  • Published : 2021.03.31

Abstract

This paper introduces an image decomposition-based deep learning method and loss function to improve low-light images. In order to remove color distortion and halo artifact, illuminance channel of an input image is decomposed into reflectance and luminance channels, and a decomposition-based multiple structural deep learning process is applied to each channel. In addition, a mixed norm-based loss function is described to increase the stability and remove blurring in reconstructed image. Experimental results show that the proposed method effectively improve various low-light images.

본 논문에서는 저조도 영상을 개선하기 위한 영상 분해 기반 심층 학습 방법 및 분해 채널 특성에 따른 손실함수를 제안한다. 기존 기법들의 문제점인 색신호 왜곡 및 할로 현상을 제거하기 위해, 입력 영상의 휘도 채널을 반사 성분과 조도 성분으로 분해하고, 반사 성분, 조도 성분 및 색차 신호를 신호 특성에 적합한 심층학습 과정을 적용하는 분해 기반 다중 구조 심층 학습 방법을 제안한다. 더불어, 분해 채널들의 특성에 따른 혼합 놈 기반의 손실함수를 정의하여 복원 영상의 안정성을 증대하고 열화 현상을 제거하기 위한 기법에 대해 기술한다. 실험 결과를 통해 제안한 방법이 다양한 저조도 영상을 효과적으로 개선하였음을 확인할 수 있었다.

Keywords

References

  1. W. Wang, X. Wu, X. Yuan, and Z. Gao, "An experiment-based review of low-light image enhancement method," IEEE Access, vol.8, pp. 87884-87917, 2020. DOI: 10.1109/ACCESS.2020.2992749
  2. E. H. Land and J. J. McCann. "Lightness and retinex theory," J. of Opt. Soc. of America, vol.61, no.1, pp.1-11, 1971. DOI: 10.1364/JOSA.61.000001
  3. D. J. Jobson, Z. Rahman and G. A. Woodell. "Properties and performance of a center/surround retinex," IEEE Trans. on Image Process., vol.6, no.3, pp.451-461, 1997. DOI: 10.1109/83.557356
  4. D. J. Jobson, Z. Rahman and G. A. Woodell. "A multi-scale retinex for bridging the gap between color images and the human observation of scenes," IEEE Trans. on Image Process., vol.6, no.7, pp. 965-976, 1997. DOI: 10.1109/83.597272
  5. E. Provenzi, M. Fierro, A. Rizzi, L. D. Carli, D. Gadia, and D. Marini. "Random spray retinex: A new retinex implementation to investigate the local properties of the model," IEEE Trans. on Image Process., vol.16, no.1, pp.162-171, 2007. DOI: 10.1109/tip.2006.884946
  6. T. Celik. "Spatial entropy-based global and local image contrast enhancement," IEEE Trans. on Image Process., vol.23, no.12, pp.5298-5308, 2014. DOI: 10.1109/TIP.2014.2364537
  7. Y. Shin, S. Jeong, and S. Lee. "Efficient naturalness restoration for non-uniform illumination images," IET Image Process., vol.9, no.9, pp.662-671, 2015. https://doi.org/10.1049/iet-ipr.2014.0437
  8. M. Lecca, A. Rizzi, and R. P. Serapioni. "GRASS: A gradient-based random sampling scheme for Milano retinex," IEEE Trans. on Image Process., vol.26, no.6, pp.2767-2780, 2017. DOI: 10.1109/TIP.2017.2686652
  9. R. Kimmel, M. Elad, D. Shaked, and I. Sobel. "A variational framework for retinex," Int. J. of Comput. Vis., vol.52, pp.7-23, 2003. DOI: 10.1023/A:1022314423998
  10. D. Zosso, G. Tran, and S. J. Osher. "Non-local retinex-A unifying framework and beyond," SIAM J. on Image Sci., vol.8, no.2, pp.787-826, 2015. DOI: 10.1023/A:1022314423998
  11. S. Park, S. Yu, B. Moon, S. Ko, and J. Paik, "Low-light image enhancement using variational optimization-based retinex model," IEEE Trans. on Consumer Electron., vol.63, no.2, pp.178-184, 2017. DOI: 10.1109/TCE.2017.014847
  12. K. G. Lore, A. Akintayo, and S. Sarkar. "LLNet: A deep autoencoder approach to natural low-light image enhancement," Pattern Recognition, vol.61, pp.650-662, 2017. DOI: 10.1016/j.patcog.2016.06.008
  13. L. Shen, Z. Yue, F. Feng, Q. Chen, S. Liu, and J. Ma. "Msr-net: lowlight image enhancement using deep convolutional network," arXiv:1711.02488 [cs.CV], 2017.
  14. X. Guo, Y. Li, and H. Ling. "Lime: Low-light image enhancement via illumination map estimation," IEEE Trans. on Image Process., vol.26, no.2, pp.982-993, 2017. DOI: 10.1109/TIP.2016.2639450
  15. C. Wei, W. Wang, W. Yang, and J. Liu. "Deep retinex decomposition for low-light enhancement," arXiv:1808.04560 [cs.CV], 2018.
  16. F. Lv, F. Lu, J. Wu, and C. Lim, "MBLLEn: Low-light image/video enhancement using CNNs," Proc. Brit. Mach. Vis. Conf. (BMVC), pp.1-13, 2019.
  17. Y. Zhang, J. Zhang, and X. Guo, "Kindling the darkness: A practical low-light image enhancer," Proc. of ACM Int. Conf. on Mult., pp.1632-1640, 2019. DOI: 10.1145/3343031.3350926
  18. J. G. Oh, M.-C. Hong. "Adaptive image rendering using a nonlinear mapping function based retinex model," Sensors, vol.19, No.4, pp.969, 2019. DOI: 10.3390/s19040969
  19. D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arViv:1412.6980v9 [cs.LG], 2017.
  20. H. R. Sheikh, Z. Wang, L. Cormack, and A. C. Bovik. "Live image quality assessment database release 2," [Online] Available: https://live.ece.utexas.edu/research/quality.
  21. Stanford Vision Lab. "ImageNet." [Online] Available: http://image-net.org/about-overview.
  22. NASA/Langley Research Center/Electromagnetics and Sensors Research Branch. [Online] Available: https://dragon.larc.nasa.gov.
  23. P. Arbelaez, C. Fowlkes, and D. Martin, "The Berkeley Segmentation Dataset and Benchmark," [Online] Available: https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds.
  24. S. Wang, J. Zheng, H. Hu, and B. Li. "Naturalness preserved enhancement algorithm for non-uniform illumination images," IEEE Trans. on Image Process,, no.22, pp.3538-3548, 2013. DOI: 10.1109/TIP.2013.2261309
  25. A. Mittal, R. Soundararajan, and A. C. Bovik. "Making a "completely blind" image quality analyzer," IEEE Signal Process. Letters, no.20, pp.209-212, 2013. DOI: 10.1109/LSP.2012.2227726