DOI QR코드

DOI QR Code

해양플랜트 플로트오버 설치 공법용 수동형 갑판 지지 프레임의 최소중량설계와 민감도 평가를 위한 실험계획법 응용

Application of Experimental Design Methods for Minimum Weight Design and Sensitivity Evaluation of Passive-Type Deck Support Frame for Offshore Plant Float-Over Installation

  • 김훈관 (목포대학교 조선해양공학과) ;
  • 이강수 (선박해양플랜트연구소) ;
  • 송창용 (목포대학교 조선해양공학과)
  • Kim, Hun Gwan (Department of Naval Architecture and Ocean Engineering, Mokpo National University) ;
  • Lee, Kangsu (Korea Research Institute of Ships & Ocean Engineering) ;
  • Song, Chang Yong (Department of Naval Architecture and Ocean Engineering, Mokpo National University)
  • 투고 : 2020.01.04
  • 심사 : 2021.02.25
  • 발행 : 2021.02.28

초록

본 연구에서는 20,000 톤급 해양플랜트 상부구조물(Topside)의 플로트오버 설치작업을 위해 개발된 수동형 갑판 지지 프레임(Deck support frame)의 구조설계에 대해 다양한 실험계획법을 이용한 최소중량설계와 민감도 평가의 비교연구를 수행하였다. 수동형 갑판 지지 프레임의 주요 구조부재의 두께 치수 변수는 설계인자로 고려하였고, 응답치는 중량과 강도성능으로 선정하였다. 최소중량설계와 민감도 평가의 비교연구에 사용한 실험계획법은 직교배열설계법, Box-Behnken 설계법, 그리고 Latin hypercube 설계법이다. 실험계획법의 설계공간 탐색의 근사화 성능을 평가하기 위해 반응표면법을 각 실험계획법 별로 생성하여 근사화 정확도 특성을 검토하였다. 또한 최소중량설계를 위해 최상 설계안의 결과로 부터 실험계획법의 특성에 따른 수치계산 비용, 중량감소 효과 등을 평가하였다. 수동형 갑판 지지 프레임의 구조설계에 대해 Box-Behnken 설계법이 가장 적합한 설계 결과를 나타내었다.

This paper presents the findings of a comparative study on minimum weight design and sensitivity evaluation using different experimental design methods for the structural design of an active-type deck support frame (DSF) developed for the float-over installation of an of shore plant topside. The thickness sizing variables of the structural members of a passive-type DSF were considered the design factors, and the output responses were defined using the weight and strength performances. The design of the experimental methods applied in the comparative study of the minimum weight design and the sensitivity evaluation were the orthogonal array design, Box- Behnken design, and Latin hypercube design. A response surface method was generated for each design of the experiment to evaluate the approximation performance of the design space exploration according to the experimental design, and the accuracy characteristics of the approximation were reviewed. Regarding the minimum weight design, the design results, such as numerical costs and weight minimization, of the experimental design for the best design case, were evaluated. The Box- Behnken design method showed the optimum design results for the structural design of the passive-type DSF.

키워드

참고문헌

  1. Box, G. E. P. and D. W. Behnken(1960), Some New Three Level Designs for the Study of Quantitative Variables. Technometrics, Vol. 2, No. 4, pp. 455-475. https://doi.org/10.1080/00401706.1960.10489912
  2. Choung, J., J. B. Park, and C. Y. Song(2014), Lateral Pressure Effect on Average Compressive Strength of Stiffened Panels for In-service Vessels, Ships and Offshore Structures, Vol. 9, No. 1, pp. 110-118. https://doi.org/10.1080/17445302.2012.736360
  3. DNV-GL(2012), Load Transfer Operations, DET NORSKE VERITAS.
  4. DNV-GL(2013), Offshore Installation Operations, DET NORSKE VERITAS.
  5. DNV-GL(2015), Structural Design of Offshore Units WSD Method, DET NORSKE VERIATAS.
  6. Georgiadis, D. G. and M. S. Samuelides(2021), Stochastic Geometric Imperfections of Plate Elements and Their Impact on the Probabilistic Ultimate Strength Assessment of Plates and Hull-girders, Marine Structures, Vol. 76, 10920.
  7. GL(2015a), Guidelines for Load-outs, GL NOBEL DENTON.
  8. GL(2015b), Guidelines for Marine Transportations, GL NOBEL DENTON.
  9. IACS(2017), Common Structural Rules for Bulk Carriers and Oil Tankers, International Association of Classification Societies.
  10. Ji, Y. J., J. S. Kwak, H. Y. Lee, and S. C. Kim(2015), Optimal Arrangement of Resilient Mount Installed on Frame Support Structure at Shipboard Equipment Under Shock Load, Journal of the Society of Naval Architects of Korea, Vol. 52, No. 4, pp. 297-304.
  11. Kim, H. S., B. W. Kim, D. Jung, and H. G. Sung(2017), Numerical Study for Topside Effect on Behavior of Deck Transportation Vessel and Seafastening Structure, Proceedings of OCEANS 2017, Aberdeen.
  12. Kim, Y., P. W. Park, K. Y. Park, and J. C. Ryu(2015), Optimization of Arc Brazing Process Parameters for Exhaust System Parts Using Box-Behnken Design of Experiment, Journal of Welding and Joining, Vol. 33, No. 2, pp. 23-31. https://doi.org/10.5781/JWJ.2015.33.2.23
  13. Lee, D. M. and S. Y. Kim(2014), Sensitivity Analysis of Design Parameters for Quadruple Offset Butterfly Valve by Operating Torque, Journal of Ocean Engineering and Technology, Vol. 28, No. 2, pp. 160-166. https://doi.org/10.5574/KSOE.2014.28.2.160
  14. Lee, J. and C. Y. Song(2013), Estimation of Submerged-arc Welding Design Parameters Using Taguchi Method and Fuzzy Logic, Journal of Engineering Manufacture, Vol. 227, No. 4, pp. 532-542. https://doi.org/10.1177/0954405413476487
  15. Lee, K. K. and S. H. Han(2012), Optimization of Wind Turbine pitch Controller by Neural Network Model Based on Latin Hypercube, Transactions of the Korean Society of Mechanical Engineers A, Vol. 36, No. 9, pp. 1065-1071.
  16. Park, J. H., D. Lee, J. W. Yang, and C. Y. Song(2019), Design Enhancement to Avoid Radar Mast Resonance in Large Ship Using Design of Experiments, Journal of Ocean Engineering and Technology, Vol. 33, No. 1, pp. 50-60. https://doi.org/10.26748/KSOE.2018.088
  17. Park, J. M., C. H. Park, T. S. Kim, and D. H. Choi(2011), Optimal Determination of Pipe Support Types in Flare System for Minimizing Support Cost, Journal of the Society of Naval Architects of Korea, Vol. 48, No. 4, pp. 325-329. https://doi.org/10.3744/SNAK.2011.48.4.325
  18. Park, S. H.(2012), Design of Experiments, Minyoung Publishing, Seoul.
  19. Simulia(2018), Abaqus User Manual, Simulia.
  20. Song, C. Y. and J. Lee(2010), Comparative Study of Approximate Optimization Techniques in CAE-Based Structural Design, Transactions of the Korean Society of Mechanical Engineers A, Vol. 34, No. 11, pp. 1603-1611. https://doi.org/10.3795/KSME-A.2010.34.11.1603
  21. Song, C. Y., J. Lee, and J. Choung(2011), Reliability-based Design Optimization of an FPSO Riser Support Using Moving Least Squares Response Surface Meta-models. Ocean Engineering, Vol. 38, No. 1, pp. 304-318. https://doi.org/10.1016/j.oceaneng.2010.11.001