DOI QR코드

DOI QR Code

Silicon Isotope Measurement of Giant Diatoms Using MC-ICP-MS

다검출기 유도결합 플라즈마 질량분석기를 이용한 대형 규조류 규소 동위원소 분석법

  • Choi, Ah Yeong (Department of Geological Sciences, BK21 School of Earth and Environmental Systems, Pusan National University) ;
  • Ryu, Jong-Sik (Department of Earth and Environmental Sciences, Pukyong National University) ;
  • Hyeong, Kiseong (Global Ocean Research Center, Korea Institute of Ocean Science and Technology) ;
  • Kim, Mun Gi (Global Ocean Research Center, Korea Institute of Ocean Science and Technology) ;
  • Ra, Kongtae (Marine Environmental Research Center, Korea Institute of Ocean Science and Technology) ;
  • Jeong, Hyeryeong (Marine Environmental Research Center, Korea Institute of Ocean Science and Technology) ;
  • Lim, Hyoun Soo (Department of Geological Sciences, BK21 School of Earth and Environmental Systems, Pusan National University)
  • 최아영 (부산대학교 지질환경과학과) ;
  • 류종식 (부경대학교 지구환경과학과) ;
  • 형기성 (한국해양과학기술원 대양자원연구센터) ;
  • 김문기 (한국해양과학기술원 대양자원연구센터) ;
  • 나공태 (한국해양과학기술원 해양환경연구센터) ;
  • 정혜령 (한국해양과학기술원 해양환경연구센터) ;
  • 임현수 (부산대학교 지질환경과학과)
  • Received : 2021.02.09
  • Accepted : 2021.02.17
  • Published : 2021.02.28

Abstract

Silicon (Si) is the second most abundant element in the crust and consists of three stable isotopes, 28Si (92.23%), 29Si (4.67%), and 30Si (3.10%). Si isotopes are widely studied worldwide as a proxy for the biogeochemical cycle of Si to reconstruct the paleoenvironment and paleoclimate. However, in Korea, there have been no studies on biogenic silica using Si isotopes. In this study, we carried out Si isotope measurements of giant diatoms, summarizing the previously reported alkali fusion methods and establishing the best Si separation method for biogenic silica. Samples were completely digested using alkali fusion at high temperatures, effectively separating Si using an AG® 50W-X8 cation exchange resin. To evaluate the precision and accuracy of our measurements, Si isotope standard material (NBS-28) and USGS reference materials (AGV-2, GSP-2, BHVO-2) were analyzed. The results are in excellent agreement with the reported values within the acceptable error. The Si isotope measurement method developed in this study is expected to help in understanding the paleoclimate and paleoenvironment by tracing the Si cycle.

규소(Si)는 지각의 구성 원소 중 두 번째로 흔히 존재하는 원소로, 3개의 안정동위원소, 28Si (92.23%), 29Si(4.67%), 30Si (3.10%)를 가진다. 규소 동위원소는 규소의 생지화학적 순환에 대한 지시자로 고환경 및 고기후 복원을 위해 전 세계에서 널리 연구되고 있다. 그러나 국내에서는 아직까지 생물 기원 규소에 대한 규소 동위원소 연구가 전무한 실정이다. 본 연구에서는 대형 규조류 시료에 대한 규소 동위원소 분석을 위해 기존 보고된 알칼리 용융법을 정리하고 생물 기원 규소 분석에 가장 적합한 규소 분리법을 구축하고자 하였다. 해당 시료를 고온 알칼리 용융을 통해 완전 용해시킨 후 시료 내 규소를 AG® 50W-X8 양이온 교환수지를 이용하여 효과적으로 분리하였다. 분리된 시료에 대한 신뢰성 검증을 위하여 Si 동위원소 표준물질(NBS-28) 및 USGS 암석 표준시료(AGV-2, GSP-2, BHVO-2)에 대한 분석을 함께 실시하였으며, 분석된 시료 모두 기존 연구결과와 오차범위 내에서 일치하는 값을 나타내었다. 본 연구에서 개발한 규소 동위원소 분석법은 향후 국내의 지구과학 및 관련 연구 발전에 많은 도움을 줄 것으로 기대된다.

Keywords

Acknowledgement

이 논문은 부산대학교 국립대학육성사업(2019-2020)의 지원을 받아 연구되었습니다. 퇴적물 시료를 제공해 주신 한국해양과학기술원 대양자원연구센터(PE99924)에도 감사드립니다.

References

  1. Abraham, K., Opfergelt, S., Fripiat, F., Cavagna, A.-J., de Jong, J. T. M., Foley, S. F., Andre, L., and Cardinal, D., 2008, δ30Si and δ29Si Determinations on USGS BHVO-1 and BHVO-2 Reference Materials with a New Configuration on a Nu Plasma Multi-Collector ICP-MS. Geostandards and Geoanalytical Research, 32(2), 193-202. https://doi.org/10.1111/j.1751-908X.2008.00879.x
  2. Armytage, R. M. G., Georg, R. B., Savage, P. S., Williams, H. M., and Halliday, A. N., 2011, Silicon isotopes in meteorites and planetary core formation. Geochimica et Cosmochimica Acta, 75(13), 3662-3676. https://doi.org/10.1016/j.gca.2011.03.044
  3. Armytage, R. M. G., Georg, R. B., Williams, H. M., and Halliday, A. N., 2012, Silicon isotopes in lunar rocks: Implications for the Moon's formation and the early history of the Earth. Geochimica et Cosmochimica Acta, 77, 504-514. https://doi.org/10.1016/j.gca.2011.10.032
  4. Bayon, G., Barrat, J. A., Etoubleau, J., Benoit, M., Revillon, S., and Bollinger, C., 2009, Determination of rare earth elements, Sc, Y, Zr, Ba, Hf and Th in geological samples by ICP-MS after Tm addition and alkaline fusion. Geostandards and Geoanalytical Research, 32, 51-62.
  5. Bayon, G., Delvigne, C., Ponzevera, E., Borges, A.V., Darchambeau, F., De Deckker, P., Lambert, T., Monin, L., Toucanne, S., and Andre, L., 2018, The silicon isotopic composition of fine-grained river sediments and its relation to climate and lithology. Geochimica et Cosmochimica Acta, 229, 147-161. https://doi.org/10.1016/j.gca.2018.03.015
  6. Brzezinski, M. A., Dickson, M.-L., Nelson, D. M., and Sambrotto, R., 2003, Ratios of Si, C and N uptake by microplankton in the Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 50(3-4), 619-633. https://doi.org/10.1016/S0967-0645(02)00587-8
  7. Cardinal, D., Alleman, L. Y., de Jong, J., Ziegler, K., and Andre, L., 2003, Isotopic composition of silicon measured by multicollector plasma source mass spectrometry in dry plasma mode. Journal of Analytical Atomic Spectrometry, 18(3), 213-218. https://doi.org/10.1039/b210109b
  8. Cardinal, D., Savoye, N., Trull, T. W., Dehairs, F., Kopczynska, E. E., Fripiat, F., Tison, J.-L., and Andre, L., 2007, Silicon isotopes in spring Southern Ocean diatoms: Large zonal changes despite homogeneity among size fractions. Marine Chemistry, 106(1-2), 46-62. https://doi.org/10.1016/j.marchem.2006.04.006
  9. Dauphas, N., Poitrasson, F., Burkhardt, C., Kobayashi, H., and Kurosawa, K., 2015, Planetary and meteoritic Mg/Si and δ30Si variations inherited from solar nebula chemistry. Earth and Planetary Science Letters, 427, 236-248. https://doi.org/10.1016/j.epsl.2015.07.008
  10. De Bievre, P. and Taylor, P. D. P., 1993, Table of the isotopic compositions of the elements. International Journal of Mass Spectrometry and Ion Processes, 123(2), 149-166. https://doi.org/10.1016/0168-1176(93)87009-H
  11. De La Rocha, C. L., 2002, Measurement of silicon stable isotope natural abundances via multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Geochemistry, Geophysics, Geosystems, 3(8), 1-8. https://doi.org/10.1029/2002GC000310
  12. Deng, Z., Chaussidon, M., Guitreau, M., Puchtel, I. S., Dauphas, N., and Moynier, F., 2019, An oceanic subduction origin for Archaean granitoids revealed by silicon isotopes. Nature Geoscience, 12, 774-778. https://doi.org/10.1038/s41561-019-0407-6
  13. Engstrom, E., Rodushkin, I., Baxter, D. C., and Ohlander, B., 2006, Chromatographic Purification for the Determination of Dissolved Silicon Isotopic Compositions in Natural Waters by High-Resolution Multicollector Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 78(1), 250-257. https://doi.org/10.1021/ac051246v
  14. Engstrom, E., Rodushkin, I., Ingri, J., Baxter, D. C., Ecke, F., Osterlund, H., and Ohlander, B., 2010, Temporal isotopic variations of dissolved silicon in a pristine boreal river. Chemical Geology, 271(3-4), 142-152. https://doi.org/10.1016/j.chemgeo.2010.01.005
  15. Epstein, E., 1999, SILICON. Annual Review of Plant Physiology and Plant Molecular Biology, 50(1), 641-664. https://doi.org/10.1146/annurev.arplant.50.1.641
  16. Frings, P. J., Clymans, W., Fontorbe, G., De La Rocha, C. L., and Conley, D. J., 2016, The continental Si cycle and its impact on the ocean Si isotope budget. Chemical Geology, 425, 12-36. https://doi.org/10.1016/j.chemgeo.2016.01.020
  17. Geilert, S., Grasse, P., Doering, K., Wallmann, K., Ehlert, C., Scholz, F., Frank, M., Schmidt, M., and Hensen, C., 2020, Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis. Biogeosciences, 17, 1745-1763. https://doi.org/10.5194/bg-17-1745-2020
  18. Georg, R. B., Reynolds, B. C., Frank, M., and Halliday, A. N., 2006, New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS. Chemical Geology, 235(1-2), 95-104. https://doi.org/10.1016/j.chemgeo.2006.06.006
  19. Hasle, G. R., Syvertsen, E., Steidinger, K. A., and Tangen, K., 1996, Identifying Marine Diatoms and Dinoflagellates, Academic Press, Massachusetts, USA, 598 p.
  20. Hendry, K. R. and Robinson, L. F., 2012, The relationship between silicon isotope fractionation in sponges and silicic acid concentration: Modern and core-top studies of biogenic opal. Geochimica et Cosmochimica Acta, 81, 1-12. https://doi.org/10.1016/j.gca.2011.12.010
  21. Hughes, H. J., Sondag, F., Santos, R. V., Andre, L., and Cardinal, D., 2013, The riverine silicon isotope composition of the Amazon Basin. Geochimica et Cosmochimica Acta, 121, 637-651. https://doi.org/10.1016/j.gca.2013.07.040
  22. Leng, M. J., Swann, G. E. A., Hodson, M. J., Tyler, J. J., Patwardhan, S. V., and Sloane, H. J., 2009, The Potential use of Silicon Isotope Composition of Biogenic Silica as a Proxy for Environmental Change. Silicon, 1(2), 65-77. https://doi.org/10.1007/s12633-009-9014-2
  23. Opfergelt, S., Burton, K. W., Pogge von Strandmann, P. A. E., Gislason, S. R., and Halliday, A. N., 2013, Riverine silicon isotope variations in glaciated basaltic terrains: Implications for the Si delivery to the ocean over glacial-interglacial intervals. Earth and Planetary Science Letters, 369-370, 211-219. https://doi.org/10.1016/j.epsl.2013.03.025
  24. Opfergelt, S., Georg, R. B., Burton, K. W., Guicharnaud, R., Siebert, C., Gislason, S. R., and Halliday, A. N., 2011, Silicon isotopes in allophane as a proxy for mineral formation in volcanic soils. Applied Geochemistry, 26, S115-S118. https://doi.org/10.1016/j.apgeochem.2011.03.044
  25. Poitrasson, F., 2017, Silicon Isotope Geochemistry. Reviews in Mineralogy and Geochemistry, 82(1), 289-344. https://doi.org/10.2138/rmg.2017.82.8
  26. Pondaven, P., Ragueneau, O., Treguer, P., Hauvespre, A., Dezileau, L., and Reyss, J. L., 2000, Resolving the 'opal paradox' in the Southern Ocean. Nature, 405(6783), 168-172. https://doi.org/10.1038/35012046
  27. Raczek, I., Stoll, B., Hofmann, A. W., and Peter Jochum, K., 2001, High-Precision Trace Element Data for the USGS Reference Materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, DTS-1, DTS-2, GSP-1 and GSP-2 by ID-TIMS and MIC-SSMS. Geostandards and Geoanalytical Research, 25(1), 77-86. https://doi.org/10.1111/j.1751-908x.2001.tb00789.x
  28. Ragueneau, O., Savoye, N., Del Amo, Y., Cotten, J., Tardiveau, B., and Leynaert, A., 2005, A new method for the measurement of biogenic silica in suspended matter of coastal waters: using Si:Al ratios to correct for the mineral interference. Continental Shelf Research, 25(5-6), 697-710. https://doi.org/10.1016/j.csr.2004.09.017
  29. Savage, P. S., Georg, R. B., Williams, H. M., and Halliday, A. N., 2013, The silicon isotope composition of the upper continental crust. Geochimica et Cosmochimica Acta, 109, 384-399. https://doi.org/10.1016/j.gca.2013.02.004
  30. Savage, P. S., Georg, R. B., Williams, H. M., Burton, K. W., and Halliday, A. N., 2011, Silicon isotope fractionation during magmatic differentiation. Geochim Cosmochim Acta, 75, 6124-6139. https://doi.org/10.1016/j.gca.2011.07.043
  31. Savage, P. S., Georg, R. B., Williams, H. M., Turner, S., Halliday, A. N., and Chappell, B. W., 2012, The silicon isotope composition of granites. Geochimica et Cosmochimica Acta, 92, 184-202. https://doi.org/10.1016/j.gca.2012.06.017
  32. Shahar, A. and Young, E., 2007, Astrophysics of CAI formation as revealed by silicon isotope LA-MC-ICPMS of an igneous CAI. Earth and Planetary Science Letters, 257(3-4), 497-510. https://doi.org/10.1016/j.epsl.2007.03.012
  33. Sikdar, J. and Rai, V. K., 2017, Simultaneous chromatographic purification of Si and Mg for isotopic analyses using MC-ICPMS. Journal of Analytical Atomic Spectrometry, 32(4), 822-833. https://doi.org/10.1039/C6JA00426A
  34. Treguer, P. J. and De La Rocha, C. L., 2013, The World Ocean Silica Cycle. Annual Review of Marine Science, 5(1), 477-501. https://doi.org/10.1146/annurev-marine-121211-172346
  35. van den Boorn, S. H. J. M., Vroon, P. Z., van Belle, C. C., van der Wagt, B., Schwieters, J., and van Bergen, M. J., 2006, Determination of silicon isotope ratios in silicate materials by high-resolution MC-ICP-MS using a sodium hydroxide sample digestion method. Journal of Analytical Atomic Spectrometry, 21(8), 734. https://doi.org/10.1039/b600933f
  36. Villareal, T. A., 1992, Buoyancy properties of the giant diatom Ethmodiscus. Journal of Plankton Research, 14(3), 459-463. https://doi.org/10.1093/plankt/14.3.459
  37. Xiong, Z., Li, T., Algeo, T., Doering, K., Frank, M., Brzezinski, M. A., Chang, F., Opfergelt, S., Crosta, X., Jiang, F., Wan, S., and Zhai, B., 2015, The silicon isotope composition of Ethmodiscus rex laminated diatom mats from the tropical West Pacific: Implications for silicate cycling during the Last Glacial Maximum. Paleoceanography, 30(7), 803-823. https://doi.org/10.1002/2015PA002793
  38. Xiong, Z., Li, T., and Crosta, X., 2012, Cleaning of marine sediment samples for large diatom stable isotope analysis. Journal of Earth Science, 23(2), 161-172. https://doi.org/10.1007/s12583-012-0241-x
  39. Zambardi, T. and Poitrasson, F., 2011, Precise determination of silicon isotopes in silicate rock reference materials by MC-ICP-MS. Geostand Geoanal Res, 35, 89-99. https://doi.org/10.1111/j.1751-908X.2010.00067.x
  40. Zambardi, T., Poitrasson, F., Corgne, A., Meheut, M., Quitte, G., and Anand, M., 2013, Silicon isotope variations in the inner solar system: Implications for planetary formation, differentiation and composition. Geochimica et Cosmochimica Acta, 121, 67-83. https://doi.org/10.1016/j.gca.2013.06.040
  41. Zhang, A., Zhang, J., Zhang, R., and Xue, Y., 2014, Modified enrichment and purification protocol for dissolved silicon-isotope determination in natural waters. Journal of Analytical Atomic Spectrometry, 29(12), 2414-2418. https://doi.org/10.1039/c4ja00122b
  42. Zhang, A., Zhang, J., Zhang, R., and Xue, Y., 2015, Determination of Stable Silicon Isotopes Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Chinese Journal of Analytical Chemistry, 43(9), 1353-1359. https://doi.org/10.1016/s1872-2040(15)60860-x
  43. Zhang, C., Zhao, H., Zhang, W., Luo, T., Li, M., Zong, K., Liu, Y., and Hu, Z., 2020, A high performance method for the accurate and precise determination of silicon isotopic compositions in bulk silicate rock samples using laser ablation MC-ICP-MS, Journal of Analytical Atomic Spectrometry, 35, 1887-1896. https://doi.org/10.1039/d0ja00036a