Acknowledgement
This work was financially supported by the Innovation Capacity Improvement Project for Colleges and Universities of Gansu Province (No. 2020A-010) and the Doctoral Scientific Research Foundation of Northwest Normal University (No. 6014/0002020203).
References
- A. Al-Salman, H. Al-Qassem, L. C. Cheng, and Y. Pan, Lp bounds for the function of Marcinkiewicz, Math. Res. Lett. 9 (2002), no. 5-6, 697-700. https://doi.org/10.4310/MRL.2002.v9.n5.a11
- A.-P. Calderon, Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1092-1099. https://doi.org/10.1073/pnas.53.5.1092
- Y. Chen and Y. Ding, Lp boundedness of the commutators of Marcinkiewicz integrals with rough kernels, Forum Math. 27 (2015), no. 4, 2087-2111. https://doi.org/10.1515/forum-2013-0041
- Y. P. Chen, Y. Ding, and X. X. Wang, Commutators of Marcinkiewicz integral with rough kernels on Sobolev spaces, Acta Math. Sin. (Engl. Ser.) 27 (2011), no. 7, 1345-1366. https://doi.org/10.1007/s10114-011-8544-x
- R. R. Coifman, R. Rochberg, and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), no. 3, 611-635. https://doi.org/10.2307/1970954
- F. Deringoz, V. S. Guliyev, and S. G. Hasanov, Characterizations for the Riesz potential and its commutators on generalized Orlicz-Morrey spaces, J. Inequal. Appl. 2016 (2016), Paper No. 248, 22 pp. https://doi.org/10.1186/s13660-016-1192-z
- F. Deringoz, V. S. Guliyev, and S. G. Hasanov, A characterization for Adams-type boundedness of the fractional maximal operator on generalized Orlicz-Morrey spaces, Integral Transforms Spec. Funct. 28 (2017), no. 4, 284-299. https://doi.org/10.1080/10652469.2017.1283312
- F. Deringoz, V. S. Guliyev, and S. Samko, Boundedness of the maximal and singular operators on generalized Orlicz-Morrey spaces, in Operator theory, operator algebras and applications, 139-158, Oper. Theory Adv. Appl., 242, Birkhauser/Springer, Basel, 2014. https://doi.org/10.1007/978-3-0348-0816-3_7
- R. A. DeVore and R. C. Sharpley, Maximal functions measuring smoothness, Mem. Amer. Math. Soc. 47 (1984), no. 293, viii+115 pp. https://doi.org/10.1090/memo/0293
- Y. Ding, S. Lu, and Q. Xue, Marcinkiewicz integral on Hardy spaces, Integral Equations Operator Theory 42 (2002), no. 2, 174-182. https://doi.org/10.1007/BF01275514
- Y. Ding, Q. Xue, and K. Yabuta, Existence and boundedness of parametrized Marcinkiewicz integral with rough kernel on Campanato spaces, Nagoya Math. J. 181 (2006), 103-148. https://doi.org/10.1017/S0027763000025691
- D. Fan and S. Sato, Weak type (1, 1) estimates for Marcinkiewicz integrals with rough kernels, Tohoku Math. J. (2) 53 (2001), no. 2, 265-284. https://doi.org/10.2748/tmj/1178207481
- W. Gao and L. Tang, Boundedness for Marcinkiewicz integrals associated with Schrodinger operators, Proc. Indian Acad. Sci. Math. Sci. 124 (2014), no. 2, 193-203. https://doi.org/10.1007/s12044-014-0168-5
- V. S. Guliyev and F. Deringoz, Some characterizations of Lipschitz spaces via commutators on generalized Orlicz-Morrey spaces, Mediterr. J. Math. 15 (2018), no. 4, Paper No. 180, 19 pp. https://doi.org/10.1007/s00009-018-1226-5
- L. Hormander, Estimates for translation invariant operators in Lp spaces, Acta Math. 104 (1960), 93-140. https://doi.org/10.1007/BF02547187
- G. Hu and D. Yan, On the commutator of the Marcinkiewicz integral, J. Math. Anal. Appl. 283 (2003), no. 2, 351-361. https://doi.org/10.1016/S0022-247X(02)00498-5
- S. Janson, Mean oscillation and commutators of singular integral operators, Ark. Mat. 16 (1978), no. 2, 263-270. https://doi.org/10.1007/BF02386000
- B. Li, Parametric Marcinkiewicz integrals with rough kernels acting on weak MusielakOrlicz Hardy spaces, Banach J. Math. Anal. 13 (2019), no. 1, 47-63. https://doi.org/10.1215/17358787-2018-0015
- S. Z. Lu and H. X. Mo, Boundedness of commutators for the Marcinkiewicz integrals, Acta Math. Sinica (Chin. Ser.) 49 (2006), no. 3, 481-490.
- G. Lu and S. Tao, Estimates for parameter Littlewood-Paley g*κ functions on nonhomogeneous metric measure spaces, J. Funct. Spaces 2016 (2016), Art. ID 9091478, 12 pp. https://doi.org/10.1155/2016/9091478
- S. Lu and D. Yang, The central BMO spaces and Littlewood-Paley operators, Approx. Theory Appl. (N.S.) 11 (1995), no. 3, 72-94.
- J. Marcinkiewicz, Sur quelques integrals du type de Dini, Ann. Soc. Polon. Math. 17 (1938), 42-50.
- L. Wang and S. Tao, Parameterized Littlewood-Paley operators and their commutators on Lebesgue spaces with variable exponent, Anal. Theory Appl. 31 (2015), no. 1, 13-24. https://doi.org/10.4208/ata.2015.v31.n1.2
- M. Sakamoto and K. Yabuta, Boundedness of Marcinkiewicz functions, Studia Math. 135 (1999), no. 2, 103-142.
- E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430-466. https://doi.org/10.2307/1993226
- A. Torchinsky and S. L. Wang, A note on the Marcinkiewicz integral, Colloq. Math. 60/61 (1990), no. 1, 235-243. https://doi.org/10.4064/cm-60-61-1-235-243
- L. Wang and L. Shu, Higher order commutators of Marcinkiewicz integral operator on Herz-Morrey spaces with variable exponent, Acta Math. Sinica, China Ser. 49 (2006), no. 3, 481-490.
- H. Wu, On Marcinkiewicz integral operators with rough kernels, Integral Equations Operator Theory 52 (2005), no. 2, 285-298. https://doi.org/10.1007/s00020-004-1339-z
- Y. M. Ying, J. C. Chen, and D. S. Fan, A note on the Marcinkiewicz integral operator with rough kernel on product spaces, Chinese Ann. Math. Ser. A 24 (2003), no. 6, 777-786. https://doi.org/10.3321/j.issn:1000-8134.2003.06.014
- P. Zhang, Characterization of Lipschitz spaces via commutators of the Hardy-Littlewood maximal function, C. R. Math. Acad. Sci. Paris 355 (2017), no. 3, 336-344. https://doi.org/10.1016/j.crma.2017.01.022
- Z. S. Zhang, A note on the L2 boundedness of Marcinkiewicz integral operator, Int. J. Math. Comput. 26 (2015), no. 4, 133-137.
- F. Y. Zhao and Y. S. Jiang, A note on commutators of the Marcinkiewicz integral, J. Math. (Wuhan) 29 (2009), no. 6, 784-788.