DOI QR코드

DOI QR Code

PARAMETER MARCINKIEWICZ INTEGRAL AND ITS COMMUTATOR ON GENERALIZED ORLICZ-MORREY SPACES

  • Lu, Guanghui (College of Mathematics and Statistics Northwest Normal University)
  • Received : 2020.02.11
  • Accepted : 2020.06.04
  • Published : 2021.03.01

Abstract

The aim of this paper is to mainly establish the sufficient and necessary conditions for the boundedness of the commutator ����Ω,b which is generated by the parameter Marcinkiwicz integral ����Ω and the Lipschitz function b on generalized Orlicz-Morrey space L��,��(Rd) in the sense of the Adams type result (or Spanne type result). Moreover, the necessary conditions for the parameter Marcinkiewizcz integral ����Ω on the L��,��(Rd), and the commutator [b,����Ω] generated by the ����Ω and the space BMO on the L��,��(Rd), are also obtained, respectively.

Keywords

Acknowledgement

This work was financially supported by the Innovation Capacity Improvement Project for Colleges and Universities of Gansu Province (No. 2020A-010) and the Doctoral Scientific Research Foundation of Northwest Normal University (No. 6014/0002020203).

References

  1. A. Al-Salman, H. Al-Qassem, L. C. Cheng, and Y. Pan, Lp bounds for the function of Marcinkiewicz, Math. Res. Lett. 9 (2002), no. 5-6, 697-700. https://doi.org/10.4310/MRL.2002.v9.n5.a11
  2. A.-P. Calderon, Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1092-1099. https://doi.org/10.1073/pnas.53.5.1092
  3. Y. Chen and Y. Ding, Lp boundedness of the commutators of Marcinkiewicz integrals with rough kernels, Forum Math. 27 (2015), no. 4, 2087-2111. https://doi.org/10.1515/forum-2013-0041
  4. Y. P. Chen, Y. Ding, and X. X. Wang, Commutators of Marcinkiewicz integral with rough kernels on Sobolev spaces, Acta Math. Sin. (Engl. Ser.) 27 (2011), no. 7, 1345-1366. https://doi.org/10.1007/s10114-011-8544-x
  5. R. R. Coifman, R. Rochberg, and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), no. 3, 611-635. https://doi.org/10.2307/1970954
  6. F. Deringoz, V. S. Guliyev, and S. G. Hasanov, Characterizations for the Riesz potential and its commutators on generalized Orlicz-Morrey spaces, J. Inequal. Appl. 2016 (2016), Paper No. 248, 22 pp. https://doi.org/10.1186/s13660-016-1192-z
  7. F. Deringoz, V. S. Guliyev, and S. G. Hasanov, A characterization for Adams-type boundedness of the fractional maximal operator on generalized Orlicz-Morrey spaces, Integral Transforms Spec. Funct. 28 (2017), no. 4, 284-299. https://doi.org/10.1080/10652469.2017.1283312
  8. F. Deringoz, V. S. Guliyev, and S. Samko, Boundedness of the maximal and singular operators on generalized Orlicz-Morrey spaces, in Operator theory, operator algebras and applications, 139-158, Oper. Theory Adv. Appl., 242, Birkhauser/Springer, Basel, 2014. https://doi.org/10.1007/978-3-0348-0816-3_7
  9. R. A. DeVore and R. C. Sharpley, Maximal functions measuring smoothness, Mem. Amer. Math. Soc. 47 (1984), no. 293, viii+115 pp. https://doi.org/10.1090/memo/0293
  10. Y. Ding, S. Lu, and Q. Xue, Marcinkiewicz integral on Hardy spaces, Integral Equations Operator Theory 42 (2002), no. 2, 174-182. https://doi.org/10.1007/BF01275514
  11. Y. Ding, Q. Xue, and K. Yabuta, Existence and boundedness of parametrized Marcinkiewicz integral with rough kernel on Campanato spaces, Nagoya Math. J. 181 (2006), 103-148. https://doi.org/10.1017/S0027763000025691
  12. D. Fan and S. Sato, Weak type (1, 1) estimates for Marcinkiewicz integrals with rough kernels, Tohoku Math. J. (2) 53 (2001), no. 2, 265-284. https://doi.org/10.2748/tmj/1178207481
  13. W. Gao and L. Tang, Boundedness for Marcinkiewicz integrals associated with Schrodinger operators, Proc. Indian Acad. Sci. Math. Sci. 124 (2014), no. 2, 193-203. https://doi.org/10.1007/s12044-014-0168-5
  14. V. S. Guliyev and F. Deringoz, Some characterizations of Lipschitz spaces via commutators on generalized Orlicz-Morrey spaces, Mediterr. J. Math. 15 (2018), no. 4, Paper No. 180, 19 pp. https://doi.org/10.1007/s00009-018-1226-5
  15. L. Hormander, Estimates for translation invariant operators in Lp spaces, Acta Math. 104 (1960), 93-140. https://doi.org/10.1007/BF02547187
  16. G. Hu and D. Yan, On the commutator of the Marcinkiewicz integral, J. Math. Anal. Appl. 283 (2003), no. 2, 351-361. https://doi.org/10.1016/S0022-247X(02)00498-5
  17. S. Janson, Mean oscillation and commutators of singular integral operators, Ark. Mat. 16 (1978), no. 2, 263-270. https://doi.org/10.1007/BF02386000
  18. B. Li, Parametric Marcinkiewicz integrals with rough kernels acting on weak MusielakOrlicz Hardy spaces, Banach J. Math. Anal. 13 (2019), no. 1, 47-63. https://doi.org/10.1215/17358787-2018-0015
  19. S. Z. Lu and H. X. Mo, Boundedness of commutators for the Marcinkiewicz integrals, Acta Math. Sinica (Chin. Ser.) 49 (2006), no. 3, 481-490.
  20. G. Lu and S. Tao, Estimates for parameter Littlewood-Paley g*κ functions on nonhomogeneous metric measure spaces, J. Funct. Spaces 2016 (2016), Art. ID 9091478, 12 pp. https://doi.org/10.1155/2016/9091478
  21. S. Lu and D. Yang, The central BMO spaces and Littlewood-Paley operators, Approx. Theory Appl. (N.S.) 11 (1995), no. 3, 72-94.
  22. J. Marcinkiewicz, Sur quelques integrals du type de Dini, Ann. Soc. Polon. Math. 17 (1938), 42-50.
  23. L. Wang and S. Tao, Parameterized Littlewood-Paley operators and their commutators on Lebesgue spaces with variable exponent, Anal. Theory Appl. 31 (2015), no. 1, 13-24. https://doi.org/10.4208/ata.2015.v31.n1.2
  24. M. Sakamoto and K. Yabuta, Boundedness of Marcinkiewicz functions, Studia Math. 135 (1999), no. 2, 103-142.
  25. E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430-466. https://doi.org/10.2307/1993226
  26. A. Torchinsky and S. L. Wang, A note on the Marcinkiewicz integral, Colloq. Math. 60/61 (1990), no. 1, 235-243. https://doi.org/10.4064/cm-60-61-1-235-243
  27. L. Wang and L. Shu, Higher order commutators of Marcinkiewicz integral operator on Herz-Morrey spaces with variable exponent, Acta Math. Sinica, China Ser. 49 (2006), no. 3, 481-490.
  28. H. Wu, On Marcinkiewicz integral operators with rough kernels, Integral Equations Operator Theory 52 (2005), no. 2, 285-298. https://doi.org/10.1007/s00020-004-1339-z
  29. Y. M. Ying, J. C. Chen, and D. S. Fan, A note on the Marcinkiewicz integral operator with rough kernel on product spaces, Chinese Ann. Math. Ser. A 24 (2003), no. 6, 777-786. https://doi.org/10.3321/j.issn:1000-8134.2003.06.014
  30. P. Zhang, Characterization of Lipschitz spaces via commutators of the Hardy-Littlewood maximal function, C. R. Math. Acad. Sci. Paris 355 (2017), no. 3, 336-344. https://doi.org/10.1016/j.crma.2017.01.022
  31. Z. S. Zhang, A note on the L2 boundedness of Marcinkiewicz integral operator, Int. J. Math. Comput. 26 (2015), no. 4, 133-137.
  32. F. Y. Zhao and Y. S. Jiang, A note on commutators of the Marcinkiewicz integral, J. Math. (Wuhan) 29 (2009), no. 6, 784-788.