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WEIGHTED Lp-BOUNDEDNESS OF SINGULAR INTEGRALS

WITH ROUGH KERNEL ASSOCIATED TO SURFACES

Ronghui Liu and Huoxiong Wu

Abstract. In this paper, we prove weighted norm inequalities for rough

singular integrals along surfaces with radial kernels h and sphere kernels
Ω by assuming h ∈ 4γ(R+) and Ω ∈ WGβ(Sn−1) for some γ > 1 and

β > 1. Here Ω ∈ WGβ(Sn−1) denotes the variant of Grafakos-Stefanov
type size conditions on the unit sphere. Our results essentially improve

and extend the previous weighted results for the rough singular integrals

and the corresponding maximal truncated operators.

1. Introduction

Let Sn−1 be the unit sphere in Rn, n ≥ 2, with normalized Lebesgue measure
dσ = dσ(·). Let Ω be a homogeneous function of degree 0, which is integrable
over Sn−1, and enjoys the property that

(1.1)

∫
Sn−1

Ω(u)dσ(u) = 0.

Let Γ(t) be a suitable function on the interval R+ := (0,∞). The singular
integral operator TΩ,Γ,h associated with Γ is defined by

(1.2) TΩ,Γ,hf(x) = p.v.

∫
Rn

Ω(y′)h(|y|)
|y|n

f(x− Γ(|y|)y′)dy,

and the corresponding maximal truncated operator T ∗Ω,Γ,h is defined by

(1.3) T ∗Ω,Γ,hf(x) = sup
ε>0

∣∣∣ ∫
|y|>ε

Ω(y′)h(|y|)
|y|n

f(x− Γ(|y|)y′)dy
∣∣∣,

where y′ = y/|y| for any y 6= 0, f ∈ S(Rn), the space of Schwartz functions,
and h ∈ ∆γ(R+). Here ∆γ(R+), γ ≥ 1, is the set of all measurable functions h
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defined on R+ satisfying

‖h‖∆γ(R+) := sup
R>0

( 1

R

∫ R

0

|h(t)|γdt
)1/γ

<∞.

It is clear that

(1.4) L∞(R+) = ∆∞(R+) ( ∆γ2(R+) ( ∆γ1(R+) for 1 ≤ γ1 < γ2 <∞.
For the sake of simplicity, we denote TΩ,Γ,h = TΩ,h, T ∗Ω,Γ,h = T ∗Ω,h if Γ(t) = t,

TΩ,Γ,h = TΩ,Γ, T ∗Ω,Γ,h = T ∗Ω,Γ if h(t) = 1 and TΩ,Γ,h = TΩ, T ∗Ω,Γ,h = T ∗Ω if

Γ(t) = t and h(t) = 1.
The investigation of the operators TΩ and T ∗Ω began with Calderón-Zyg-

mund’s groundbreaking study in [4, 5] and then continued by many authors
(see [6, 13,15,20,22] etc.). In their fundamental work, Calderón and Zygmund
established the Lp boundedness of the operators TΩ and T ∗Ω under the con-

dition that Ω ∈ Llog+L(Sn−1). Later on, Coifman-Wesis [7] and Connett [8]
independently extended the result of TΩ to the case: Ω ∈ H1(Sn−1), where
H1(Sn−1) denotes the Hardy space on the unit sphere in the sense of Coifman
and Weiss. It should be noted that the following relations:

Lq(Sn−1)  Llog+L(Sn−1)  H1(Sn−1)  L1(Sn−1), ∀ 1 < q ≤ ∞.
Also, in studying the Lp-boundedness of singular integrals and maximal sin-
gular integrals with rough kernels, Grafakos and Stefanov [20] introduced the
following function class:

Gβ(Sn−1)=

{
Ω ∈ L1(Sn−1) : sup

ξ∈Sn−1

∫
Sn−1

|Ω(y′)|
(

log
1

|〈ξ, y′〉|

)β
dσ(y′) <∞

}
for β > 0, and showed that

Gβ1(Sn−1)  Gβ2(Sn−1), 0 < β2 < β1,⋃
q>1

Lq(Sn−1)  
⋂
β>0

Gβ(Sn−1),

and

(1.5)
⋂
β>1

Gβ(Sn−1) * H1(Sn−1) *
⋃
β>1

Gβ(Sn−1).

Moreover, they proved that TΩ (resp., T ∗Ω) is bounded on Lp(Rn), provided
that Ω ∈ Gβ(Sn−1) for some β > 2 (resp., β > 3) and p ∈ (1 + 2/β, 1 + β/2)
(resp., 2β/(2β − 3) < p < 2β/3). Soon later, Fan, Guo and Pan [14] improved
and extended the above results as follows.

Theorem A (cf. [14]). Let Ω ∈ Gβ(Sn−1) for some β > 1 and satisfy (1.1).
Then

(i) If β > 2, then TΩ,Γ is bounded on Lp(Rn) for p ∈ (β′, β).

(ii) If β > 3, then T ∗Ω,Γ is bounded on Lp(Rn) for p ∈ (β−1
β−2 , β − 1).

Here Γ(t) = PN (t), PN (t) is a real polynomial on R of degree N satisfying
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P (0) = 0, and the bounds of the above operators are independent of the coeffi-
cients of PN .

The operator TΩ,h, whose kernel has the additional roughness due to the
presence of h, was first studied by Fefferman [18] and subsequently by many
other authors (see [3,13,15,17,24] etc.). In particular, we can find the following
results.

Theorem B. Let h ∈ ∆γ(R+) for γ > 1, Ω ∈ L1(Sn−1) and satisfy (1.1).
(i) (cf. [15]) If Ω ∈ H1(Sn−1), then TΩ,h is bounded on Lp(Rn) for |1/p −

1/2| < min{1/2, 1/γ′}.
(ii) (cf. [17]) If Ω ∈ WGβ(Sn−1) for some β > max{2, γ′}, then TΩ,h is

bounded on Lp(Rn) for |1/p− 1/2| < min{1/2, 1/γ′}− 1/β, where WGβ(Sn−1)
for β > 0 denotes the set of all functions Ω : Sn−1 → R satisfying

(1.6) sup
ξ′∈Sn−1

∫∫
Sn−1×Sn−1

|Ω(x′)Ω(y′)|
(

log
1

|〈x′−y′, ξ′〉|

)β
dσ(x′)dσ(y′) <∞.

It follows from [17, Lemma 1] and [23, Lemma A.2] that

Gβ(S1) ⊂ WGβ(S1),

and for n ≥ 2,

(1.7) WG2β(Sn−1) \ Gβ(Sn−1) 6= ∅ for β > 0,⋃
r>1

Lr(Sn−1) ⊂ WGβ2(Sn−1) ⊂ WGβ1(Sn−1) for 0 < β1 < β2 <∞.

In this paper, we will focus on the weighted Lp estimates of TΩ,Γ,h and
T ∗Ω,Γ,h. Duoandikoetxea and Rubio de Francia [13] first showed the weighted

Lp-bounds of TΩ with Ω ∈ L∞(Sn−1). Subsequently, the weighted Lp bounds of
TΩ and T ∗Ω with Ω ∈ Lq(Sn−1) were given by Watson [27] and Duoandikoetxea
[12] successively. Moreover, Duoandikoetxea [12] proved that TΩ and T ∗Ω are

bounded on Lp(ω) for 1 < p < ∞, provided that Ω ∈ Llog+L(Sn−1) and

ω ∈ Ãp(R+), a special class of radial Muckenhoupt weights. Precisely, for

1 < p < ∞, we say ω ∈ Ã(R+), if ω(x) = ν1(|x|)ν2(|x|)1−p
, where either

νi ∈ A1(R+) is decreasing, or ν2
i ∈ A1(R+), i = 1, 2.

In 1999, Fan, Pan and Yang [16] improved and extended the result of [12]
as follows.

Theorem C (cf. [16]). Let h ∈ ∆γ(R+) for γ ≥ 2, 1 < p < ∞. Suppose that

Γ ∈ F1 or F2, ω ∈ Ãp/γ′(R+) with p ≥ γ′. If Ω ∈ H1(Sn−1), then TΩ,Γ,h and
T ∗Ω,Γ,h are bounded on Lp(ω).

Remark D. (i) In [16], the authors proved Theorem C, provided ω ∈ ÃIp/γ′(R
+)

:= Ãp/γ′(R+) ∩ AIp/γ′ (see [16] for the definition). However, we know from

[28, Theorem 4] that Ãp(R+) ⊂ AIp(Rn) for any 1 < p < ∞, which indicates

that ÃIp(R+) = Ãp(R+). Meanwhile, if ω(t) ∈ Ãp(R+), we know from [12] that
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the Hardy-Littlewood function M is bounded on Lp(Rn, ω(|x|)dx). Therefore,

if ω(t) ∈ Ãp(R+), then ω(|x|) ∈ Ap(Rn).
(ii) (cf. [16]) The class of functions F1 and F2 in Theorem C are given as

follows.
A nonnegative C1(R+) function Γ ∈ F1 if it satisfies the following conditions:

(a) Γ is strictly increasing on R+, Γ(2t) ≥ λΓ(t) for all t > 0 and some
fixed λ > 1.

(b) Γ satisfies a doubling condition, Γ(2t) ≤ cΓ(t) for all t > 0 and some
constant c ≥ λ > 1,

(c) Γ′(t) ≥ C1Γ(t)/t on R+ for some fixed C1 ∈ (0, log2 c]) and Γ′(t) is
monotone on (0,∞).

A nonnegative C1(R+) function Γ ∈ F2 if satisfies the following conditions:

(a’) Γ is strictly decreasing on R+, Γ(t) ≥ λΓ(2t) for all t > 0 and some
fixed λ > 1.

(b’) Γ(t) ≤ cΓ(2t) for all t > 0 and some constant c ≥ λ > 1,
(c’) |Γ′(t)| ≥ C1Γ(t)/t on R+ for all t > 0 and some fixed C1 ∈ (0, log2 c])

and Γ′(t) is monotone on (0,∞).

We remark that model examples for the functions F1 are Γ(t) = tδ with
δ > 0, and their linear combinations with positive coefficients. Model examples
for the functions F2 are tδ with δ < 0, and their linear combinations with
positive coefficients.

On the other hand, Al-Qassem [1] obtained the following weighted result.

Theorem E (cf. [1]). Let Ω ∈ Gβ(Sn−1) for some β > 1 and satisfy (1.1).

Suppose that Γ ∈ F1 or F2, and ω ∈ Ãp(R+) for 1 < p <∞.
(i) If β > 2, then TΩ,Γ is bounded on Lp(ω) for p ∈ (β′, β).

(ii) If β > 3, then T ∗Ω,Γ is bounded on Lp(ω) for p ∈ (β−1
β−2 , β − 1).

In addition, Ding, Xue and Yabuta [10] introduced the following conditions
on Γ:

Suppose Γ is a nonnegative monotone C1(R+) function such that φ(t) :=
Γ(t)
tΓ′(t) is bounded. We say Γ ∈ F if Γ satisfies one of the following conditions:

(i) Γ is increasing on R+, and Γ(2t) ≤ C1Γ(t).
(ii) Γ is increasing on R+, and tΓ′(t) is increasing on R+.
(iii) Γ is decreasing on R+, and Γ(t) ≤ C2Γ(2t).
(iv) Γ is decreasing on R+ and convex.

Remark F. It is worthwhile to note that F1, F2 ⊂ F, and there is a function Γ
which satisfies F but does not satisfy F1 or F2. For example, Γ(t) =

√
t log(1 +

t) ∈ F, but is not in F1.

In light of the aforementioned facts concerning the singular integrals and the
assumptions on Γ, a question that arise naturally is the following.
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Question. Are the operators TΩ,Γ,h and T ∗Ω,Γ,h bounded on Lp(ω), provided

that Γ ∈ F, h ∈ 4γ(R+) for some γ > 1, Ω ∈ WGβ(Sn−1) for some β > 1, and

ω ∈ Ãp(R+) for some 1 < p <∞?

The main purpose of this paper is to address the above question. Our results
can be formulated as follows.

Theorem 1.1. Let γ ∈ (2,∞], β ∈ (2,∞) and Γ ∈ F. If h ∈ 4γ(R+),

Ω ∈ WGβ(Sn−1) and satisfies (1.1), then for p ∈ ( γ′β
γ′+β−2 ,

γ′β
γ′+(β−2)(γ′−1) ), and

ω ∈ Ãp/γ′(R+) or Ãp′/γ′(R+), TΩ,Γ,h is bounded on Lp(ω).

Theorem 1.2. Let γ ∈ (2,∞], β ∈ (3,∞) and Γ ∈ F. If h ∈ 4γ(R+),

Ω ∈ WGβ(Sn−1) and satisfies (1.1), then for p ∈ (γ
′(β−1)
γ′+β−3 ,

γ′(β−1)
γ′+(γ′−1)(β−3) ) and

ω ∈ Ãp/γ′(R+), T ∗Ω,Γ,h is bounded on Lp(ω).

Remark 1.3. (1) If Γ(t) = t, ω ≡ 1 and Ω ∈ WGβ(Sn−1) for some β > 2, then
Theorem 1.1 reduces to (ii) of Theorem B in the case γ ∈ (2,∞].

(2) Comparing with Theorem C, Theorems 1.1 and 1.2 relax the conditions
imposed on Γ and have themselves interesting because of (1.5) and (1.7).

(3) It should be pointed out that the inclusion relation betweenWGβ(Sn−1)
and Gβ(Sn−1) is not clear for n ≥ 2 at present. But even so, our results also
present a meaningful extension to Theorem E because of (1.7), even for h ≡ 1.

Moreover, we remark that for h(t) ≡ 1, Theorem 1.1 or 1.2 is true, provided
that γ′ = 1 and Ω ∈ Gβ(Sn−1) for some β > 2, or β > 3. This represents
an improvement and extension to Theorem E since F1, F2 ( F. We leave the
details to the interested readers.

The paper is organized as follows. In Section 2, we will give several auxiliary
lemmas. The proofs of Theorems 1.1 and 1.2 will be based on two general
criterions on the weighted inequality of the convolution operators, which will
be given in Section 3. In Section 4, we will extend Theorems 1.1-1.2 to the
more general cases. Finally, we will present two results related to Marcinkiewicz
integrals in Section 5. We would like to remark that the main ideas of our proofs
are taken from [1,12,14,16].

Throughout the paper, the letter C, sometimes with certain parameters, will
stand for positive constants not necessarily the same one at each occurrence,
but are independent of the essential variables. In what follows, for p ∈ (1,∞),
we denote p′ by the conjugate index of p, that is, 1/p+1/p′ = 1. For a measure
σ, we denote by |σ| the total variation of σ.

2. Preliminaries

In this section, we will establish some auxiliary lemmas. First, we introduce
some relevant notations and definitions. Let b be a positive constant, Γ be a
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nonnegative monotone C1 function on R+ such that

φ(t) :=
Γ(t)

tΓ′(t)
, and |φ(t)| ≤ b.

Then for any k ∈ Z, we know from [10, Lemma 2.8, Lemma 2.9] that if Γ
is positive, increasing, Γ(t)/(tΓ′(t)) ≤ b, then Γ(2k+1)/Γ(2k) ≥ 21/b. If Γ is
positive, decreasing, −Γ(t)/(tΓ′(t)) ≤ b, then Γ(2−(k+1))/Γ(2−k) ≥ 21/b, which
indicates both {Γ(2k)}k∈Z and {Γ(2−k)}k∈Z are lacunary sequences. In the
sequence, we denote Γ(2k) by ak if Γ is decreasing and denote Γ(2k) by a−1

k if
Γ is decreasing.

We respectively define two sequences of measures {σk,Ω,Γ,h : k ∈ Z} and
{|σk,Ω,Γ,h| : k ∈ Z} related to Γ by∫

Rn
fdσk,Ω,Γ,h =

∫
2k≤|x|<2k+1

f(Γ(|x|)x′)Ω(x)h(|x|)
|x|n

dx,

and ∫
Rn
fd|σk,Ω,Γ,h| =

∫
2k≤|x|<2k+1

f(Γ(|x|)x′) |Ω(x)h(|x|)|
|x|n

dx.

Thus, by dyadic decomposition, we can write TΩ,Γ,hf as follows:

TΩ,Γ,hf(x) =
∑
k∈Z

∫
2k≤|y|<2k+1

f(x−Γ(|y|)y′)Ω(y)h(|y|)
|y|n

dy =
∑
k∈Z

σk,Ω,Γ,h ∗f(x).

Also, we define the maximal operators Mσ,Ω,Γ,h on Rn by

Mσ,Ω,Γ,hf(x) = sup
k∈Z

∣∣|σk,Ω,Γ,h| ∗ f(x)
∣∣.

Now we give the following several lemmas, which will play key roles in our
proofs.

Lemma 2.1. Let Γ be a positive function R+ with |φ(t)| ≤ b and Γ ∈ F.
Suppose h ∈ 4γ(R+) for some γ > 1, Ω ∈ L1(Sn−1). Then

‖Mσ,Ω,Γ,hf‖Lp(ω) ≤ C‖f‖Lp(ω)

for all p ∈ (γ′,∞) and ω ∈ Ãp/γ′(R+).

Proof. The proof is only a simple imitation of [16, Lemma 2.4] and [10, Lemma
3.2] and we omit the details here. �

Lemma 2.2. Let Γ be a nonnegative monotone C1 function on R+. Suppose
h ∈ 4γ(R+) for some γ > 1, Ω ∈ L1(Sn−1) and satisfies (1.1). Then

(i) ‖σk,Ω,Γ,h‖ ≤ C.
(ii) If Γ is increasing, | ̂σk,Ω,Γ,h(ξ)| ≤ C|ak+1ξ|.
(iii) If Γ is decreasing, | ̂σk,Ω,Γ,h(ξ)| ≤ C|a−1

k ξ|.
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Proof. (i) is obvious. For (ii), by using the definition of the measure {σk,Ω,Γ,h :
k ∈ Z} and the vanishing condition of Ω, we have

| ̂σk,Ω,Γ,h(ξ)| =
∣∣∣ ∫
Sn−1

∫ 2k+1

2k
Ω(θ)h(r)e−2πiΓ(r)〈ξ,θ〉 dr

r
dσ(θ)

∣∣∣
=
∣∣∣ ∫ 2k+1

2k
h(r)

∫
Sn−1

Ω(θ)e−2πiΓ(r)〈ξ,θ〉dσ(θ)
dr

r

∣∣∣
≤
∫ 2k+1

2k
|h(r)|

∫
Sn−1

|Ω(θ)|
∣∣e−2πiΓ(r)〈ξ,θ〉 − 1

∣∣dσ(θ)
dr

r

≤ CΩ|ak+1ξ|
∫ 2k+1

2k

|h(r)|
r

dr

≤ CΩ|ak+1ξ|
(∫ 2k+1

2k
|h(r)|γ dr

r

)1/γ(∫ 2k+1

2k

dr

r

)1/γ′

≤ CΩ,γ,h|ak+1ξ|.

Similarly, for (iii), if Γ is decreasing, we also have

| ̂σk,Ω,Γ,h(ξ)| ≤ CΩ,γ,h|a−1
k ξ|. �

Lemma 2.3. Let Γ be a positive function R+ with |φ(t)| ≤ b and Γ ∈ F.
Suppose h ∈ 4γ(R+) for some γ > 2, Ω ∈ WGβ(Sn−1) for some β > 2. Then

(i) If Γ is increasing on R+, and Γ(2t) ≤ C1Γ(t), then

| ̂σk,Ω,Γ,h(ξ)| ≤ CΩ,γ,h

(
log |akξ|

)−β/2
, if |akξ| > 1.

(ii) If Γ is increasing on R+, and tΓ′(t) is increasing on R+, then

| ̂σk,Ω,Γ,h(ξ)| ≤ CΩ,γ,h

(
log |akξ|

)−β/2
, if |akξ| > 1.

(iii) If Γ is decreasing on R+, and Γ(t) ≤ C2Γ(2t), then

| ̂σk,Ω,Γ,h(ξ)| ≤ CΩ,γ,h

(
log |a−1

k+1ξ|
)−β/2

, if |a−1
k+1ξ| > 1.

(iv) If Γ is decreasing on R+ and convex, then

| ̂σk,Ω,Γ,h(ξ)| ≤ CΩ,γ,h

(
log |a−1

k+1ξ|
)−β/2

, if |a−1
k+1ξ| > 1.

Proof. The main ideas of the proof are taken from [10]. For (i), using the
definition of the measure {σk,Ω,Γ,h}k∈Z and Hölder’s inequality leads to

| ̂σk,Ω,Γ,h(ξ)|

≤
(∫ 2k+1

2k
|h(r)|γ dr

r

)1/γ(∫ 2k+1

2k

∣∣∣ ∫
Sn−1

|Ω(θ)|e−2πiΓ(r)〈ξ,θ〉dσ(θ)
∣∣∣γ′ dr

r

)1/γ′

≤ Ch,γ

(∫ 2k+1

2k

∣∣∣ ∫
Sn−1

Ω(θ)e−2πiΓ(r)〈ξ,θ〉dσ(θ)
∣∣∣γ′ dr

r

)1/γ′
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≤ Ch,γ

(∫ 2k+1

2k

∣∣∣ ∫
Sn−1

Ω(θ)e−2πiΓ(r)〈ξ,θ〉dσ(θ)
∣∣∣2 dr
r

)1/2

= Ch,γ

∣∣∣ ∫ ∫
Sn−1×Sn−1

Ω(θ)Ω(ν)

∫ 2k+1

2k
e−2πiΓ(r)〈ξ,θ−ν〉 dr

r
dσ(θ)dσ(ν)

∣∣∣1/2
= Ch,γ

∣∣∣ ∫ ∫
Sn−1×Sn−1

Ω(θ)Ω(ν)

×
∫ Γ(2k+1)

Γ(2k)

e−2πis〈ξ,θ−ν〉 s

Γ−1(s)Γ′(Γ−1(s))

ds

s
dσ(θ)dσ(ν)

∣∣∣1/2
≤ Ch,γb

∣∣∣ ∫ ∫
Sn−1×Sn−1

Ω(θ)Ω(ν)

∫ Γ(2k+1)

Γ(2k)

e−2πis〈ξ,θ−ν〉 ds

s
dσ(θ)dσ(ν)

∣∣∣1/2.
Here we used the change of variable r = Γ(s) in the penultimate equation.

Obviously, ∣∣∣ ∫ Γ(2k+1)

Γ(2k)

e−2πis〈ξ,θ−ν〉 ds

s

∣∣∣ ≤ log
Γ(2k+1)

Γ(2k)
= logC1.

On the other hand, by the Van der Corput lemma, we have∣∣∣ ∫ Γ(2k+1)

Γ(2k)

e−2πis〈ξ,θ−ν〉 ds

s

∣∣∣ ≤ C 1

|akξ||〈ξ′, θ − ν〉|
.

For |akξ| > 1, since t
(log t)β

is increasing in (eβ ,∞), we get

min{1, |akξ|−1|〈ξ′, θ − ν〉|−1} ≤ C
(

log eβ |〈ξ′, θ − ν〉|−1
)β(

log |akξ|
)β .

Therefore,

| ̂σk,Ω,Γ,h(ξ)| ≤ CΩ,γ,h

(
log |akξ|

)−β/2
, if |akξ| > 1.

For (ii), applying the same way as in (i), we have

| ̂σk,Ω,Γ,h(ξ)| ≤ Ch,γ
(∫ 2k+1

2k

∣∣∣ ∫
Sn−1

Ω(θ)e−2πiΓ(r)〈ξ,θ〉dσ(θ)
∣∣∣2 dr
r

)1/2

= Ch,γ

∣∣∣ ∫ ∫
Sn−1×Sn−1

Ω(θ)Ω(ν)

×
∫ 2k+1

2k
e−2πiΓ(r)〈ξ,θ−ν〉 dr

r
dσ(θ)dσ(ν)

∣∣∣1/2.
Obviously, ∣∣∣ ∫ 2k+1

2k
e−2πiΓ(r)〈ξ,θ−ν〉 dr

r

∣∣∣ ≤ log 2.
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On the other hand, using the change of variable r = Γ(s), we have∣∣∣ ∫ 2k+1

2k
e−2πiΓ(r)〈ξ,θ−ν〉 dr

r

∣∣∣
=
∣∣∣ ∫ Γ(2k+1)

Γ(2k)

e−2πis〈ξ,θ−ν〉 1

Γ−1(s)Γ′(Γ−1(s))
ds
∣∣∣

≤
∣∣∣ ∫ Γ(2k+1)

Γ(2k)

cos(2πs〈ξ, θ − ν〉) 1

Γ−1(s)Γ′(Γ−1(s))
ds
∣∣∣

+
∣∣∣ ∫ Γ(2k+1)

Γ(2k)

sin(2πs〈ξ, θ − ν〉) 1

Γ−1(s)Γ′(Γ−1(s))
ds
∣∣∣.

Here we used the Euler formula in the last inequality.
Since Γ is positive and increasing, and tΓ′(t) is increasing, we can derive

that Γ−1(s)Γ
′
(Γ−1(s)) is increasing. Thus∣∣∣ ∫ Γ(2k+1)

Γ(2k)

cos(2πs〈ξ, θ − ν〉) 1

Γ−1(s)Γ′(Γ−1(s))
ds
∣∣∣

≤ C
1

2kΓ′(2k)

1

|ξ||〈ξ′, θ − ν〉|

= C
Γ(2k)

2kΓ′(2k)

1

Γ(2k)|ξ||〈ξ′, θ − ν〉|

≤ C
1

|akξ||〈ξ′, θ − ν〉|
.

Similarly, we have∣∣∣ ∫ Γ(2k+1)

Γ(2k)

sin(2πs〈ξ, θ − ν〉) 1

Γ−1(s)Γ′(Γ−1(s))
ds
∣∣∣ ≤ C 1

|akξ||〈ξ′, θ − ν〉|
.

Consequently,∣∣∣ ∫ 2k+1

2k
e−2πiΓ(r)〈ξ,θ−ν〉 dr

r

∣∣∣ ≤ C min{1, |akξ|−1|〈ξ′, θ − ν〉|−1}.

The same argument as in the proof of (i) deduces that

| ̂σk,Ω,Γ,h(ξ)| ≤ CΩ,γ,h

(
log |akξ|

)−β/2
, if |akξ| > 1.

For (iii), by using a similar approach, we obtain that

| ̂σk,Ω,Γ,h(ξ)|

≤ Ch,γ

(∫ 2k+1

2k

∣∣∣ ∫
Sn−1

Ω(θ)e−2πiΓ(r)〈ξ,θ〉dσ(θ)
∣∣∣2 dr
r

)1/2

= Ch,γ

(∫ Γ(2k)

Γ(2k+1)

∣∣∣ ∫
Sn−1

Ω(θ)e−2πis〈ξ,θ〉dσ(θ)
∣∣∣2 s

−Γ−1(s)Γ′(Γ−1(s))

ds

s

)1/2
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≤ Ch,γb
∣∣∣ ∫ ∫

Sn−1×Sn−1

Ω(θ)Ω(ν)

∫ Γ(2k)

Γ(2k+1)

e−2πis〈ξ,θ−ν〉 ds

s
dσ(θ)dσ(ν)

∣∣∣1/2.
It is easy to check that∣∣∣ ∫ Γ(2k)

Γ(2k+1)

e−2πis〈ξ,θ−ν〉 ds

s

∣∣∣ ≤ log
Γ(2k)

Γ(2k+1)
= logC2

and ∣∣∣ ∫ Γ(2k)

Γ(2k+1)

e−2πis〈ξ,θ−ν〉 ds

s

∣∣∣ ≤ 2

|a−1
k+1ξ||〈ξ′, θ − ν〉|

.

Therefore,

| ̂σk,Ω,Γ,h(ξ)| ≤ CΩ,γ,h

(
log |a−1

k+1ξ|
)−β/2

, if |a−1
k+1ξ| > 1.

For (iv), we have

| ̂σk,Ω,Γ,h(ξ)| ≤ Ch,γ
(∫ 2k+1

2k

∣∣∣ ∫
Sn−1

Ω(θ)e−2πiΓ(r)〈ξ,θ〉dσ(θ)
∣∣∣2 dr
r

)1/2

= Ch,γ

∣∣∣ ∫ ∫
Sn−1×Sn−1

Ω(θ)Ω(ν)

×
∫ 2k+1

2k
e−2πiΓ(r)〈ξ,θ−ν〉 dr

r
dσ(θ)dσ(ν)

∣∣∣1/2.
Note that ∣∣∣ ∫ 2k+1

2k
e−2πiΓ(r)〈ξ,θ−ν〉 dr

r

∣∣∣ ≤ log 2

and∫ 2k+1

2k
e−2πiΓ(r)〈ξ,θ−ν〉 dr

r
=

∫ Γ(2k)

Γ(2k+1)

e−2πis〈ξ,θ−ν〉 1

−Γ−1(s)Γ′(Γ−1(s))
ds.

Since Γ is positive, decreasing, and convex, we see that −Γ
′
(s) is decreasing.

Hence, −Γ
′
(Γ−1(s)) is positive and increasing. Applying the second mean value

integral theorem that there exists η such that Γ(2k+1) ≤ η ≤ Γ(2k), we have∫ Γ(2k)

Γ(2k+1)

cos(2πs〈ξ, θ − ν〉) 1

Γ−1(s)Γ′(Γ−1(s))
ds

=
1

−Γ′(t)

∫ η

Γ(2k+1)

cos(2πs〈ξ, θ − ν〉) 1

Γ−1(s)
ds.

Therefore, ∣∣∣ ∫ Γ(2k)

Γ(2k+1)

cos(2πs〈ξ, θ − ν〉) 1

Γ−1(s)Γ′(Γ−1(s))
ds
∣∣∣

≤ C
1

−Γ′(2k+1)

1

Γ−1(η)

1

|ξ||〈ξ′, θ − ν〉|
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≤ C
1

−Γ′(2k+1)

1

2k|ξ||〈ξ′, θ − ν〉|

= C
Γ(2k+1)

−2k+1Γ′(2k+1)

2

Γ(2k+1)|ξ||〈ξ′, θ − ν〉|

≤ C
1

|a−1
k+1ξ||〈ξ′, θ − ν〉|

.

Similarly,∣∣∣ ∫ Γ(2k+1)

Γ(2k)

sin(2πs〈ξ, θ − ν〉) 1

Γ−1(s)Γ′(Γ−1(s))
ds
∣∣∣ ≤ C 1

|a−1
k+1ξ||〈ξ′, θ − ν〉|

.

Consequently,∣∣∣ ∫ 2k+1

2k
e−2πiΓ(r)〈ξ,θ−ν〉 dr

r

∣∣∣ ≤ C min{1, |a−1
k+1ξ|

−1|〈ξ′, θ − ν〉|−1}.

Applying the same argument as in the proof (i) again, we get

| ̂σk,Ω,Γ,h(ξ)| ≤ CΩ,γ,h

(
log |a−1

k+1ξ|
)−β/2

, if |a−1
k+1ξ| > 1.

Lemma 2.3 is proved. �

3. Proofs of main results

This section is concerning with the proofs of Theorems 1.1 and 1.2. Based on
the estimates of Lemmas 2.1-2.3, by the Plancherel theorem and interpolation
theory, we can reduce Theorems 1.1 and 1.2 to the direct results of the follow-
ing more general weighted inequalities for the convolution operators. In what
follows, we only present the related results in the case that Γ is increasing, since
the other case can be given by the same arguments with a slight modification.

Proposition 3.1. Let γ ∈ (2,∞], β ∈ (1,∞) and {σk}k∈Z be a family of
uniformly bounded Borel measures on Rn. Let {ak : k ∈ Z} be a family of
nonzero numbers and satisfy inf ak+1/ak ≥ λ > 1. Suppose that there exist
constants C > 0 such that the following conditions hold:

(i) ‖σk‖ ≤ C for any k ∈ Z and ξ ∈ Rn,
(ii) |σ̂k(ξ)| ≤ C|ak+1ξ| for k ∈ Z and ξ ∈ Rn,
(iii) |σ̂k(ξ)| ≤ C(log |akξ|)−β for k ∈ Z and ξ ∈ Rn,

(iv) ω ∈ Ãp/γ′(R+) and ‖Mσf‖Lp(ω) ≤ C‖f‖Lp(ω) for all p ∈ (γ′,∞), where

Mσf(x) = sup
k∈Z

∣∣|σk| ∗ f(x)
∣∣.

Then for any p ∈ ( 2γ′β
γ′+2(β−1) ,

2γ′β
γ′+2(β−1)(γ′−1) ) and ω ∈ Ãp/γ′(R+), there exists

a constant C > 0 such that

(3.1)
∥∥∥∑
k∈Z

σk ∗ f
∥∥∥
Lp(ω)

≤ C‖f‖Lp(ω).
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Proof. Let {ψk}+∞−∞ be a smooth partition of unity in (0,∞) adapted to the
intervals Ek = [(ak+1)−1, (ak−1)−1]. To be precise, we require the following

ψk ∈ C∞, 0 ≤ ψk ≤ 1,
∑
k∈Z

ψ2
k(t) = 1,

suppψk ⊆ Ek,
∣∣∣dsψk(t)

dts

∣∣∣ ≤ Cs
ts
.

Define the multiplier operators Sk in Rn by

(Ŝkf)(ξ) = ψk(|ξ|)f̂(ξ).

It was proved in [21] that

(3.2)
∥∥∥(∑

k∈Z
|Skf |2

)1/2∥∥∥
Lp(w)

≤ C‖f‖Lp(w)

for all p ∈ (1,∞) and w ∈ Ap.
We can write∑
k∈Z

σk ∗ f =
∑
k∈Z

σk ∗
(∑
j∈Z

S2
k+jf

)
=
∑
j∈Z

∑
k∈Z

Sk+j

(
σk ∗ Sk+j) :=

∑
j∈Z

Tjf.

By Plancherel’s theorem, we have

(3.3) ‖Tjf‖2L2(Rn) ≤
∑
k∈Z

∫
Ek+j

|f̂(ξ)|2|σ̂k(ξ)|2dξ.

By a simple computation and our assumptions (i)-(iii), we get

‖Tjf‖L2(Rn) ≤ C|j|−β‖f‖L2(Rn), if j ≤ −1,

‖Tjf‖L2(Rn) ≤ Cλ−j‖f‖L2(Rn), if j ≥ 1.

In short,

(3.4) ‖Tjf‖L2(Rn) ≤ C(1 + |j|)−β‖f‖L2(Rn), ∀ j ∈ Z.
To obtain the weighted Lp-estimate, we shall prove an auxiliary vector-valued
inequality as follows:

(3.5)
∥∥∥(∑

k∈Z
|σk ∗ gk|2

)1/2∥∥∥
Lp(ω)

≤ C
∥∥∥(∑

k∈Z
|gk|2

)1/2∥∥∥
Lp(ω)

for 1 < γ′ < 2, p > γ′ and ω ∈ Ãp/γ′(R+).

Let r = p/γ′. Since r > 1, for ω ∈ Ãp/γ′(R+), we choose a nonnegative

function u ∈ Lr′(ω) with ‖u‖Lr′ (ω) ≤ 1 such that∥∥∥(∑
k∈Z
|σk ∗ gk|γ

′
)1/γ′∥∥∥γ′

Lp(ω)
=

∫
Rn

∑
k∈Z

∣∣σk ∗ gk(x)
∣∣γ′u(x)ω(x)dx

≤
∫
Rn

∑
k∈Z
|gk(x)|γ

′
Mσ̃(uω)(x)dx
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≤
∥∥∥(∑

k∈Z
|gk|γ

′
)1/γ′∥∥∥γ′

Lp(ω)
‖Mσ̃(µω)‖Lr′ (ω1−r′ ).

Recalling r = p/γ′, it is easy to check that ω ∈ Ãp/γ′(R+) if and only if

ω1−r′ ∈ Ãr′(R+). Thus, by our hypothesis (iii), we have∥∥∥(∑
k∈Z
|σk ∗ gk|γ

′
)1/γ′∥∥∥

Lp(ω)
≤ C

∥∥∥(∑
k∈Z
|gk|γ

′
)1/γ′∥∥∥

Lp(ω)
.

By applying (iii) again, we obtain that∥∥∥ sup
k∈Z

∣∣σk ∗ gk∣∣∥∥∥
Lp(ω)

≤ C
∥∥∥Mσ

(
sup
k∈Z
|gk|
)∥∥∥
Lp(ω)

≤ C
∥∥∥ sup
k∈Z
|gk|
∥∥∥
Lp(ω)

.

Therefore, by the vector-valued interpolation [19, p. 482], we obtain (3.5).
We now turn to the proof of the weighted Lp-estimate. For any p > γ′ and

ω ∈ Ãp/γ′(R+), we have

‖Tjf‖Lp(ω) ≤ C
∥∥∥(∑

k∈Z
|σk ∗ Sk+jf |2

)1/2∥∥∥
Lp(w)

≤ C
∥∥∥(∑

k∈Z
|Sk+jf |2

)1/2∥∥∥
Lp(w)

(3.6)

≤ C‖f‖Lp(w),

where the first and the last steps follows from (3.2) since ω ∈ Ãp/γ′(R+) ⊂
Ap/γ′(R+), whereas the second step follows from (3.5). Hence, by [1, Lemma
2.3], there is an ε > 0 such that

(3.7) ‖Tjf‖Lp(ω1+ε) ≤ C‖f‖Lp(ω1+ε)

for any p > γ′ and ω ∈ Ãp/γ′(R+).

For β > 1, p ∈ ( 2γ′β
γ′+2(β−1) ,

2γ′β
γ′+2(β−1)(γ′−1) ), by interpolation between (3.4)

and (3.7) with ω = 1, we find a θ1 > 1 such that

(3.8) ‖Tjf‖Lp(Rn) ≤ C(1 + |j|)−θ1‖f‖Lp(Rn), ∀ j ∈ Z.
Applying the Stein and Weiss interpolation theorem with change of measure
[26], we interpolate (3.7) and (3.8) to get that,

for any p ∈ ( 2γ′β
γ′+2(β−1) ,

2γ′β
γ′+2(β−1)(γ′−1) ) and ω ∈ Ãp/γ′(R+), there is a θ2 > 1

such that

‖Tjf‖Lp(ω) ≤ C(1 + |j|)−θ2‖f‖Lp(ω), ∀ j ∈ Z.
Therefore, we get∥∥∥∑

k∈Z
σk ∗ f

∥∥∥
Lp(ω)

≤ C
∑
j∈Z
‖Tjf‖Lp(ω) ≤ C‖f‖Lp(ω)

for any β > 1, p ∈ ( 2γ′β
γ′+2(β−1) ,

2γ′β
γ′+2(β−1)(γ′−1) ) and ω ∈ Ãp/γ′(R+). This proves

Lemma 2.1. �
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To obtain the proof of Theorem 1.2, we need to establish the following
proposition.

Proposition 3.2. Under the same conditions as in Proposition 3.1, for any

β > 3/2, p ∈ ( γ′(2β−1)
γ′+(2β−3) ,

γ′(2β−1)
γ′+(γ′−1)(2β−3) ) and ω ∈ Ãp/γ′(R+), there exists a

constant C > 0 such that

(3.9)
∥∥∥ sup
k∈Z

∣∣∑
j=k

σj ∗ f
∣∣∥∥∥
Lp(ω)

≤ C‖f‖Lp(ω).

Proof. Let φ be a C∞ function satisfying φ(|ξ|) = 1 when |ξ| < 1/λ and

φ(|ξ|) = 0 when |ξ| > λ. Define ψ̂ = φ and ψk(ξ) = 1
(ak)nφ( ξ

ak
), we make

a decomposition as follows:

+∞∑
j=k

σj ∗f(x) = ψk ∗
∑
j∈Z

σj ∗f(x)−ψk ∗
k−1∑
j=−∞

σj ∗f(x) + (δ−ψk)∗
+∞∑
j=k

σj ∗f(x),

where δ is the dirac measure at zero. It follows that

sup
k∈Z

∣∣∣+∞∑
j=k

σj ∗ f
∣∣∣ ≤ sup

k∈Z

∣∣∣ψk ∗∑
j∈Z

σj ∗ f(x)
∣∣∣+ sup

k∈Z

∣∣∣ψk ∗ k−1∑
j=−∞

σj ∗ f(x)
∣∣∣

+ sup
k∈Z

∣∣∣(δ − ψk)

∞∑
j=k

σj ∗ f(x)
∣∣∣

=: J1f + J2f + J3f.

Below we will estimate J1f , J2f and J3f , respectively.
For J1f , it is easy to check that

|J1f(x)| ≤ CM
(∑
j∈Z

σj ∗ f
)
(x).

Then, by Proposition 3.1 and the fact that Ãp/γ′(R+) ⊂ Ap/γ′(R+), we imme-
diately get

‖J1f‖Lp(ω) ≤
∥∥M(∑

j∈Z
σj ∗ f

)∥∥
Lp(ω)

≤ C
∥∥∑
j∈Z

σj ∗ f
∥∥
Lp(ω)

≤ C‖f‖Lp(ω)

for any β > 3/2, p ∈ ( γ′(2β−1)
γ′+(2β−3) ,

γ′(2β−1)
γ′+(γ′−1)(2β−3) ) and ω ∈ Ãp/γ′(R+).

For J2f , we can write

J2f(x) = sup
k∈Z

∣∣∣ ∞∑
j=1

ψk ∗ σk−j ∗ f(x)
∣∣∣ ≤ ∞∑

j=1

sup
k∈Z
|ψk ∗ σk−j ∗ f(x)| =:

∞∑
j=1

Jj2f(x).

Notice that |Jj2f(x)| ≤ CMMσf(x), invoking our assumptions (iv) yields that

‖Jj2f‖Lp(ω) ≤ C‖Mσf‖Lp(ω) ≤ C‖f‖Lp(ω)

for any p > γ′ and ω ∈ Ãp/γ′(R+). Hence, there is an ε > 0 such that

(3.10) ‖Jj2f‖Lp(ω1+ε) ≤ C‖f‖Lp(ω1+ε)
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for any p > γ′ and ω ∈ Ãp/γ′(R+). On the other hand, by (ii) and Plancherel’s
theorem, we have

‖Jj2f‖2L2(Rn) ≤
∥∥∥(∑

k∈Z
|ψk ∗ σk−j ∗ f |2

)1/2∥∥∥2

L2(Rn)

≤
∑
k∈Z

∫
{|akξ|≤λ}

|σ̂k−j(ξ)|2|f̂(ξ)|2dξ

≤
∫
Rn

∑
k∈Z
|σ̂k−j(ξ)|2χ{|akξ|≤λ}|f̂(ξ)|2dξ

≤ C
∫
Rn

∑
k∈Z

λ2(k−j)χ{|akξ|≤λ}|f̂(ξ)|2dξ

≤ Cλ−2j

∫
Rn

∑
k∈Z

λ2kχ{|akξ|≤λ}|f̂(ξ)|2dξ

≤ Cλ−2j‖f‖2L2(Rn).

That is,

(3.11) ‖Jj2f‖L2(Rn) ≤ Cλ−j‖f‖L2(Rn).

Interpolating between (3.11) and (3.10) (ω = 1) gives that

(3.12) ‖Jj2f‖Lp(Rn) ≤ Cλ−θ3‖f‖Lp(Rn)

for any p > γ′ and ω ∈ Ãp/γ′(R+). By Stein and Weiss’ interpolation theorem
with change of measure between (3.10) and (3.12), we find a positive number
θ3 such that

‖Jj2f‖Lp(ω) ≤ Cλ−θ3‖f‖Lp(ω)

for any p > γ′ and ω ∈ Ãp/γ′(R+). Hence,

‖J2f‖Lp(ω) ≤
∞∑
j=0

‖Jj2f‖Lp(u) ≤ C‖f‖Lp(ω)

for any p > γ′ and ω ∈ Ãp/γ′(R+).
Finally, to estimate J3f , we write

J3f(x) = sup
k∈Z

∣∣∣ ∞∑
j=0

(δ − ψk) ∗ σk+j ∗ f(x)
∣∣∣

≤
∞∑
j=0

sup
k∈Z
|(δ − ψk) ∗ σk+j ∗ f(x)|

=:

∞∑
j=0

Jj3f(x).
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Similarly to the arguments on Jj2f , it is easy to check that

‖Jj3f‖Lp(ω) ≤ C‖f‖Lp(ω)

for any p > γ′ and ω ∈ Ãp/γ′(R+).
Also, by (iii) and the Plancherel theorem, we deduce that

‖Jj3f‖2L2(Rn) ≤
∥∥∥(∑

k∈Z
|(δ − ψk) ∗ σk+j ∗ f |2

)1/2∥∥∥2

L2(Rn)

≤
∑
k∈Z

∫
{|akξ|≥1/λ}

|σ̂k+j(ξ)|2|f̂(ξ)|2dξ

≤
∑
k∈Z

∞∑
i=0

∫
λi−1≤|akξ|<λi

|σ̂k+j(ξ)|2|f̂(ξ)|2dξ

≤ C
∑
k∈Z

∞∑
i=0

∫
λi−1≤|akξ|<λi

|f̂(ξ)|2
(

log |ak+jξ|
)−2β

dξ

≤ C
∑
k∈Z

∞∑
i=0

( 1

i+ j − 1

)2β
∫
λi−1≤|akξ|<λi

|f̂(ξ)|2dξ

≤ C
∞∑
i=0

( 1

i+ j − 1

)2β

‖f‖2L2(Rn)

≤ Cj1−2β‖f‖2L2(Rn).

Hence,

‖Jj3f‖L2(Rn) ≤ Cj−(β−1/2)‖f‖L2(Rn).

An interpolation gives that

‖Jj3f‖Lp(Rn) ≤ Cj−θ3‖f‖Lp(Rn)

for any β > 3/2, p ∈ ( γ′(2β−1)
γ′+(2β−3) ,

γ′(2β−1)
γ′+(γ′−1)(2β−3) ) and ω ∈ Ãp/γ′(R+). Stein

and Weiss’s interpolation theorem with change of measure derives that there
is a positive number θ3 such that

‖Jj3f‖Lp(ω) ≤ Cj−θ3‖f‖Lp(ω)

for any β > 3/2, p ∈ ( γ′(2β−1)
γ′+(2β−3) ,

γ′(2β−1)
γ′+(γ′−1)(2β−3) ) and ω ∈ Ãp/γ′(R+). Hence,

‖J3f‖Lp(ω) ≤
∞∑
j=0

‖Jj3f‖Lp(u) ≤ C‖f‖Lp(ω)

for any β > 3/2, p ∈ ( γ′(2β−1)
γ′+(2β−3) ,

γ′(2β−1)
γ′+(γ′−1)(2β−3) ) and ω ∈ Ãp/γ′(R+). Summing

up the estimate J1f , J2f and J3f , we get the desired result and completes the
proof of Proposition 3.2. �

Now we prove Theorems 1.1 and 1.2.
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Proof of Theorem 1.1. According to Lemma 2.1, Lemma 2.2(i)-(ii), Lemma

2.3(i)-(ii), the result of Theorem 1.1 for ω ∈ Ãp/γ′(R+) directly follows from
Proposition 3.1 by substitution β/2 for β. And the corresponding result for

ω ∈ Ãp′/γ′(R+) follows from the duality arguments and the result for ω ∈
Ãp/γ′(R+). �

Proof of Theorem 1.2. We note that

T ∗Ω,Γ,hf(x) =
∣∣∣ ∫
ε<|y|<2k+1

Ω(y)h(|y|)
|y|n

f(x− Γ(|y|)y′)dy
∣∣∣+
∣∣∣+∞∑
j=k

σk,Ω,Γ,h ∗ f(x)
∣∣∣

for some k satisfying 2k < ε < 2k+1. Therefore

T ∗Ω,Γ,hf(x) ≤ Mσ,Ω,Γ,hf(x) + sup
k∈Z

∣∣∣+∞∑
j=k

σk,Ω,Γ,h ∗ f(x)
∣∣∣.

This together with Lemma 2.1 and Proposition 3.2 deduces Theorem 1.2. �

4. Concluding results

In [11], Ding, Xue and Yabuta gave an ingenious way to transfer the effect
of the surface to the radial function in the kernel of singular integral along
surfaces, and they obtained the following result.

Theorem G. Suppose that Γ is a nonnegative (or nonpositive) and monotonic

C1 function on (0,∞) such that φ(t) := Γ(t)
tΓ′(t) is bounded. Let h ∈ 4γ(R+) for

some γ ≥ 2. If Ω ∈ H1(Sn−1) satisfies (1.1), then TΩ,Γ,h is bounded on Lp(ω)

for γ′ ≤ p <∞ and ω ∈ Ãp/γ′(R+).

Employing the ideas in [11], we can further weaken the assumptions on Γ
and extend our Theorems 1.1 and 1.2 as follows.

Theorem 4.1. Suppose that Γ is a nonnegative (or nonpositive) and monotonic

C1 function on (0,∞) such that φ(t) := Γ(t)
tΓ′(t) is bounded. Let h ∈ 4γ(R+)

for some γ ∈ (2,∞]. If Ω ∈ WGβ(Sn−1) for some β ∈ (2,∞) and satisfies

(1.1), then TΩ,Γ,h is bounded on Lp(ω) for p ∈ ( γ′β
γ′+β−2 ,

γ′β
γ′+(β−2)(γ′−1) ) and

ω ∈ Ãp/γ′(R+) or Ãp′/γ′(R+).

Theorem 4.2. Let Γ, φ, r, h be the same as in Theorem 4.1. If Ω∈WGβ(Sn−1)

for some β ∈ (3,∞) and satisfies (1.1), then T ∗Ω,Γ,h is bounded on Lp(ω) for

p ∈ (γ
′(β−1)
γ′+β−3 ,

γ′(β−1)
γ′+(γ′−1)(β−3) ) and ω ∈ Ãp/γ′(R+).

To prove the above theorems, we need the following two lemmas in [11].

Lemma 4.3 (cf. [11]). Let Γ and φ be the same as in Theorem 4.1. If h ∈
4γ(R+) for some γ > 1, then

1

R

∫ R

0

|h(|Γ−1(t)|)φ(|Γ−1(t)|)|γdt ≤ Cγ(‖φ‖γ−1
∞ + ‖φ‖γ∞), R > 0.
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Lemma 4.4 (cf. [11]). Let Γ, φ and h be the same as in Theorem 4.1.
(1) If Γ is nonnegative and increasing, TΩ,Γ,hf(x) = TΩ,φ(Γ−1)h(Γ−1)f(x).
(2) If Γ is nonnegative and decreasing, TΩ,Γ,hf(x) = −TΩ,φ(Γ−1)h(Γ−1)f(x).
(3) If Γ is nonpositive and decreasing, TΩ,Γ,hf(x) = TΩ̃,φ(Γ−1)h(Γ−1)f(x).

(4) If Γ is nonpositive and increasing, TΩ,Γ,hf(x) = −TΩ̃,φ(Γ−1)h(Γ−1)f(x).

Here Ω̃(x) = Ω(−x).

Proofs of Theorems 4.2 and 4.3. Applying Lemmas 4.3-4.4 and Theorem 1.1
for the special Γ(t) = t, we get Theorem 4.1. Similarly, Theorem 4.2 directly
follows from Lemma 4.3, Lemma 4.4 and Theorem 1.2. �

5. Marcinkiewicz integrals analog surfaces

In this section, we consider the following parametric Marcinkiewicz integrals
along surfaces

Mρ
Ω,Γ,h(f)(x) =

(∫ ∞
0

∣∣∣ 1

tρ

∫
|y|≤t

f(x− Γ(|y|)y′)h(|y|)Ω(y′)

|y|n−ρ
dy
∣∣∣2 dt
t

)1/2

,

where ρ = τ + iϑ (τ > 0, ϑ ∈ R) is a complex number. If h ≡ 1, we denote
Mρ

Ω,Γ,h by Mρ
Ω,Γ. Obviously, if Γ(t) = t and ρ = 1, then the operator Mρ

Ω,Γ

reduces to the classical Marcinkiewicz integral operator MΩ introduced by
Stein [25].

In [2], Al-Qassem proved the following result.

Theorem H. Let Γ be in C2([0,∞)), convex, and an increasing function with
Γ(0) = 0. If Ω ∈ Gβ(Sn−1) for some β > 2, then there exists Cp > 0 such that

‖Mρ
Ω,Γf‖Lp(ω) ≤ Cp‖f‖Lp(ω)

for p ∈ (β′, β) and ω ∈ Ãp(R+).

We remark that the above conditions on Γ automatically implies the con-
dition φ(t) ∈ L∞(0,∞) and (ii) in the condition F. By the similar arguments
as in dealing with TΩ,Γ,h, we can improve and generalize the above result as
follows.

Theorem 5.1. Let h ∈ 4γ(R+) for some γ ∈ (2,∞], Ω ∈ WGβ(Sn−1) for

some β ∈ (2,∞) and satisfy (1.1). Suppose that Γ ∈ F and ω ∈ Ãp/γ′(R+).

Then Mρ
Ω,Γ,h is bounded on Lp(ω) for p ∈ ( γ′β

γ′+β−2 ,
γ′β

γ′+(β−2)(γ′−1) ).

Proof. As to the operatorMρ
Ω,Γ,h, by applying Minkowski’s inequality, we can

write

Mρ
Ω,Γ,hf(x) =

(∫ ∞
0

∣∣∣ 0∑
k=−∞

1

tρ

∫
2k−1t<|y|≤2kt

f(x−Γ(|y|)y′)h(|y|)Ω(y)

|y|n−ρ
dy
∣∣∣2 dt
t

)1/2

≤
0∑

k=−∞

(∫ ∞
0

∣∣∣ 1

tρ

∫
2k−1t<|y|≤2kt

f(x−Γ(|y|)y′)h(|y|)Ω(y)

|y|n−ρ
dy
∣∣∣2 dt
t

)1/2
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=
1

1− 2−τ

(∫ ∞
0

∣∣∣ 1

tρ

∫
t/2<|y|≤t

f(x−Γ(|y|)y′)h(|y|)Ω(y)

|y|n−ρ
dy
∣∣∣2 dt
t

)1/2

.

We define two sequences of measures {σt,ρ,Ω,Γ,h : t ∈ R+} and {|σt,ρ,Ω,Γ,h| : t ∈
R+} related to Γ by∫

Rn
fdσt,ρ,Ω,Γ,h =

1

tρ

∫
t/2<|x|≤t

f(Γ(|x|)x′)Ω(x)h(|x|)
|x|n−ρ

dx,

and |σt,ρ,Ω,Γ,h| is defined by the same way as σt,ρ,Ω,Γ,h, but with Ω replaced by
|Ω| and h replaced by |h|. Thus,

Mρ
Ω,Γ,hf(x) ≤ 1

1− 2−τ

(∫ ∞
0

∣∣σt,ρ,Ω,Γ,h ∗ f(x)
∣∣2 dt
t

)1/2

.

The maximal operators Mρ
σ,Ω,Γ,h on Rn is defined by

Mρ
σ,Ω,Γ,hf(x) = sup

t∈R+

∣∣|σt,ρ,Ω,Γ,h| ∗ f(x)
∣∣.

Similar to Lemma 2.2 and Lemma 2.3, we can easily obtain the estimates of
measures σt,ρ,Ω,Γ,h. According to [10, Lemma 3.2], we know that

‖Mρ
σ,Ω,Γ,hf‖Lp(ω) ≤ C‖f‖Lp(ω)

for all p ∈ (γ′,∞) and ω ∈ Ãp/γ′(R+). Therefore, it is not difficult to derive
Theorem 5.1 by applying the standard method of the same as in Proposition
3.1. We leave the details to the interested reader. �

As applications of the above result, we can also obtain a theorem on the
parametric Marcinkiewicz integrals related to the Littlewood-Paley g∗λ function
and the area integral S. We define the operators Mρ,∗

Ω,Γ,h,λ and Mρ
Ω,Γ,h,S by

Mρ,∗
Ω,Γ,h,λ(f)(x) =

(∫ ∫
Rn+1

+

( t

t+ |x− y|

)nλ∣∣FρΩ,Γ,hf(y, t)
∣∣2 dydt
tn+1

)1/2

,

where λ > 1 and Rn+1
+ = Rn × (0,∞),

FρΩ,Γ,hf(x, t) =
1

tρ

∫
|y|≤t

f(x− Γ(|y|)y′)h(|y|)Ω(y′)

|y|n−ρ
dy,

and

Mρ
Ω,Γ,h,S(f)(x) =

(∫ ∫
V (x)

∣∣FρΩ,Γ,hf(y, t)
∣∣2 dydt
tn+1

)1/2

,

where V (x) = {(y, t) ∈ Rn+1
+ : |x− y| < t}. Then, we have:

Theorem 5.2. Let h ∈ 4γ(R+) for some γ ∈ (2,∞], Ω ∈ WGβ(Sn−1) for

some β ∈ (2,∞) and satisfy (1.1). Suppose that Γ ∈ F and ω ∈ Ãp/2(R+).

Then Mρ,∗
Ω,Γ,h,λ is bounded on Lp(ω) for p ∈ [2, γ′β

γ′+(β−2)(γ′−1) ). The same

conclusion holds for Mρ
Ω,Γ,h,S.
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Proof. Following the similar arguments to the proof of in [9, Lemma 5.1], it is
not hard to see that

(5.1)

∫
Rn

(
Mρ,∗

Ω,Γ,h,λf(x)
)2
g(x)dx ≤ Cλ

∫
Rn

(
Mρ

Ω,Γ,hf(x)
)2
Mg(x)dx,

where M is the classical Hardy-Littlewood maximal operator on Rn.
If p = 2, then ω ∈ Ã1(R+) ⊂ A1(R+). Thus, Mω(x) ≤ Cω(x) a.e. x ∈ Rn.

This together with (5.1) and Theorem 1.1, we have∫
Rn

(
Mρ,∗

Ω,Γ,h,λf(x)
)2
ω(x)dx ≤ Cλ

∫
Rn
|f(x)|2ω(x)dx.

If p ∈ (2, γ′β
γ′+(β−2)(γ′−1) ). Let q = p/2 andX denote the set of all g ∈ Lq′(ω1−q′)

with ‖g‖Lq′ (ω1−q′ ) ≤ 1. Then we can write

‖Mρ,∗
Ω,Γ,h,λ‖

2
Lp(ω) = sup

X

∣∣∣ ∫
Rn

(
Mρ,∗

Ω,Γ,h,λf(x)
)2
g(x)dx

∣∣∣
≤ C sup

X

∣∣∣ ∫
Rn

(
Mρ

Ω,Γ,hf(x)
)2
Mg(x)dx

∣∣∣
≤ C‖Mρ

Ω,Γ,hf‖
2
Lp(ω) sup

X
‖Mg‖Lq′ (ω1−q′ )

≤ C‖f‖2Lp(ω).

On the other hand, it is easy to check that

Mρ
Ω,Γ,h,Sf(x) ≤ CλMρ,∗

Ω,Γ,h,λf(x),

which implies Theorem 5.2 and completes our proof. �
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