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CONTINUOUS DATA ASSIMILATION FOR THE

THREE-DIMENSIONAL SIMPLIFIED BARDINA MODEL

UTILIZING MEASUREMENTS OF ONLY TWO

COMPONENTS OF THE VELOCITY FIELD

Cung The Anh and Bui Huy Bach

Abstract. We study a continuous data assimilation algorithm for the

three-dimensional simplified Bardina model utilizing measurements of

only two components of the velocity field. Under suitable conditions on
the relaxation (nudging) parameter and the spatial mesh resolution, we

obtain an asymptotic in time estimate of the difference between the ap-

proximating solution and the unknown reference solution corresponding
to the measurements, in an appropriate norm, which shows exponential

convergence up to zero.

1. Introduction

Data assimilation is a methodology to estimate weather or ocean variables
combining information from observational data with a numerical dynamical
(forecast) model. In recent years, data assimilation problems for many impor-
tant equations in fluid mechanics have been extensively studied by Edriss Titi
and his coauthors, see e.g. [2, 4, 12–14, 16, 17, 19, 20, 22, 24]. We also refer the
interested reader to [1, 3, 6–8,20,23] for some recent results of other authors.

The simplified Bardina model was considered by Layton and Lewandowski
[21] being a simpler approximation of the Reynold stress tensor proposed by
Bardina et al. [5], which is called the Bardina model. It is noticed that the
simplified Bardina model is consistent with other α-models in fluid mechanics,
see e.g. [18] and references therein, in the sense that if α = 0, we formally re-
cover the classical three-dimensional Navier-Stokes equations. In recent years,
there are many results on the existence, convergence and long-time behavior of
solutions to the simplified Bardina model, see e.g. [9, 10,21,27].

The continuous data assimilation for 3D simplified Bardina model using
observations on all three components of the velocity field was studied recently in
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[1]. In this paper, we will investigate a more practical case when the dimension
of the observation vector is less than the dimension of the model’s state vector.
To do this, we will exploit the approach used recently in [13] for 2D Navier-
Stokes equations and in [15] for 3D Leray-α model, which is based on ideas
in [4] and exploits the divergence free condition for the velocity field. In what
follows, we will explain the problem to be investigated.

Suppose that the evolution of u is governed by the three-dimensional sim-
plified Bardina model, subject to periodic boundary conditions on Ω = [0, L]3:

(1)


∂v

∂t
− ν∆v + (u · ∇)u+∇p = f,

∇ · u = ∇ · v = 0,

on the interval [t0,∞), where the initial data u(t0) = u0 is unknown. Here
u = u(x, y, z, t) represents the velocity of the fluid, called the filtered velocity,
v = u − α2∆u, and α > 0 is a scale parameter with dimension of length.
Above, p is a scalar, the pressure, and f is a body force which is assumed, for
simplicity, to be time-independent.

Here, the reference solution is given by a solution u of (1) for which the initial
data is missing, and in a more practical case than that in [1], the observational
data needed to be measured and inserted into the model equation is reduced or
subsampled. We required observational measurements of only two components
of the 3D velocity vector field.

In this context, we consider the horizontal observational measurements,
which are represented by mean of the interpolant operators Ih(u1(t)) and
Ih(u2(t)) for t ∈ [t0, T ], where Ih(ϕ) is an interpolant operator based on the ob-
servational measurements of the scalar function ϕ at a coarse spatial resolution
of size h.

We now follow the approach in [13, 15] to introduce the following continu-
ous data assimilation algorithm for finding an approximate solution u∗ of the
unknown reference solution u. First, we rewrite the simplified Bardina model
as follows:

∂v1

∂t
− ν∆v1 + u1∂xu1 + u2∂yu1 + u3∂zu1 + ∂xp = f1,(2a)

∂v2

∂t
− ν∆v2 + u1∂xu2 + u2∂yu2 + u3∂zu2 + ∂yp = f2,(2b)

∂v3

∂t
− ν∆v3 + u1∂xu3 + u2∂yu3 + u3∂zu3 + ∂zp = f3,(2c)

∂xu1 + ∂yu2 + ∂zu3 = ∂xv1 + ∂yv2 + ∂zv3 = 0,(2d)

v1 = u1 − α2∆u1, v2 = u2 − α2∆u2, v3 = u3 − α2∆u3.(2e)

Given an arbitrary initial datum u∗0, we look for a function u∗ satisfying
u∗(t0) = u∗0, the same boundary conditions for u, and the following system:

∂v∗1
∂t
− ν∆v∗1 + u∗1∂xu

∗
1 + u∗2∂yu

∗
1 + u∗3∂zu

∗
1 + ∂xp

∗(3a)
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= f1 − µ (Ih(u∗1)− Ih(u1)) ,

∂v∗2
∂t
− ν∆v∗2 + u∗1∂xu

∗
2 + u∗2∂yu

∗
2 + u∗3∂zu

∗
2 + ∂yp

∗(3b)

= f2 − µ (Ih(u∗2)− Ih(u2)) ,

∂v∗3
∂t
− ν∆v∗3 + u∗1∂xu

∗
3 + u∗2∂yu

∗
3 + u∗3∂zu

∗
3 + ∂zp

∗ = f3,(3c)

∂xu
∗
1 + ∂yu

∗
2 + ∂zu

∗
3 = ∂xv

∗
1 + ∂yv

∗
2 + ∂zv

∗
3 = 0,(3d)

v∗1 = u∗1 − α2∆u∗1, v
∗
2 = u∗2 − α2∆u∗2, v

∗
3 = u∗3 − α2∆u∗3,(3e)

where ν and f = (f1, f2, f3) are the same kinematic viscosity parameter and
forcing term from (2), p∗ is a modified pressure, and µ > 0 is a relaxation
(nudging) parameter. The purpose of µ is to force the coarse spatial scales of
u∗i toward those of the observed data Ih(ui), i = 1, 2. Here, observational data
of the horizontal components Ih(u1) and Ih(u2) were chosen as an example
but any data assimilation algorithm using two out of three components of the
velocity field also works. As mentioned in [13,15], one of the advantages of this
algorithm is that the initial data u∗0 of the approximate solution can be chosen
to be arbitrary.

In this paper, we will consider the following types of interpolant operators.
The first interpolant observables given by linear interpolant operators Ih :
H1(Ω) → L2(Ω), that approximate identity and satisfy the approximation
property

‖ϕ− Ih(ϕ)‖L2(Ω) ≤ γ0h‖ϕ‖H1(Ω)(4)

for every ϕ in the Sobolev space H1(Ω). We also consider a second type of
linear interpolant operators Ih : H2(Ω)→ L2(Ω) that satisfy the approximation
property

‖ϕ− Ih(ϕ)‖L2(Ω) ≤ γ1h‖ϕ‖H1(Ω) + γ2h
2‖ϕ‖H2(Ω)(5)

for every ϕ in the Sobolev space H2(Ω). We will call the interpolants that
satisfy (4) and (5) are of type I and type II, respectively. We present here
three examples of such interpolant operators.

The first example is given by the projector onto low Fourier modes. Con-

sidering φk(x) = L−3e
2πi
3 k·x with |k| ≤

⌊
1

2πh

⌋
. Then we define Ih : H1(Ω) →

L2(Ω) as

Ih(ϕ) = Pkϕ =
∑

|k|≤b L
2πhc

ϕ̂kφk(x),

where ϕ(x) =
∑
k∈Z3 ϕ̂kφk(x). It satisfies inequality (4) (see e.g. [2, 15]), i.e.,

Ih is an interpolant operator of type I.
The second example of interpolant operators of type I is the volume element

operator. Dividing Ω = [0, L]3 into N cubes Ωk, of same edge, then Ih :
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H1(Ω)→ L2(Ω) given by

Ih(ϕ) =

N∑
k=1

χΩk(x)N

L3

∫
Ωk

ϕ(y)dy,

with h = LN−1/3, i.e., the edge of each Ωk, and χΩk is the characteristic func-
tion of the subdomain Ωk. One can check that (see e.g. [2,15]) this interpolant
operator satisfies (4).

Finally, we give an example of interpolant operators of type II, which is
obtained by observational measurements of velocity on discrete points xk of
cube Ω, that can be divided in N cubes Ωk, as previous example, with xk ∈ Ωk.
Then Ih : H2(Ω)→ L2(Ω) defined as

Ih(ϕ) =

N∑
k=1

ϕ(xk)χΩk(x)

satisfies (5) (see a proof in [2, 4, 15]).
It is noticed that if Ih : H2(Ω) → L2(Ω) is an interpolant operator of type

I, then it is also an interpolant operator of type II. Although the interpolant
operators of type II contain the nodal values, which are very useful in practice
because we only need to know measurements of velocity at a discrete set of
nodal points in Ω, but it requires that the data need to be smoother (belongs
to H2(Ω) instead of H1(Ω) as in the case of interpolant operators of type I).
This leads to the fact that we need to consider the strong solutions for these
interpolant operators.

We provide explicit estimates on the spatial resolution h of the observational
measurements and the relaxation (nudging) parameter µ, in terms of physical
parameters, that are needed in order for the proposed downscaling algorithm to
recover the reference resolution. We will show that, under suitable conditions
of µ and h, for any initial data u∗0, the data assimilation equation (3) has a
unique solution u∗ defined on the whole interval [t0,∞), and this approximate
solution will converge to the reference solution u of the 3D simplified Bardina
model as time goes to ∞. The results obtained in this paper can be seen as an
improvement of previous result for the Bardina model in [1] in the sense that
we use observations in only any two components and without any measure-
ments on the third component of the velocity field. They are also counterparts
of corresponding results for 2D Navier-Stokes equations [13] and the Leray-α
model [15].

In what follows, we will describe in more details the procedure of imple-
menting these mathematical results to solve real-world problems, like weather
forecasting.

Suppose that u(t) represents a solution of system (3), where the initial data
u(t0) = u0 is missing. The goal of continuous data assimilation is to use
low spatial resolution observational measurements, obtained continuously in
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time, to accurately find the unknown reference solution u(t) from which future
predictions can be made.

Step 1. Constructing the data assimilation equation.
Let Ih(u(t)) represent an interpolant operator based on the observational

measurements of this system at a coarse spatial resolution of size h, for t ∈
[0, T ]. The algorithm proposed is to construct an approximate solution u∗(t)
that satisfies the data assimilation equation (3).

Here, we only use the observational data of two out of three components
of the velocity field, namely Ih(u1(t)) and Ih(u2(t)). The algorithm can be
implemented with a variety of finitely many observables: low Fourier modes,
nodal values, finite volume averages, or finite elements.

Step 2. Proving the global existence and uniqueness of solutions
to the data assimilation equation.

The corresponding solution u∗(t) of the data assimilation equation (3) is
called the approximate solution. As mentioned in [13,15], one of the advantages
of this algorithm is that the initial data u∗0 of the approximate solution u∗(t)
can be chosen to be arbitrary.

Step 3. Proving the convergence of approximate solutions to the
reference solution.

The goal of this step is to find estimates on relaxation parameter µ > 0 and
the spatial resolution h > 0, in terms of physical parameters of the evolution
equation (2), such that the approximate solution u∗(t) approaches the reference
solution u(t), with increasing accuracy, as more continuous data in time is
supplied. After some large enough time T > 0, the solution u∗(T ) can then
be used as an initial condition in system (2) to make future predictions of the
reference solution u(t) for t > T , or one can continue with data assimilation
equation (3) itself, for as long more measurements are provided.

Since our goal here is to analyze the long-time behavior of solutions, in all
the statements below we make the assumption that the reference solution u
is a trajectory in the global attractor A of the 3D simplified Bardina model,
which is recalled in Section 2 below. We remark, however, that the same results
still hold by assuming that u is a solution of the 3D simplified Bardina model
starting at a point u(t0) = u0 with t0 large enough so that the uniform bounds
(22) and (23) in Section 2 below are also valid for u, up to a multiplicative
absolute constant. It is also noticed that all results of the paper are still valid
if we assume the external force f ∈ L∞(t0,∞;H), where H is the function
space defined in Section 2 below.

For external force f ∈ H, we define the Grashof number in three dimensions
as follows

(6) Gr =
|f |

ν2λ
3/4
1

.

We are now ready to formulate the main results in this paper.
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The two first theorems are about the existence of weak solutions to the data
assimilation system and its convergence to the reference solution of the simpli-
fied Bardina model, with observable data of type I and of type II, respectively.

Theorem 1.1 (Observable data of type I). Suppose Ih satisfies (4). Let u be
a solution in the global attractor of the 3D simplified Bardina model (2) and
choose µ > 0 large enough such that

(7) µ ≥ cνGr2

λ1α2

(
λ1

2
+
νλ1

α2
+

1

ν

)
exp

(
54c45νGr

4

α4λ1

)
,

and h > 0 small enough such that µc20h
2 ≤ ν.

If u∗0 ∈ V and f ∈ H, then there exists a unique weak solution u∗ of data
assimilation equation (3) on [t0,∞) satisfying u∗(t0) = u∗0 and

u∗ ∈ C([t0,∞);V ) ∩ L2
loc([t0,∞);D(A)),

du∗

dt
∈ L2

loc([t0,∞);H).

Moreover, the solution u∗ depends continuously on the initial data u∗0 and it
satisfies

|u∗(t)− u(t)|2 + α2‖u∗(t)− u(t)‖2 → 0,

at exponential rate, as t→∞.
Here, the constants c0 and c5 appear in (11) and (21) below, and c is a

suitable positive constant independent of parameters of the system.

Theorem 1.2 (Observable data of type II). Suppose Ih satisfies (5). Let u be
a solution in the global attractor of the 3D simplified Bardina model (2) and
choose µ > 0 large enough such that (7) holds and h > 0 small enough such
that µc20h

2 ≤ 2ν and µc40h
4 ≤ 4να2.

If u∗0 ∈ V and f ∈ H, then there exists a unique weak solution u∗ of equation
(3) on [t0,∞) satisfying u∗(t0) = u∗0 and

u∗ ∈ C([t0,∞);V ) ∩ L2
loc([t0,∞);D(A)),

du∗

dt
∈ L2

loc([t0,∞);H).

Moreover, the solution u∗ depends continuously on the initial data u∗0 and it
satisfies

|u∗(t)− u(t)|2 + α2‖u∗(t)− u(t)‖2 → 0,

at exponential rate, as t→∞.
Here, the constants c0 and c5 appear in (11) and (21) below, and c is a

suitable positive constant independent of parameters of the system.

The following theorem shows the existence and uniqueness of strong solu-
tions to the data assimilation system (3) with observable data of type II, and
its stronger convergence (in D(A)) to the reference solution of the simplified
Bardina model.
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Theorem 1.3. Suppose Ih satisfies (5). Let u be a solution in the global
attractor of the 3D simplified Bardina model (2) and choose µ > 0 large enough
such that

(8) µ ≥ max

{
cνGr2

λ1α2

(
λ1

2
+
νλ1

α2
+

1

ν

)
exp

(
54c45νGr

4

α4λ1

)
+
cνGr6

λ3
1α

8
, νλ1

}
,

and h > 0 small enough such that µc20h
2 ≤ ν and µc40h

4 ≤ 4να2.
If u∗0 ∈ D(A) with

(9) |u∗0|2 + α2‖u∗0‖2 ≤
2ν2Gr2

λ
1/2
1

,

and

(10) ‖u∗0‖2 + α2|Au∗0|2 ≤
2ν2Gr2

λ
1/2
1

(
λ1

2
+
νλ1

α2
+

1

ν

)
exp

(
54c45νGr

4

α4λ1

)
,

and f ∈ H, then there exists a unique strong solution u∗ of data assimilation
equation (3) on [t0,∞) satisfying u∗(t0) = u∗0 and

u∗ ∈ C([t0,∞);D(A)) ∩ L2
loc([t0,∞);D(A3/2)),

du∗

dt
∈ L2

loc([t0,∞);V ),

such that

‖u∗(t)‖2 + α2|Au∗(t)|2 ≤ 22ν2Gr2

λ
1/2
1

(
λ1

2
+
νλ1

α2
+

1

ν

)
exp

(
54c45νGr

4

α4λ1

)

+
384000(16e+ 2)c43c

4
4

ν4λ1α6

(
2ν2Gr2

λ
1/2
1

)3

for all t > t0. Moreover, the solution u∗ depends continuously on the initial
data u∗0 and it satisfies

‖u∗(t)− u(t)‖2 + α2|Au∗(t)−Au(t)|2 → 0,

at exponential rate, as t→∞.
Here, the constants c0, c3, c4 and c5 appear in (11), (18), (19) and (21)

below, and c is the suitable positive constant independent of parameters of the
system.

The rest of the paper is organized as follows. In Section 2, for convenience of
the reader, we recall the functional setting and some results on the 3D simplified
Bardina model which will be used in the proof of main results. Section 3 is
devoted to proving Theorem 1.1, Theorem 1.2 and Theorem 1.3.

2. Preliminaries

Let Ω = [0, L]3 be a periodic box, for some L > 0 fixed. We denote by
V the set of all vector valued trigonometric polynomials defined in Ω, which
are divergence-free and have average zero. We denote by L2(Ω), W s,p(Ω), and
Hs(Ω) ≡ W s,2(Ω) the usual Sobolev spaces in three-dimensions. Denote also
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by H and V the closures of V in the (L2(Ω))3 and (H1(Ω))3, respectively. Then
H and V are Hilbert spaces with inner products given by

(u, v) =

3∑
i=1

∫
Ω

uividxdydz and ((u, v)) =

3∑
i,j=1

∫
Ω

∂jui∂jvidxdydz,

respectively, and the associated norms

|u| = (u, u)1/2 and ‖u‖ = ((u, u))1/2.

We denote P : (L̇2(Ω))3 → H the Leray projector, where (L̇2(Ω))3 is the set
of all functions belonging to (L2(Ω))3 with zero average and by A = −P∆
the Stokes operator, with domain D(A) = (H2(Ω))3 ∩ V . In the case of peri-
odic boundary conditions, A = −∆|D(A). The Stokes operator A is a positive
self-adjoint operator with compact inverse. Hence there exists a complete or-
thonormal set of eigenfunctions {wj}∞j=1 ⊂ H, such that Awj = λjwj and

0 < λ1 ≤ λ2 ≤ · · · , λj →∞ as j →∞.

Furthermore, inequality (4) implies that

|u− Ih(u)|2 ≤ c20h2‖u‖2(11)

for every u ∈ V , where c0 = γ0, and inequality (5) implies that

|u− Ih(u)|2 ≤ 1

2
c20h

2‖u‖2 +
1

4
c40h

4|Au|2(12)

for every u ∈ D(A), for some c0 that depends only on γ0, γ1 and γ2.
We have the following versions of the Poincaré inequality:

‖u‖2V ′ ≤ λ−1
1 |u|2, ∀u ∈ H,(13)

|u|2 ≤ λ−1
1 ‖u‖2, ∀u ∈ V,(14)

‖u‖2 ≤ λ−1
1 |Au|2, ∀u ∈ D(A).(15)

In three-dimensions, we also have the Agmon inequality:

‖u‖L∞(Ω) ≤ c1‖u‖1/2|Au|1/2, ∀u ∈ D(A),(16)

and Ladyzhenskaya inequalities:

‖u‖L4(Ω) ≤ c2|u|1/4‖u‖3/4, ∀u ∈ V,(17)

‖u‖L3(Ω) ≤ c3|u|1/2‖u‖1/2, ∀u ∈ V,(18)

and Sobolev inequality:

‖u‖L6(Ω) ≤ c4‖u‖, ∀u ∈ D(A).(19)

Following the classical notation for the viscous simplified Bardina model, for
every u, v ∈ V, we write B(u, v) = P[(u · ∇)v]. The bilinear operator B can be
extended continuously from V × V with values in V ′.
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Let us now recall some algebraic properties of the nonlinear term B(u, v)
that play an important role in our analysis. These results may be found in any
of the references [11,25,26]. For u, v, w ∈ V we have that

〈B(u, v), w〉V ′,V = −〈B(u,w), v〉V ′,V ,

and consequently

(20) 〈B(u, v), v〉V ′,V = 0.

Furthermore,

(21) | 〈B(u, v), w〉V ′,V | ≤ c5‖u‖
1/2|Au|1/2|v|‖w‖, ∀u ∈ D(A), v ∈ H,w ∈ V.

We now prove some asymptotic estimates for solutions to the simplified
Bardina model (2).

Theorem 2.1. Let f ∈ H. If u0 ∈ V , then the system (2) has a unique weak
solution u that satisfies u(t0) = u0 and

u ∈ C([t0,∞);V ) ∩ L2
loc([t0,∞);D(A)),

du

dt
∈ L2

loc([t0,∞);H).

Moreover, if u0 ∈ D(A), then the system (2) has a unique strong solution u
that satisfies u(t0) = u0 and

u ∈ C([t0,∞);D(A)) ∩ L2
loc([t0,∞);D(A3/2)),

du

dt
∈ L2

loc([t0,∞);V ).

Furthermore, the semigroup S(t) : V → V associated to (2), has a global
attractor A in V . Additionally, for any u ∈ A, we have

(22) |u|2 + α2‖u‖2 ≤ 2ν2Gr2

λ
1/2
1

,

and

(23) ‖u‖2 + α2|Au|2 ≤ 2ν2Gr2

λ
1/2
1

(
λ1

2
+
νλ1

α2
+

1

ν

)
exp

(
54c45νGr

4

α4λ1

)
,

where Gr = ν−2λ
−3/4
1 |f | is the Grashof number.

Proof. The existence and uniqueness of weak/strong solutions to (2) and the
existence of the global attractor A were already known (see, e.g. [1,9,21]). Here
we only prove estimates (22) and (23).

Multiplying (2) by u, then integrating over Ω and using (20), we get

1

2

d

dt
(|u|2 + α2‖u‖2) + ν(‖u‖2 + α2|Au|2) ≤ 〈f, u〉V ′,V .

By using the Cauchy inequality and the Poincaré inequality (13), we obtain

〈f, u〉V ′,V ≤ ‖f‖V ′‖u‖ ≤
|f |2

2νλ1
+
ν

2
‖u‖2.
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Thus,

d

dt
(|u|2 + α2‖u‖2) + ν(‖u‖2 + α2|Au|2) ≤ |f |

2

νλ1
.(24)

Using (14) and (15), we deduce from the above inequality that

d

dt
(|u|2 + α2‖u‖2) + νλ1(|u|2 + α2‖u‖2) ≤ |f |

2

νλ1
.(25)

Applying the Gronwall inequality to (25) we conclude that for all t ≥ t0:

|u(t)|2 + α2‖u(t)‖2 ≤ (|u(t0)|2 + α2‖u(t0)‖2)e−νλ1(t−t0)

+
|f |2

ν2λ2
1

(
1− e−νλ1(t−t0)

)
.

Because of this and the definition of Gr, there exists a time T1 > t0, which
depends on the norm of u0, such that for all t ≥ T1, we have the estimate (22).

Integrating (24) from t to t+ 1 and using (22) we get for all t ≥ T1:∫ t+1

t

(‖u(s)‖2 + α2|Au(s)|2)ds ≤ |f |
2

ν2λ1
+
M0

ν
,(26)

where M0 := 2ν2Gr2

λ
1/2
1

. Multiplying (2) by Au and integrating over Ω, we obtain

1

2

d

dt
(‖u‖2 + α2|Au|2) + ν(|Au|2 + α2‖Au‖2)(27)

≤ (B(u, u), Au) + 〈f,Au〉V ′,V .

By the Cauchy inequality and the Poincaré inequality (13), we have

〈f,Au〉V ′,V ≤ ‖f‖V ′‖Au‖ ≤
1

να2λ1
|f |2 +

να2

4
‖Au‖2.(28)

Using (21) and the Young inequality, we arrive at

|(B(u, u), Au)| ≤ c5‖u‖3/2|Au|3/2 ≤
27c45
4ν3
‖u‖6 +

ν

4
|Au|2.(29)

Substituting (28) and (29) into (27), we deduce that

d

dt
(‖u‖2 + α2|Au|2) + ν(|Au|2 + α2‖Au‖2) ≤ 27c45

2ν3
‖u‖6 +

2

να2λ1
|f |2.

Using (22), we have for all t ≥ T1,

d

dt
(‖u‖2 + α2|Au|2) ≤ 27c45M

2
0

2ν3α4
(‖u‖2 + α2|Au|2) +

2

να2λ1
|f |2.(30)

Applying the uniform Gronwall lemma, we obtain from (26) and (30) that

‖u(t)‖2 + α2|Au(t)|2 ≤
(
|f |2

ν2λ1
+
M0

ν
+

2

να2λ1
|f |2

)
exp

(
27c45M

2
0

2ν3α4

)
for all t ≥ T1 + 1. Hence, we get (23).
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We have proved asymptotic estimates (22) and (23) (i.e., for t large enough)
for any solution u of (2). Due to the invariance of the global attractor A, these
estimates are valid for all u ∈ A. �

3. Proof of main results

3.1. Proof of Theorem 1.1

Denote ũ = u∗ − u, ṽ = v∗ − v with v∗ = u∗ + α2Au∗, v = u + α2Au, thus
ṽ = ũ+ α2Aũ. Subtracting (3) from (2) to obtain

∂ṽ1

∂t
− ν∆ṽ1 + (u∗ · ∇)ũ1(31a)

+ ũ1∂xu1 + ũ2∂yu1 + ũ3∂zu1 + ∂x(p∗ − p) = −µIh(ũ1),

∂ṽ2

∂t
− ν∆ṽ2 + (u∗ · ∇)ũ2(31b)

+ ũ1∂xu2 + ũ2∂yu2 + ũ3∂zu2 + ∂y(p∗ − p) = −µIh(ũ2),

∂ṽ3

∂t
− ν∆ṽ3 + (u∗ · ∇)ũ3(31c)

+ ũ1∂xu3 + ũ2∂yu3 + ũ3∂zu3 + ∂z(p
∗ − p) = 0,

∂xũ1 + ∂yũ2 + ∂zũ3 = ∂xṽ1 + ∂y ṽ2 + ∂z ṽ3 = 0.(31d)

Here we have used the facts that

u∗1∂xu
∗
1 + u∗2∂yu

∗
1 + u∗3∂zu

∗
1 − u1∂xu1 − u2∂yu1 − u3∂zu1

= (u∗ · ∇)ũ1 + ũ1∂xu1 + ũ2∂yu1 + ũ3∂zu1,

u∗1∂xu
∗
2 + u∗2∂yu

∗
2 + u∗3∂zu

∗
2 − u1∂xu2 − u2∂yu2 − u3∂zu2

= (u∗ · ∇)ũ2 + ũ1∂xu2 + ũ2∂yu2 + ũ3∂zu2,

u∗1∂xu
∗
3 + u∗2∂yu

∗
3 + u∗3∂zu

∗
3 − u1∂xu3 − u2∂yu3 − u3∂zu3

= (u∗ · ∇)ũ3 + ũ1∂xu3 + ũ2∂yu3 + ũ3∂zu3.

Because of the global existence and uniqueness of the weak solution u of the
system (2), the existence and uniqueness of the difference ũ will imply the
global existence and uniqueness of the weak solution u∗ of the system (3). In
the proof below, we will derive formal a priori bounds on ũ which form the key
elements for showing the global existence of the weak solution ũ of the system
(31), under appropriate conditions on µ and h. The convergence of the solution
ũ to 0 will also be established. Uniqueness can then be obtained using similar
energy estimates.

Here we will omit the rigorous details and provide only the formal a pri-
ori estimates. We can justify the estimates by the Galerkin approximation
procedure and then passing to the limit while using the relevant compactness
theorems (see, e.g., [11, 25,26]).
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Multiplying (31a), (31b) and (31c) by ũ1, ũ2 and ũ3 respectively, then inte-
grating over Ω we obtain

1

2

d

dt

(
|ũ1|2 + α2‖ũ1‖2

)
+ ν

(
‖ũ1‖2 + α2|Aũ1|2

)
≤ |J1| − (∂x(p∗ − p), ũ1)− µ(Ih(ũ1), ũ1),(32a)

1

2

d

dt

(
|ũ2|2 + α2‖ũ2‖2

)
+ ν

(
‖ũ2‖2 + α2|Aũ2|2

)
≤ |J2| − (∂y(p∗ − p), ũ2)− µ(Ih(ũ2), ũ2),(32b)

1

2

d

dt

(
|ũ3|2 + α2‖ũ3‖2

)
+ ν

(
‖ũ3‖2 + α2|Aũ3|2

)
≤ |J3| − (∂z(p

∗ − p), ũ3),(32c)

where

J1 := J1a + J1b + J1c := (ũ1∂xu1, ũ1) + (ũ2∂yu1, ũ1) + (ũ3∂zu1, ũ1),

J2 := J2a + J2b + J2c := (ũ1∂xu2, ũ2) + (ũ2∂yu2, ũ2) + (ũ3∂zu2, ũ2),

J3 := J3a + J3b + J3c := (ũ1∂xu3, ũ3) + (ũ2∂yu3, ũ3) + (ũ3∂zu3, ũ3).

Using the Hölder inequality, the Agmon inequality (16) and the Poincaré in-
equality (15), we have

|J1a| = |(ũ1∂xu1, ũ1)|
≤ ‖ũ1‖L∞(Ω)|∂xu1||ũ1|

≤ c1‖ũ1‖1/2|Aũ1|1/2|∂xu1||ũ1|

≤ c1λ−1/4
1 |Aũ1||∂xu1||ũ1|

≤ ν

8
α2|Aũ1|2 +

c

νλ
1/2
1 α2

|∂xu1|2|ũ1|2

≤ ν

8

(
‖ũ1‖2 + α2|Aũ1|2

)
+

c

νλ
1/2
1 α2

|∂xu1|2|ũ1|2.(33)

Using similar analysis as above, we obtain the following estimates

|J1b| = |(ũ2∂yu1, ũ1)|

≤ ν

8

(
‖ũ2‖2 + α2|Aũ2|2

)
+

c

νλ
1/2
1 α2

|∂yu1|2|ũ1|2,(34)

|J1c| = |(ũ3∂zu1, ũ1)|

≤ ν

20

(
‖ũ3‖2 + α2|Aũ3|2

)
+

c

νλ
1/2
1 α2

|∂zu1|2|ũ1|2,(35)

|J2a| = |(ũ1∂xu2, ũ2)|

≤ ν

8

(
‖ũ1‖2 + α2|Aũ1|2

)
+

c

νλ
1/2
1 α2

|∂xu2|2|ũ2|2,(36)
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|J2b| = |(ũ2∂yu2, ũ2)|

≤ ν

8

(
‖ũ2‖2 + α2|Aũ2|2

)
+

c

νλ
1/2
1 α2

|∂yu2|2|ũ2|2,(37)

|J2c| = |(ũ3∂zu2, ũ2)|

≤ ν

20

(
‖ũ3‖2 + α2|Aũ3|2

)
+

c

νλ
1/2
1 α2

|∂zu2|2|ũ2|2,(38)

|J3a| = |(ũ1∂xu3, ũ3)|

≤ ν

20

(
‖ũ3‖2 + α2|Aũ3|2

)
+

c

νλ
1/2
1 α2

|∂xu3|2|ũ1|2,(39)

|J3b| = |(ũ2∂yu3, ũ3)|

≤ ν

20

(
‖ũ3‖2 + α2|Aũ3|2

)
+

c

νλ
1/2
1 α2

|∂yu3|2|ũ2|2.(40)

Next, using integration by parts and the divergence free condition (31d) we
obtain

J3c = (ũ3∂zu3, ũ3) = −(u3, ∂z(ũ
2
3))

= −2(u3, ũ3∂zũ3)

= 2(u3, ũ3(∂xũ1 + ∂yũ2))

=: 2J3d.

Integrating by parts once again implies that

J3d = (u3, ũ3(∂xũ1 + ∂yũ2))

= −(u3, ũ1∂xũ3)− (u3, ũ2∂yũ3)− (∂xu3, ũ1ũ3)− (∂yu3, ũ2ũ3)

=: J3d1 + J3d2 + J3d3 + J3d4.

Using Hölder inequality, Agmon inequality (16) and the Poincaré inequality
(15), we have

|J3d1| = |(u3, ũ1∂xũ3)|
≤ ‖u3‖L∞(Ω)|ũ1||∂xũ3|

≤ c1‖u3‖1/2|Au3|1/2|ũ1||∂xũ3|

≤ c1λ−1/4
1 |Au3||ũ1||∂xũ3|

≤ ν

20
|∂xũ3|2 +

c

νλ
1/2
1

|Au3|2|ũ1|2

≤ ν

20

(
‖ũ3‖2 + α2|Aũ3|2

)
+

c

νλ
1/2
1

|Au3|2|ũ1|2,

and similarly,

|J3d2| = |(u3, ũ2∂yũ3)|



14 C. T. ANH AND B. H. BACH

≤ ν

20
|∂yũ3|2 +

c

νλ
1/2
1

|Au3|2|ũ2|2

≤ ν

20

(
‖ũ3‖2 + α2|Aũ3|2

)
+

c

νλ
1/2
1

|Au3|2|ũ2|2.

By a similar argument as in (33), we can show that

|J3d3| = |(∂xu3, ũ1ũ3)|
≤ ‖ũ3‖L∞(Ω)|∂xu3||ũ1|

≤ c1‖ũ3‖1/2|Aũ3|1/2|∂xu3||ũ1|

≤ c1λ−1/4
1 |Aũ3||∂xu3||ũ1|

≤ ν

20
α2|Aũ3|2 +

c

νλ
1/2
1 α2

|∂xu3|2|ũ1|2

≤ ν

20

(
‖ũ3‖2 + α2|Aũ3|2

)
+

c

νλ
1/2
1 α2

|∂xu3|2|ũ1|2,

and

|J3d4| = |(∂yu3, ũ2ũ3)|

≤ ν

20

(
‖ũ3‖2 + α2|Aũ3|2

)
+

c

νλ
1/2
1 α2

|∂yu3|2|ũ2|2.

Thus,

|J3d| ≤
ν

5

(
‖ũ3‖2 + α2|Aũ3|2

)
+

c

νλ
1/2
1 α2

(‖u3‖2 + α2|Au3|2)(|ũ1|2 + |ũ2|2).

This yield

|J3c| = |(ũ3∂zu3, ũ3)|

≤ 2ν

5

(
‖ũ3‖2 + α2|Aũ3|2

)
+

c

νλ
1/2
1 α2

(‖u3‖2 + α2|Au3|2)(|ũ1|2 + |ũ2|2).(41)

Using Young’s inequality, (11) and the assumption µc20h
2 ≤ ν, we have with

i = 1, 2 that

−µ(Ih(ũi), ũi) = −µ(Ih(ũi)− ũi, ũi)− µ|ũi|2

≤ µc0h‖ũi‖|ũi| − µ|ũi|2

≤ µc20h
2

2
‖ũi‖2 +

µ

2
|ũi|2 − µ|ũi|2

≤ ν

2
‖ũi‖2 −

µ

2
|ũi|2.(42)

Also we note that

(∂x(p∗ − p), ũ1) + (∂y(p∗ − p), ũ2) + (∂z(p
∗ − p), ũ3) = 0,(43)
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due to integration by parts, the boundary conditions, and the divergence free
condition (31d). Combining all the bounds (33)-(43) and denoting |ũH |2 =
|ũ1|2 + |ũ2|2, we obtain

d

dt

(
|ũ|2 + α2‖ũ‖2

)
+
ν

2

(
‖ũ‖2 + α2|Aũ|2

)
≤

(
c

νλ
1/2
1 α2

(‖u‖2 + α2|Au|2)− µ

)
|ũH |2,

or, using Poincaré inequalities (14) and (15), we have

d

dt

(
|ũ|2 + α2‖ũ‖2

)
+
νλ1

2

(
|ũ|2 + α2‖ũ‖2

)
+ β(t)|ũH |2 ≤ 0,

where

β(t) := µ− c

νλ
1/2
1 α2

(‖u‖2 + α2|Au|2).

Since u is a solution in the global attractor A, we can use the bound from (23).
Using the assumption (7), we have

d

dt

(
|ũ|2 + α2‖ũ‖2

)
+ min

{
νλ1

2
,
µ

2

}(
|ũ|2 + α2‖ũ‖2

)
≤ 0

for t > t0. By the Gronwall inequality, we obtain

|ũ(t)|2 + α2‖ũ(t)‖2 → 0,

at an exponential rate, as t→∞.

3.2. Proof of Theorem 1.2

Using Young’s inequality, (12) and the assumptions µc20h
2 ≤ 2ν and µc40h

4 ≤
4να2, we have with i = 1, 2 that

−µ(Ih(ũi), ũi) = −µ(Ih(ũi)− ũi, ũi)− µ|ũi|2

≤ µ|Ih(ũi)− ũi||ũi| − µ|ũi|2

≤ µ

2
|Ih(ũi)− ũi|2 +

µ

2
|ũi|2 − µ|ũi|2

≤ µc20h
2

4
‖ũi‖2 +

µc40h
4

8
|Aũi|2 +

µ

2
|ũi|2 − µ|ũi|2

≤ ν

2
‖ũi‖2 +

να2

2
|Aũi|2 −

µ

2
|ũi|2

=
ν

2
(‖ũi‖2 + α2|Aũi|2)− µ

2
|ũi|2.(44)

Now, the remainder of the proof is similar to that of Theorem 1.1, where (42)
is replaced with (44). Therefore, we omit the details here.
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3.3. Proof of Theorem 1.3

For brevity, as in the proof of Theorem 1.1, we will omit the rigorous details
and provide only the formal a priori estimates.

Since

‖u∗0‖2 + α2|Au∗0|2 ≤
2ν2Gr2

λ
1/2
1

(
λ1

2
+
νλ1

α2
+

1

ν

)
exp

(
54c45νGr

4

α4λ1

)
:= M1,

by the continuity of the map t 7→ ‖u∗(t)‖2 + α2|Au∗(t)|2, there exists a short

time interval [t0, T̃ ) such that

‖u∗(t)‖2 + α2|Au∗(t)|2 ≤ 11M1 +
384000(16e+ 2)c43c

4
4

ν4λ1α6

(
2ν2Gr2

λ
1/2
1

)3

(45)

for all t ∈ [t0, T̃ ). Assume [t0, T̃ ) is the maximal finite time interval such that

(45) holds. We will show, by contradiction, that T̃ =∞. Assume that T̃ <∞,
then it is clear that

lim sup
t→T̃−

(‖u∗(t)‖2 + α2|Au∗(t)|2) = 11M1 +
384000(16e+ 2)c43c

4
4

ν4λ1α6

(
2ν2Gr2

λ
1/2
1

)3

.

Multiplying (31a), (31b) and (31c) by Aũ1, Aũ2 and Aũ3 respectively, then
integrating over Ω we obtain

1

2

d

dt

(
‖ũ1‖2 + α2|Aũ1|2

)
+ ν

(
|Aũ1|2 + α2‖Aũ1‖2

)
≤ |K1| − (∂x(p∗ − p), Aũ1)− µ(Ih(ũ1), Aũ1),(46a)

1

2

d

dt

(
‖ũ2‖2 + α2|Aũ2|2

)
+ ν

(
|Aũ2|2 + α2‖Aũ2‖2

)
≤ |K2| − (∂y(p∗ − p), Aũ2)− µ(Ih(ũ2), Aũ2),(46b)

1

2

d

dt

(
‖ũ3‖2 + α2|Aũ3|2

)
+ ν

(
|Aũ3|2 + α2‖Aũ3‖2

)
≤ |K3| − (∂z(p

∗ − p), Aũ3),(46c)

where

K1 := K1a +K1b +K1c +K1d +K1e +K1f

:= (u∗1∂xũ1, Aũ1) + (u∗2∂yũ1, Aũ1) + (u∗3∂zũ1, Aũ1)

+ (ũ1∂xu1, Aũ1) + (ũ2∂yu1, Aũ1) + (ũ3∂zu1, Aũ1),

K2 := K2a +K2b +K2c +K2d +K2e +K2f

:= (u∗1∂xũ2, Aũ2) + (u∗2∂yũ2, Aũ2) + (u∗3∂zũ2, Aũ2)

+ (ũ1∂xu2, Aũ2) + (ũ2∂yu2, Aũ2) + (ũ3∂zu2, Aũ2),

K3 := K3a +K3b +K3c +K3d +K3e +K3f

:= (u∗1∂xũ3, Aũ3) + (u∗2∂yũ3, Aũ3) + (u∗3∂zũ3, Aũ3)
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+ (ũ1∂xu3, Aũ3) + (ũ2∂yu3, Aũ3) + (ũ3∂zu3, Aũ3).

Using the Hölder inequality, the Agmon inequality (16) and the Poincaré in-
equality (15), we have

|K1a| = |(u∗1∂xũ1, Aũ1)|
≤ ‖u∗1‖L∞(Ω)|∂xũ1||Aũ1|

≤ c1‖u∗1‖1/2|Au∗1|1/2|∂xũ1||Aũ1|

≤ c1λ−1/4
1 |Au∗1||∂xũ1||Aũ1|

≤ ν

20
|Aũ1|2 +

c

νλ
1/2
1

|Au∗1|2|∂xũ1|2

≤ ν

20

(
|Aũ1|2 + α2‖Aũ1‖2

)
+

c

νλ
1/2
1

|Au∗1|2‖ũ1‖2.(47)

Using similar analysis as above, we obtain the following estimates

|K1b| = |(u∗2∂yũ1, Aũ1)|

≤ ν

20
|Aũ1|2 +

c

νλ
1/2
1

|Au∗2|2|∂yũ1|2

≤ ν

20

(
|Aũ1|2 + α2‖Aũ1‖2

)
+

c

νλ
1/2
1

|Au∗2|2‖ũ1‖2,(48)

|K1c| = |(u∗3∂zũ1, Aũ1)|

≤ ν

20
|Aũ1|2 +

c

νλ
1/2
1

|Au∗3|2|∂zũ1|2

≤ ν

20

(
|Aũ1|2 + α2‖Aũ1‖2

)
+

c

νλ
1/2
1

|Au∗3|2‖ũ1‖2.(49)

Using the Hölder inequality, the Ladyzhenskaya inequality (17) and the Poin-
caré inequality (14), we have

|K1d| = |(ũ1∂xu1, Aũ1)|
≤ ‖ũ1‖L4(Ω)‖∂xu1‖L4(Ω)|Aũ1|

≤ c22|ũ1|1/4‖ũ1‖3/4|∂xu1|1/4‖∂xu1‖3/4|Aũ1|

≤ c22λ
−1/4
1 ‖ũ1‖‖∂xu1‖|Aũ1|

≤ ν

20
|Aũ1|2 +

c

νλ
1/2
1

‖∂xu1‖2‖ũ1‖2

≤ ν

20

(
|Aũ1|2 + α2‖Aũ1‖2

)
+

c

νλ
1/2
1

|Au1|2‖ũ1‖2.(50)

Using similar analysis as above, we obtain

|K1e| = |(ũ2∂yu1, Aũ1)|



18 C. T. ANH AND B. H. BACH

≤ ν

20
|Aũ1|2 +

c

νλ
1/2
1

‖∂yu1‖2‖ũ2‖2

≤ ν

20

(
|Aũ1|2 + α2‖Aũ1‖2

)
+

c

νλ
1/2
1

|Au1|2‖ũ2‖2.(51)

Next, integrating by parts we obtain

K1f = (ũ3∂zu1, Aũ1)

= − (∂xũ3∂zu1, ∂xũ1)− (ũ3∂x∂zu1, ∂xũ1)

− (∂yũ3∂zu1, ∂yũ1)− (ũ3∂y∂zu1, ∂yũ1)

− (∂zũ3∂zu1, ∂zũ1)− (ũ3∂z∂zu1, ∂zũ1)

:= K1f1 +K1f2 +K1f3 +K1f4 +K1f5 +K1f6.

Using the Hölder inequality, the Ladyzhenskaya inequality (17), the Agmon
inequality (16) and the Poincaré inequalities (14) and (15), we can show that

|K1f1| = |(∂xũ3∂zu1, ∂xũ1)|
≤‖∂xũ3‖L4(Ω)‖∂zu1‖L4(Ω)‖∂xũ1‖L2(Ω)

≤c22|∂xũ3|1/4‖∂xũ3‖3/4|∂zu1|1/4‖∂zu1‖3/4|∂xũ1|

≤c22λ
−1/4
1 ‖∂xũ3‖‖∂zu1‖|∂xũ1|

≤c22λ
−1/4
1 |Aũ3||Au1|‖ũ1‖

≤ ν

120

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1

|Au1|2‖ũ1‖2,

and

|K1f2| = |(ũ3∂x∂zu1, ∂xũ1)|
≤‖ũ3‖L∞(Ω)‖∂x∂zu1‖L2(Ω)‖∂xũ1‖L2(Ω)

≤c1‖ũ3‖1/2|Aũ3|1/2|∂x∂zu1||∂xũ1|

≤c1‖ũ3‖1/2|Aũ3|1/2|Au1|‖ũ1‖

≤c1λ−1/4
1 |Aũ3||Au1|‖ũ1‖

≤ ν

120

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1

|Au1|2‖ũ1‖2.

Using similar analysis as above, we obtain

|K1f3| = |(∂yũ3∂zu1, ∂yũ1)|

≤ ν

120

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1

|Au1|2‖ũ1‖2,

|K1f4| = |(ũ3∂y∂zu1, ∂yũ1)|

≤ ν

120

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1

|Au1|2‖ũ1‖2,
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|K1f5| = |(∂zũ3∂zu1, ∂zũ1)|

≤ ν

120

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1

|Au1|2‖ũ1‖2,

|K1f6| = |(ũ3∂z∂zu1, ∂zũ1)|

≤ ν

120

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1

|Au1|2‖ũ1‖2.

Thus,

|K1f | = |(ũ3∂zu1, Aũ1)|

≤ ν

20

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1

|Au1|2‖ũ1‖2.(52)

Using similar analysis as above, we obtain the following estimates:

|K2a| = |(u∗1∂xũ2, Aũ2)|(53)

≤ ν

20

(
|Aũ2|2 + α2‖Aũ2‖2

)
+

c

νλ
1/2
1

|Au∗1|2‖ũ2‖2,

|K2b| = |(u∗2∂yũ2, Aũ2)|(54)

≤ ν

20

(
|Aũ2|2 + α2‖Aũ2‖2

)
+

c

νλ
1/2
1

|Au∗2|2‖ũ2‖2,

|K2c| = |(u∗3∂zũ2, Aũ2)|(55)

≤ ν

20

(
|Aũ2|2 + α2‖Aũ2‖2

)
+

c

νλ
1/2
1

|Au∗3|2‖ũ2‖2,

|K2d| = |(ũ1∂xu2, Aũ2)|(56)

≤ ν

20

(
|Aũ2|2 + α2‖Aũ2‖2

)
+

c

νλ
1/2
1

|Au2|2‖ũ1‖2,

|K2e| = |(ũ2∂yu2, Aũ2)|(57)

≤ ν

20

(
|Aũ2|2 + α2‖Aũ2‖2

)
+

c

νλ
1/2
1

|Au2|2‖ũ2‖2,

|K2f | = |(ũ3∂zu2, Aũ2)|(58)

≤ ν

20

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1

|Au2|2‖ũ2‖2,

|K3d| = |(ũ1∂xu3, Aũ3)|(59)

≤ ν

20

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1

|Au3|2‖ũ1‖2,

|K3e| = |(ũ2∂yu3, Aũ3)|(60)
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≤ ν

20

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1

|Au3|2‖ũ2‖2.

Using Hölder inequality, Sobolev inequality (19) and Ladyzhenskaya inequality
(18), we have

|K3a| = |(u∗1∂xũ3, Aũ3)|
≤ |(ũ1∂xũ3, Aũ3)|+ |(u1∂xũ3, Aũ3)|
≤ ‖ũ1‖L6(Ω)‖∂xũ3‖L3(Ω)‖Aũ3‖L2(Ω) + ‖u1‖L6(Ω)‖∂xũ3‖L3(Ω)‖Aũ3‖L2(Ω)

≤ c3c4‖ũ1‖|∂xũ3|1/2‖∂xũ3‖1/2|Aũ3|+ c3c4‖u1‖|∂xũ3|1/2‖∂xũ3‖1/2|Aũ3|

≤ ν

80
|Aũ3|2 +

20c23c
2
4

ν
‖ũ1‖2|∂xũ3|‖∂xũ3‖

+
ν

80
|Aũ3|2 +

20c23c
2
4

ν
‖u1‖2|∂xũ3|‖∂xũ3‖

≤ ν

40
|Aũ3|2 +

ν

80
‖∂xũ3‖2 +

8000c43c
4
4

ν3
‖ũ1‖4|∂xũ3|2

+
ν

80
‖∂xũ3‖2 +

8000c43c
4
4

ν3
‖u1‖4|∂xũ3|2

≤ ν

20
|Aũ3|2 +

8000c43c
4
4

ν3
‖ũ1‖4‖ũ3‖2 +

8000c43c
4
4

ν3
‖u1‖4‖ũ3‖2

≤ ν

20

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

8000c43c
4
4

ν3
‖ũ‖6 +

8000c43c
4
4

ν3
‖u‖4‖ũ‖2.(61)

Using similar analysis as above, we obtain

|K3b| = |(u∗2∂yũ3, Aũ3)|

≤ ν

20

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

8000c43c
4
4

ν3
‖ũ‖6 +

8000c43c
4
4

ν3
‖u‖4‖ũ‖2,(62)

|K3c| = |(u∗3∂zũ3, Aũ3)|

≤ ν

20

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

8000c43c
4
4

ν3
‖ũ‖6 +

8000c43c
4
4

ν3
‖u‖4‖ũ‖2.(63)

Next, using integration by parts and the divergence free condition (31d) we
obtain

K3f = (ũ3∂zu3, Aũ3) = −(u3, ∂z(ũ3Aũ3))

= −(u3, ũ3∂zAũ3)− (u3, Aũ3∂zũ3)

= −(u3, ũ3A∂zũ3)− (u3, Aũ3∂zũ3)

= (u3, ũ3A(∂xũ1 + ∂yũ2)) + (u3, Aũ3(∂xũ1 + ∂yũ2))

=: K3g +K3h.

Integrating by parts implies that

K3g = (u3, ũ3A(∂xũ1 + ∂yũ2))



THREE-DIMENSIONAL SIMPLIFIED BARDINA MODEL 21

= (u3, ũ3∂xAũ1) + (u3, ũ3∂yAũ2)

= −(u3, Aũ1∂xũ3)− (u3, Aũ2∂yũ3)− (∂xu3, Aũ1ũ3)− (∂yu3, Aũ2ũ3)

=: K3g1 +K3g2 +K3g3 +K3g4.

Using integration by parts we obtain

K3g1 = (u3, Aũ1∂xũ3)

= (u3, ∂x∂xũ1∂xũ3) + (u3, ∂y∂yũ1∂xũ3) + (u3, ∂z∂zũ1∂xũ3)

= − (∂xu3∂xũ3, ∂xũ1)− (u3∂x∂xũ3, ∂xũ1)

− (∂yu3∂xũ3, ∂yũ1)− (u3∂y∂xũ3, ∂yũ1)

− (∂zu3∂xũ3, ∂zũ1)− (u3∂z∂xũ3, ∂zũ1)

=: K3g1−1 +K3g1−2 +K3g1−3 +K3g1−4 +K3g1−5 +K3g1−6.

Using Hölder inequality, Ladyzhenskaya inequality (17), the Agmon inequality
(16) and the Poincaré inequalities (14) and (15), we have

|K3g1−1| = |(∂xu3∂xũ3, ∂xũ1)|
≤‖∂xu3‖L4(Ω)‖∂xũ3‖L4(Ω)‖∂xũ1‖L2(Ω)

≤c22|∂xu3|1/4‖∂xu3‖3/4|∂xũ3|1/4‖∂xũ3‖3/4|∂xũ1|

≤c22λ
−1/4
1 ‖∂xu3‖‖∂xũ3‖|∂xũ1|

≤c22λ
−1/4
1 |Au3||Aũ3|‖ũ1‖

≤ ν

480

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1

|Au3|2‖ũ1‖2,

and

|K3g1−2| = |(u3∂x∂xũ3, ∂xũ1)|
≤‖u3‖L∞(Ω)‖∂x∂xũ3‖L2(Ω)‖∂xũ1‖L2(Ω)

≤c1‖u3‖1/2|Au3|1/2|∂x∂xũ3||∂xũ1|

≤c1‖u3‖1/2|Au3|1/2|Aũ3|‖ũ1‖

≤c1λ−1/4
1 |Au3||Aũ3|‖ũ1‖

≤ ν

480

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1

|Au3|2‖ũ1‖2.

Using similar analysis as above, we obtain

|K3g1−3| = |(∂yu3∂xũ3, ∂yũ1)|

≤ ν

480

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1

|Au3|2‖ũ1‖2,

|K3g1−4| = |(u3∂y∂xũ3, ∂yũ1)|
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≤ ν

480

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1

|Au3|2‖ũ1‖2,

|K3g1−5| = |(∂zu3∂xũ3, ∂zũ1)|

≤ ν

480

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1

|Au3|2‖ũ1‖2,

|K3g1−6| = |(u3∂z∂xũ3, ∂zũ1)|

≤ ν

480

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1

|Au3|2‖ũ1‖2.

Thus,

|K3g1| = |(u3, Aũ1∂xũ3)|

≤ ν

80

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1

|Au3|2‖ũ1‖2,

and similarly,

|K3g2| = |(u3, Aũ2∂yũ3)|

≤ ν

80

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1

|Au3|2‖ũ2‖2.

By a similar argument, we can show that

|K3g3| = |(∂xu3, Aũ1ũ3)|

≤ ν

80

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1

|Au3|2‖ũ1‖2,

and

|K3g4| = |(∂yu3, Aũ2ũ3)|

≤ ν

80

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1

|Au3|2‖ũ2‖2.

Thus,

|K3g| ≤
ν

20

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1 α2

(‖u3‖2 + α2|Au3|2)(‖ũ1‖2 + ‖ũ2‖2).

Now, we have

K3h = (u3, Aũ3(∂xũ1 + ∂yũ2))

= (u3, Aũ3∂xũ1) + (u3, Aũ3∂yũ2)

=: K3h1 +K3h2.

Using the Hölder inequality, the Agmon inequality (16) and the Poincaré in-
equality (15), we obtain

|K3h1| = |(u3, Aũ3∂xũ1)|
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≤ ‖u3‖L∞(Ω)‖Aũ3‖L2(Ω)‖∂xũ1‖L2(Ω)

≤ c1‖u3‖1/2|Au3|1/2|Aũ3||∂xũ1|

≤ c1λ−1/4
1 |Au3||Aũ3|‖ũ1‖

≤ ν

10

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1

|Au3|2‖ũ1‖2,

and similarly,

|K3h2| = |(u3, Aũ3∂yũ2)|

≤ ν

10

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1

|Au3|2‖ũ2‖2.

Thus,

|K3h| = (u3, Aũ3(∂xũ1 + ∂yũ2))

≤ ν

5

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1 α2

(‖u3‖2 + α2|Au3|2)(‖ũ1|2 + ‖ũ2‖2).

This yields

|K3f | = |(ũ3∂zu3, Aũ3)|

≤ ν

4

(
|Aũ3|2 + α2‖Aũ3‖2

)
+

c

νλ
1/2
1 α2

(‖u3‖2 + α2|Au3|2)(‖ũ1|2 + ‖ũ2‖2).(64)

Using the Young inequality, (12) and the assumption µc20h
2 ≤ ν, we have with

i = 1, 2 that

−µ(Ih(ũi), Aũi) = −µ(Ih(ũi)− ũi, Aũi)− µ‖ũi‖2

≤ µ|Ih(ũi)− ũi||Aũi| − µ‖ũi‖2

≤ µ2

ν
|Ih(ũi)− ũi|2 +

ν

4
|Aũi|2 − µ‖ũi‖2

≤ µ2c20h
2

2ν
‖ũi‖2 +

µ2c40h
4

4ν
|Aũi|2 +

ν

4
|Aũi|2 − µ‖ũi‖2

≤ µ

2
‖ũi‖2 +

ν

4
|Aũi|2 +

ν

4
|Aũi|2 − µ‖ũi‖2

≤ ν

2
|Aũi|2 −

µ

2
‖ũi‖2

≤ ν

2
(|Aũi|2 + α2‖Aũi‖2)− µ

2
‖ũi‖2.(65)

Also we note that

(∂x(p∗ − p), Aũ1) + (∂y(p∗ − p), Aũ2) + (∂z(p
∗ − p), Aũ3) = 0,(66)
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due to integration by parts, the boundary conditions, and the divergence free
condition (31d). Combining all the bounds (47)-(66) and denoting ‖ũH‖2 =
‖ũ1‖2 + ‖ũ2‖2, we obtain

d

dt

(
‖ũ‖2 + α2|Aũ|2

)
+
ν

2

(
|Aũ|2 + α2‖Aũ‖2

)
≤

(
c

νλ
1/2
1 α2

(‖u‖2 + α2|Au|2 + ‖u∗‖2 + α2|Au∗|2)− µ

)
‖ũH‖2

+
48000c43c

4
4

ν3
‖ũ‖6 +

48000c43c
4
4

ν3
‖u‖4‖ũ‖2

for all t ∈ [t0, T̃ ). Hence using Poincaré inequalities (14) and (15), we have

d

dt

(
‖ũ‖2 + α2|Aũ|2

)
+
νλ1

2

(
‖ũ‖2 + α2|Aũ|2

)
+ β(t)‖ũH‖2 ≤ F (t)

for all t ∈ [t0, T̃ ), where

β(t) := µ− c

νλ
1/2
1 α2

(‖u‖2 + α2|Au|2 + ‖u∗‖2 + α2|Au∗|2),

and

F (t) :=
48000c43c

4
4

ν3
‖ũ‖6 +

48000c43c
4
4

ν3
‖u‖4‖ũ‖2.

Since u is a solution in the global attractor A, we can use the bound (23).
Using (45) and the assumption (8), we have

d

dt

(
‖ũ‖2 + α2|Aũ|2

)
+ min

{
νλ1

2
,
µ

2

}(
‖ũ‖2 + α2|Aũ|2

)
≤ F (t)

for all t ∈ [t0, T̃ ). Because the assumptions of Theorem 1.2 are satisfied if the
assumptions of Theorem 1.3 are satisfied, we can use Theorem 1.2. So we have
for all t ∈ [t0, T̃ ):

|ũ(t)|2 + α2‖ũ(t)‖2 ≤ (|ũ(t0)|2 + α2‖ũ(t0)‖2)e−min{νλ1/2,µ/2}(t−t0).

By (9) and (22), we have for all t ∈ [t0, T̃ ):

‖ũ(t)‖2

≤ α−2(|ũ(t0)|2 + α2‖ũ(t0)‖2)e−min{νλ1/2,µ/2}(t−t0)

≤ α−2(|u∗(t0)− u(t0)|2 + α2‖u∗(t0)− u(t0)‖2)e−min{νλ1/2,µ/2}(t−t0)

≤ 2α−2(|u∗(t0)|2 + α2‖u∗(t0)‖2 + |u(t0)|2 + α2‖u(t0)‖2)e−min{νλ1/2,µ/2}(t−t0)

≤ 4M0

α2
e−min{νλ1/2,µ/2}(t−t0),

where

M0 :=
2ν2Gr2

λ
1/2
1

.
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Thus,

F (t) ≤ C1e
−3 min{νλ1/2,µ/2}(t−t0) + C2e

−min{νλ1/2,µ/2}(t−t0)

for all t ∈ [t0, T̃ ), where C1 :=
3072000c43c

4
4M

3
0

ν3α6 and C2 :=
192000c43c

4
4M

3
0

ν3α6 .

Now, using the Gronwall inequality, we obtain for all t ∈ [t0, T̃ ):

‖ũ(t)‖2 + α2|Aũ(t)|2

≤ (‖ũ(t0)‖2 + α2|Aũ(t0)|2)e−min{νλ1/2,µ/2}(t−t0)

+

∫ t

t0

e−min{νλ1/2,µ/2}(t−t0)+min{νλ1/2,µ/2}(s−t0)×(
C1e

−3 min{νλ1/2,µ/2}(s−t0) + C2e
−min{νλ1/2,µ/2}(s−t0)

)
ds

= (‖ũ(t0)‖2 + α2|Aũ(t0)|2)e−min{νλ1/2,µ/2}(t−t0)

+ C1

2 min{νλ1/2,µ/2}e
−min{νλ1/2,µ/2}(t−t0)

(
1− e−2 min{νλ1/2,µ/2}(t−t0)

)
+ C2e

−min{νλ1/2,µ/2}(t−t0)(t− t0).(67)

Thus,

‖ũ(t)‖2 + α2|Aũ(t)|2

≤ ‖ũ(t0)‖2 + α2|Aũ(t0)|2 +
C1

2 min {νλ1/2, µ/2}
+

C2

emin {νλ1/2, µ/2}

for all t ∈ [t0, T̃ ). Since

‖ũ(t0)‖2+α2|Aũ(t0)|2 ≤ 2(‖u(t0)‖2+α2|Au(t0)|2)+2(‖u∗(t0)‖2+α2|Au∗(t0)|2),

then by (10) and (23), we have

‖ũ(t)‖2 + α2|Aũ(t)|2 ≤ 4M1 +
eC1 + 2C2

2 min {νλ1/2, µ/2}

for all t ∈ [t0, T̃ ). This implies that

‖u∗(t)‖2 + α2|Au∗(t)|2 = ‖ũ(t) + u(t)‖2 + α2|Aũ(t) +Au(t)|2

≤ 2(‖ũ(t)‖2 + α2|Aũ(t)|2) + 2(‖u(t)‖2 + α2|Au(t)|2)

≤ 8M1 +
eC1 + 2C2

min {νλ1/2, µ/2}
+ 2M1

= 10M1 +
2eC1 + 4C2

νλ1

for all t ∈ [t0, T̃ ), if we choose µ ≥ νλ1. This in turn will yield a contradiction
since

11M1 +
2eC1 + 4C2

νλ1
= 11M1 +

384000(16e+ 2)c43c
4
4

ν4λ1α6

(
2ν2Gr2

λ
1/2
1

)3
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= lim sup
t→T̃−

(‖u∗(t)‖2 + α2|Au∗(t)|2)

≤ 10M1 +
2eC1 + 4C2

νλ1
.

This proves that T̃ =∞. Thus, by (67), with T̃ =∞, we obtain

‖ũ(t)‖2 + α2|Aũ(t)|2 → 0,

at an exponential rate, as t→∞. The proof is complete.
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