DOI QR코드

DOI QR Code

Analysis of Microstructural Changes in Polyacrylonitrile-Based Carbon Fibers Caused by Isothermal Oxidation in Air

XRD와 마이크로 라만 분석을 이용하여 700 ℃ 공기 중에서 등온 산화된 PAN계 탄소섬유의 미세구조 변화 해석

  • Lee, Sang-Hye (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Oh, Seong-Moon (ILSAN Co., Ltd.) ;
  • Lee, Sang-Min (Advanced Material Research Center, Kumoh National Institute of Technology) ;
  • Roh, Jae-Seung (School of Materials Science and Engineering, Kumoh National Institute of Technology)
  • 이상혜 (금오공과대학교 신소재공학부) ;
  • 오성문 ((주)일산 기술연구소) ;
  • 이상민 (금오공과대학교 신소재연구소) ;
  • 노재승 (금오공과대학교 신소재공학부)
  • Received : 2021.01.07
  • Accepted : 2021.02.05
  • Published : 2021.02.28

Abstract

In this study, isothermal oxidation reactions of polyacrylonitrile-based T300 and T700 carbon fibers were conducted in air at 700 ℃ by employing a horizontal tube furnace. The oxidized fibers were examined through XRD and micro-Raman analysis for quantitatively analyzing the changes in crystallinity occurring after the oxidation reactions. The results obtained from XRD analysis corroborate that the overall crystallinity of an oxidized fiber is lower than that of the corresponding raw fiber. Observation through a scanning electron microscope indicates that a longitudinal hollow pore is formed along the fiber axis of each oxidized fiber. Additionally, since the crystallinity of the fiber core is lower than that of the sheath, the conducted micro-Raman analysis suggests that the core became oxidized first to form the longitudinal hollow pore. In this study, it was difficult to measure the depth of the longitudinal hollow pore through the fiber core. In the future, if the depth of the hollow pore can be measured at the fiber core and is optimized for developing the hollow pore, new support materials, which serve as the carriers, can be designed.

Keywords

Acknowledgement

이 논문은 2018년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2018R1A6A1A03025761). 이 논문은 2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2020R1I1A1A01072407).

References

  1. M. K. Seo and S. J. Park, "Manufacturing Method of Carbon Fibers and Their Application Fields", Polym. Sci. Tech., 2010, 21, 130-140.
  2. M. K. Seo, K. E. Choi, B. G. Min, and S. J. Park, "Carbon Fibers (Ι): General Understanding and Manufacturing Techniques of Carbon Fibers", Carbon Lett., 2008, 9, 218-231. https://doi.org/10.5714/CL.2008.9.3.218
  3. K. W. An, J. K. Lee, S. W. Lee, Y. D. Kim, W. I. Cho, J. B. Ju, B. W. Cho, D. Park, and K. S. Yun, "Effect of Preparation Conditions of PAN-based Carbon Fibers on Electrochemical Characteristics of Rechargeable Lithium Ion Battery Anode", J. Korean Electrochem. Soc., 1999, 2, 81-87. https://doi.org/10.5229/JKES.1999.2.2.081
  4. J. W. Yang, J. J. Yoo, H. J. Jang, D. K. Yong, J. S. Won, and S. G. Lee, "Preparation and Characterization of PAN Based Carbon Fibers Having Zirconia Nanofibers", Text. Sci. Eng., 2012, 49, 307-313. https://doi.org/10.12772/TSE.2012.49.5.307
  5. J. C. Lee, C. S. Shin, D. Y. Lee, B. G. Kim, S. G. Sim, Y. S. Im, and Y. J. Jung, "A Study on the Preparation and Characterization of Carbon Fiber Composite Filter", J. Korean Ceram. Soc., 1995, 32, 989-994.
  6. H. Wang, Y. Wang, T. Li, S. Wu, and L. Xu, "Gradient Distribution of Radial Structure of PAN-based Carbon Fiber Treated by High Temperature", Prog. Nat. Sci., 2014, 24, 31-34. https://doi.org/10.1016/j.pnsc.2014.01.009
  7. F. G. Mendonca, J. D. Ardisson, R. M. Lago, and J. C. Tristao, "Selective Oxidation of Amorphous Carbon by CO2 to Produce Fe@C Nanoparticles from Bulky Fe/C Matrices", J. Braz. Chem. Soc., 2015, 26, 2379-2383.
  8. S. J. Park, M. K. Seo, and J. R. Lee, "Influence of Oxidation Inhibitor on Carbon-Carbon Composites: 6. Studies on Friction and Wear Properties of Carbon-Carbon Composites", Polymer(Korea), 2001, 25, 133-141.
  9. G. S. Kim, "Study on the Development and Application of Advanced Carbon Composites", Ceramist, 1997, 12, 91-100.
  10. D. C. Moon, K. H. Lee, C. S. Kim, D. H. Kim, M. R. Kim, C. H. Shin, I. Y. Park, S. Y. Nam, and C. G. Lee, "Micropore Analysis and Adsorption Characteristics of Activated Fibers", Anal. Sci. Technol., 2000, 13, 89-95.
  11. A. Oya, S. Yoshida, J. Alcaniz-Monge, and A. Linares-Solano, "Formation of Mesopores in Phenolic Resin-derived Carbon Fiber by Catalytic Activation Using Cobalt", Carbon, 1995, 33, 10851090.
  12. Y. S. Lim, K. S. Yoo, S. Y. Moon, Y. J. Chung, M. S. Kim, and H. S. Harm, "Preparation and Characterization of High Performance Activated Carbon Fibers from Stabilized PAN Fibers", J. Korean Ceram. Soc., 2003, 40, 468-474. https://doi.org/10.4191/KCERS.2003.40.5.468
  13. J. S. Roh and D. S. Seo, "The Oxidation Behavior of Pitch-based Carbon Fibers in CO2 Gas and Air", Korean J. Mater. Res, 1997, 7, 121-128.
  14. S. M. Oh, S. M. Lee, D. S. Kang, and J. S. Roh, "Microstructural Changes of Polyacrylonitrile-based Carbon Fibers (T300 and T700) due to Isothermal Oxidation (1) : Focusing on Morphological Changes Using Scanning Electron Microscopy", Carbon Lett., 2016, 18, 18-23. https://doi.org/10.5714/CL.2016.18.018
  15. J. S. Roh, "A Structural Study of the Oxidized High Modulus Pitch Based Carbon Fibers by Oxidation in Carbon Dioxide", Carbon Lett., 2004, 5, 27-33.
  16. S. H. Lee, D. S. Kang, S. M. Lee, and J. S. Roh, "X-ray Diffraction Analysis of the Effect of Ball Milling Time on Crystallinity of Milled Polyacrylonitrile-based Carbon Fiber", Carbon Lett., 2018, 26, 11-17. https://doi.org/10.5714/CL.2018.26.011
  17. D. S. Kang, S. M. Lee, S. H. Lee, and J. S. Roh, "X-ray Diffraction Analysis of the Crystallinity of Phenolic Resinderived Carbon as a Function of the Heating Rate during the Carbonization Process", Carbon Lett., 2018, 27, 108-111. https://doi.org/10.5714/CL.2018.27.108
  18. D. S. Knight and W. B. White, "Characterization of Diamond Films by Raman Spectroscopy", J. Mater. Res., 1989, 4, 385-393. https://doi.org/10.1557/JMR.1989.0385
  19. M. Endo, C. Kim, T. Karaki, T. Kasai, M. J. Matthews, S. D. M. Brown, M. S. Dresselhaus, T. Tamaki, and Y. Nishimura, "Structural Characterization of Milled Mesophase Pitch-based Carbon Fibers", Carbon, 1998, 36, 1633-1641. https://doi.org/10.1016/S0008-6223(98)00157-2
  20. J. S. Roh, "Structural Study of the Activated Carbon Fiber using Laser Raman Spectroscopy", Carbon Lett., 2008, 9, 127-130. https://doi.org/10.5714/CL.2008.9.2.127
  21. L. Nikiel and P. W. Jagodzinski, "Raman Spectroscopic Characterization of Graphites: A Re-evaluation of Spectra/Structure Correlation", Carbon, 1993, 31, 1313-1317. https://doi.org/10.1016/0008-6223(93)90091-N
  22. A. Cuesta, P. Dhamelincourt, J. Laureyns, A. M. Alonso, and J. M. D. Tascon, "Raman Microprobe Studies on Carbon Materials", Carbon, 1994, 32, 1523-1532. https://doi.org/10.1016/0008-6223(94)90148-1
  23. J. Qiua, X. Wu, and T. Qiu, "High Electromagnetic Wave Absorbing Performance of Activated Hollow Carbon Fibers Decorated with CNTs and Ni Nanoparticles", Ceram. Int., 2016, 42, 5278-5285. https://doi.org/10.1016/j.ceramint.2015.12.056
  24. E. P. Favvas, N. S. Heliopoulos, S. K. Papageorgiou, A. C. Mitropoulos, G. C. Kapantaidakis, and N. K. Kanellopoulos, "Helium and Hydrogen Selective Carbon Hollow Fiber Membranes: The Effect of Pyrolysis Isothermal Time", Sep. Purif. Technol., 2015, 142, 176-181. https://doi.org/10.1016/j.seppur.2014.12.048
  25. Y. Tong, X. Wang, H. Su, and L. Xu, "Oxidation Kinetics of Polyacrylonitrile-based Carbon Fibers in Air and the Effect on Their Tensile Properties", Corros. Sci., 2011, 53, 2484-2488. https://doi.org/10.1016/j.corsci.2011.04.004
  26. L. Lu, V. Sahajwalla, C. Kong, and D. Harris, "Quantitative X-ray Diffraction Analysis and Its Application to Various Coals", Carbon, 2001, 39, 1821-1833. https://doi.org/10.1016/S0008-6223(00)00318-3
  27. J. S. Roh, "Structural Study of the Oxidized High Modulus Carbon Fiber using Laser Raman Spectroscopy", Carbon Lett., 2009, 10, 38-42. https://doi.org/10.5714/CL.2009.10.1.038
  28. H. M. Lee, K. K. An, S. J. Park, and B. J. Kim, "Mesopore-rich Activated Carbons for Electrical Double-layer Capacitors by Optimal Activation Condition", Nanomaterials, 2019, 9, 608-620. https://doi.org/10.3390/nano9040608