DOI QR코드

DOI QR Code

근거이론을 활용한 디지털 트윈 발전 방향성 제시

Directions for the Development of Digital Twins Applying the Grounded Theory Methods

  • 강민식 (남서울대학교 산업경영공학과)
  • Kang, Minshik (Dept. of Industrial Management Engineering, Namseoul University)
  • 투고 : 2021.01.11
  • 심사 : 2021.02.20
  • 발행 : 2021.02.28

초록

본 연구는 디지털트윈 컨텐츠 개발을 위한 구체적 방향성을 제시하는 것을 목적으로 한다. 문헌분석과 근거이론을 활용하였으며 수요자의 니즈를 파악하고 컨텐츠 사업화 및 상용화의 어려움에 대응하는 컨텐츠 개발 우선순위를 제안하였다. 연구결과 이해하기 복잡한 공정 또는 위험한 훈련이 디지털트윈 컨텐츠로 적합하다고 나타났다. 또한 핵발전소와 같이 스케일이 크고 물리적으로 시뮬레이션하기에 비용이 큰 분야들을 개발하는 것이 효과적일 것으로 확인됐다. 본 연구는 디지털트윈을 개발하여 사업화하고자 하는 소프트웨어 개발업체들 뿐만 아니라 디지털트윈으로 훈련비용을 감소하고 복잡한 업무를 효율적으로 개선하고자 하는 기업들에게도 중요한 참고 자료를 제공할 수 있다. 기업들은 대체로 다수의 복잡한 프로세스를 기반으로 운영되므로 본 연구에서의 우선순위는 기업의 주요 의사결정자들의 효과적인 의사결정을 장려할 수 있다. 본 연구를 기반으로 향후에는 디지털트윈에 대한 기술적인 가능성에 대한 논의가 필요할 것으로 사료된다.

This study aims to propose specific directions for developing digital twin contents. This aim is achieved by thorough literature review and applying the grounded theory. Based on customers' need analysis, this study suggests the priorities of contents development of digital twins. As a result, complex workflows and dangerous training contents are adequate to be developed. Moreover, large-scale projects such as nuclear powerplants that are hard to build the mock-ups were considered to be effective. This study provides significant information for not only software developers but also clients who desire to reduce training fees and improve the complex workflows. Since these client companies operate based upon multiple complex workflows, this study encourages stakeholders to make effective decisions. This research needs further analysis of current digital twin technology- possibilities and limitations.

키워드

과제정보

This research was conducted with Namseoul University academic research fund in 2020.

참고문헌

  1. A. El Saddik. (2018). Digital Twins: The Convergence of Multimedia Technologies. in IEEE MultiMedia, 25(2), 87-92. DOI: 10.1109/MMUL.2018.023121167.
  2. Barricelli, B. R., Casiraghi, E. & Fogli, D. (2019). A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications. IEEE Access, 7, 167653-167671. https://doi.org/10.1109/access.2019.2953499
  3. Kang, H. & Kim, H. (2018). Digital twin element technologies and trends based on the manufacturing industry. Journal of the Korean Institute of Communication Sciences Information and Communication, 35(8), 24-28.
  4. Bang, J. & Lee, Y. (2020). Digital twin technology trend for realizing smart city. Journal of the Korean Institute of Communication Sciences Information and Communication, 37(5), 11-19.
  5. Wang, J., Ye, L., Gao, R. X., Li, C. & Zhang, L. (2019). Digital Twin for rotating machinery fault diagnosis in smart manufacturing. International Journal of Production Research, 57(12), 3920-3934. https://doi.org/10.1080/00207543.2018.1552032
  6. Qi, Q. & Tao, F. (2018). Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison. IEEE Access, 6, 3585-3593. https://doi.org/10.1109/access.2018.2793265
  7. Gyeong, D. S. (2020). ICT-based fine dust solution technology trend-Fine dust free zone utilizing smart city of digital twin technology. Air Cleaning Technology, 33(3), 12-23.
  8. Lu, Y., Liu, C., Kevin, I., Wang, K., Huang, H. & Xu, X. (2020). Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robotics and Computer-Integrated Manufacturing, 61, 101837 https://doi.org/10.1016/j.rcim.2019.101837
  9. Fuller, A., Fan, Z., Day, C. & Barlow, C. (2020). Digital twin: Enabling technologies, challenges and open research. IEEE Access, 8, 108952-108971. https://doi.org/10.1109/access.2020.2998358
  10. Shirowzhan, S., Tan, W. & Sepasgozar, S. M. (2020). Digital Twin and CyberGIS for Improving Connectivity and Measuring the Impact of Infrastructure Construction Planning in Smart Cities.
  11. Kang, S., Cho, H., Kang, K., Kang, M. & Haas, C. T. (2018). PIECE 3D: Portable Interactive Education for Construction Engineering in 3D. In ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction (Vol. 35, pp. 1-7). IAARC Publications.
  12. Kaewunruen, S. & Xu, N. (2018). Digital twin for sustainability evaluation of railway station buildings. Frontiers in Built Environment, 4, 77. https://doi.org/10.3389/fbuil.2018.00077
  13. Ibrion, M., Paltrinieri, N. & Nejad, A. R. (2019, October). On risk of digital twin implementation in marine industry: Learning from aviation industry. Journal of Physics: Conference Series, 1357(1), 012009. https://doi.org/10.1088/1742-6596/1357/1/012009
  14. Glaser, Barney G. & Strauss, Anselm L. (1967). The discovery of grounded theory: strategies for qualitative research.
  15. Gavish, N., Gutierrez, T., Webel, S., Rodriguez, J., Peveri, M., Bockholt, U. & Tecchia, F. (2015). Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks. Interactive Learning Environments, 23(6), 778-798. https://doi.org/10.1080/10494820.2013.815221
  16. Zhao, D. & Lucas, J. (2015). Virtual reality simulation for construction safety promotion. International journal of injury control and safety promotion, 22(1), 57-67. https://doi.org/10.1080/17457300.2013.861853
  17. Le, Q. T., Pedro, A. & Park, C. S. (2015). A social virtual reality based construction safety education system for experiential learning. Journal of Intelligent & Robotic Systems, 79(3-4), 487-506. https://doi.org/10.1007/s10846-014-0112-z
  18. Pedro, A., Le, Q. T. & Park, C. S. (2016). Framework for integrating safety into construction methods education through interactive virtual reality. Journal of professional issues in engineering education and practice, 142(2), 04015011. https://doi.org/10.1061/(ASCE)EI.1943-5541.0000261
  19. Gonzalez-Franco, M. et al. (2016). Immersive augmented reality training for complex manufacturing scenarios. arXiv preprint arXiv:1602.01944.