Acknowledgement
본 연구는 2020년도 정부(과학기술정보통신부, 환경부, 산업통상자원부)의 재원으로 한국연구재단-탄소자원화 국가전략프로젝트사업(NRF-2017M3D8A2085342)과 이공분야기초연구사업(NRF-2019R1F1A1062714)의 지원으로 수행되었습니다.
References
- Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., and Taubin, G., 1999, The ball-pivoting algorithm for surface reconstruction, IEEE transactions on visualization and computer graphics, 5, 4 349-359. https://doi.org/10.1109/2945.817351
- Cai, M., Kaiser, P. K., Uno, H., Tasaka, Y., and Minami, M., 2004, Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system, International Journal of Rock Mechanics and Mining Sciences, 41, 1, 3-19. https://doi.org/10.1016/S1365-1609(03)00025-X
- Choe, H. Y., 2017, LiDAR sensor technology and trends, World of Electricity , 66, 9, 12-17.
- Delaunay B., 1934, Sur la sphere vide. A la memoire de Georges Voronoi, Bulletin de l'Academie des Sciences de l'URSS. Classe des sciences mathematiques et na, No. 6, 793-800.
- Fernandez, O., 2005, Obtaining a best fitting plane through 3D georeferenced data, Journal of Structural Geology, 27, 5, 855-858. https://doi.org/10.1016/j.jsg.2004.12.004
- Fischler, M. A. and Bolles, R. C., 1981, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM, 24, 6, 381-395. https://doi.org/10.1145/358669.358692
- Garcia-Cortes, S., Galan, C. O., Arguelles-Fraga, R., and Diaz, A. M., 2012, Automatic detection of discontinuities from 3D point clouds for the stability analysis of jointed rock masses, 18th International Conference on Virtual Systems and Multimedia, 595-598.
- Han, X., Yang, S., Zhou, F., Wang, J., and Zhou, D., 2017, An effective approach for rock mass discontinuity extraction based on terrestrial LiDAR scanning 3D point clouds, Ieee Access, 5, 26734-26742. https://doi.org/10.1109/ACCESS.2017.2771201
- Kemeny, J., Turner, K., and Norton, B., 2006, LIDAR for rock mass characterization: hardware, software, accuracy and best-practices, In Workshop on Laser and Photogrammetric Methods for Rock Mass Characterization: Exploring New Opportunities, Golden, Colorado, USA.
- Kim, C. H. and Kemeny, J. 2009, Automatic extraction of fractures and their characteristics in rock masses by LIDAR system and the Split-FX software, Tunnel and Underground Space, 19, 1, 1-10.
- Kong, D., Wu, F., and Saroglou, C. 2020, Automatic identification and characterization of discontinuities in rock masses from 3D point clouds, Engineering Geology, 265, 105442. https://doi.org/10.1016/j.enggeo.2019.105442
- Lee, S. and Jeon, S., 2016, A Study on the Extraction of Slope Surface Orientation using LIDAR with respect to Triangulation Method and Sampling on the Point Cloud, Tunnel and Underground Space, 26, 1, 46-58. https://doi.org/10.7474/TUS.2016.26.1.046
- Lee, S., 2020, Automated Characterization of Rock Mass Discontinuities Using LiDAR Point Cloud, Ph.D thesis, Seoul National University.
- Li, X., Chen, Z., Chen, J., and Zhu, H., 2019, Automatic characterization of rock mass discontinuities using 3D point clouds, Engineering Geology, 259, 105-131.
- Oh, S., 2011, Extraction of Rock Discontinuity Orientation by Laser Scanning Technique, Master's thesis ,Seoul National University.
- Poppinga, J., Vaskevicius, N., Birk, A., and Pathak, K., 2008, Fast plane detection and polygonalization in noisy 3D range images, IEEE/RSJ International Conference on Intelligent Robots and Systems, 3378-3383.
- Riquelme, A. J., Abellan, A., Tomas, R., and Jaboyedoff, M., 2014, A new approach for semi-automatic rock mass joints recognition from 3D point clouds, Computers & Geosciences, 68, 38-52. https://doi.org/10.1016/j.cageo.2014.03.014
- Roncella, R. and Forlani, G., 2005, Extraction of planar patches from point clouds to retrieve dip and dip direction of rock discontinuities, Proceedings of the ISPRS Workshop Laser scanning 2005, ISPRS Archives, Vol. 36, 162-167.
- Weitkamp, C., 2006, Lidar: range-resolved optical remote sensing of the atmosphere, Vol. 102, Springer Science & Business.