DOI QR코드

DOI QR Code

각속도 제한을 고려한 인공위성의 슬라이딩 모드 자세제어

Sliding Mode Attitude Control of Spacecraft Considering Angular Rate Constraints

  • 투고 : 2020.10.12
  • 심사 : 2021.01.26
  • 발행 : 2021.02.01

초록

최근 다양한 지상 및 우주 임무 수행을 위한 위성 개발이 활발히 진행되고 있음에 따라 위성의 고정밀·고기동성을 고려한 위성 자세제어 또한 요구되는 추세이다. 임무 수행 최적화를 위하여 고기동성의 제어 모멘트 자이로(Control Moment Gyros, CMG)를 위성에 장착하여 반작용 휠(Reaction Wheel, RW)과 같은 기존의 구동기에서 비롯되는 기동 제약을 완화시킬 수 있다. 또한, 구동기 자체의 제약 특성으로 인하여 위성의 각속도 제한이 발생하게 된다. 본 논문에서는 이를 고려한 CSCMG(Constant Speed CMG)장착 위성의 자세제어를 위하여 슬라이딩 모드 기반 제어기를 설계하였고, 리아푸노프 안정성을 확인하였으며 마지막으로 수치 시뮬레이션을 통하여 제어기 성능 분석을 진행하였다.

Due to the active progress in space programs for various types of ground and space missions, the high agile spacecraft maneuverability is also required. To meet the requirement of the given space missions, the Control Moment Gyros (CMG) for the alternatives of the classical reaction wheels can release the attitude maneuverability restrictions. In addition, the angular rates of the spacecraft is constrained due to the limited actuator characteristics. In this paper, a sliding mode control technique for the attitude control of the spacecraft equipped with the pyramid type of CSCMG(Constant Speed CMG) is designed, and the stability of the control system is guaranteed by using the Lyapunov stability theory. Finally, the control law proposed is analyized by numertical simulations.

키워드

과제정보

이 논문은 2019년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2019R1I1A3A03041160).

참고문헌

  1. Wie, B., Weiss, H. and Arapostathis, A., "Quaternion Feedback Regulator for Spacecraft Eigenaxis Rotations," Journal of Guidance, Control, and Dynamics, Vol. 12, No. 3, May-June 1989, pp. 375-380. https://doi.org/10.2514/3.20418
  2. Wie, B. and Jianbo, L., "Feedback Control Logic for Spacecraft Eigenaxis Rotations Under Slew Rate and Control Constraints," Journal of Guidance, Control, and Dynamics, Vol. 18, No. 6, November-December 1995, pp. 1372-1379. https://doi.org/10.2514/3.21555
  3. Schaub, H., Vadali, S. R. and Junkins, J. L., "Feedback Control Law for Variable Speed Control Moment Gyros," Journal of the Astronautical Sciences, Vol. 46, No. 3, July-September 1998, pp. 307-328. https://doi.org/10.1007/BF03546239
  4. Wie, B., Bailey, D. and Heiberg, C., "Rapid Multi Target Acquisition and Pointing Control of Agile Spacecraft," Journal of Guidance Control, and Dynamics, Vol. 25, No. 1, January-February 2002, pp. 96-104. https://doi.org/10.2514/2.4854
  5. Bailey, D., "Nonlinear Control of Velocity Limited Plants," U.S. Patent Pending, 1998.
  6. Shtessel, Y., Edwards, C., Freidman, L. and Levant, A., "Sliding Mode Control and Observation," Birkhauser, NewYork, 2013, pp. 1-42.
  7. Terui, F., "Position and attitude control of a spacecraft by sliding mode control," Proceedings of the 1998 American Control Conference, ACC, IEEE, Vol. 1, June 1998, pp. 217-221.
  8. Zhou, N., Xia, Y., Wang, M. and Fu, M., "Finite-time attitude control of multiple rigid spacecraft using terminal sliding mode," International Journal of Robust and Nonlinear Control, Vol. 25, No. 12, 2015, pp. 1862-1876. https://doi.org/10.1002/rnc.3182
  9. Bedrossian, N. S., Paradiso, J., Bergmann, E. V. and Rowell, D., "Steering Law Design for Redundant Single-Gimbal Control Moment Gyroscopes," Journal of Guidance, Control, and Dynamics, Vol. 13, No. 6, 1990, pp. 1083-1089. https://doi.org/10.2514/3.20582
  10. Nakamura, Y. and Hanafusa, H., "Inverse Kinematic Solutions with Singularity Robustness for Robot Manipulator Control," Journal of Dynamic systems, Measurement, and Control, Vol. 108, September 1986, pp. 163-171. https://doi.org/10.1115/1.3143764
  11. Zhihong, M., Paplinski, A. P. and Wu, H. R., "A robust terminal sliding mode control scheme for rigid robotic manipulators," IEEE Transactions on Automatic Control, Vol. 39, No. 12, December 1994, pp. 2464-2469, https://doi.org/10.1109/9.362847
  12. Jang, S. H., Yang, Y. Y. and Leeghim, H., "Performance Analysis for Quadrotor Attitude Control by Super Twisting Algorithm," The Korean Society for Aeronautical and Space Sciences, Vol. 48, No, 5, May 2020, pp. 373-381. https://doi.org/10.5139/JKSAS.2020.48.5.373
  13. Leeghim, H., Lee, D. H., Bang, H. and Lee, K., "Spacecraft attitude control by combination of various torquers," International Journal of Systems Science, Vol. 40, No. 10, 2009, pp. 995-1008. https://doi.org/10.1080/00207720902974587
  14. Lee, H., "Optimal Steering Laws for Control Moment Gyros," Ph.D Thesis, Korea Advanced Institute of Science and Technology, 2007.
  15. Rhee, S. W., Seo, H. H. and Yoon, H. J., "Agile Attitude Control of Small Satellite using 5Nm Small CMG," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 46, No. 11, November 2018, pp. 952-960. https://doi.org/10.5139/JKSAS.2018.46.11.952
  16. Wie, B., Bailey, D. and Heiberg, C., "Singularity Robust Steering Logic for Redundant Single-Gimbal Control Moment Gyros," Journal of Guidance Control, and Dynamics, Vol. 24, No. 5, September-October 2001, pp. 865-872. https://doi.org/10.2514/2.4799
  17. Junkins, J. L. and Schaub, H., "Analytical Mechanics of Space Systems," American Institute of Aeronautics and Astronautics, 2009.
  18. Wie, B., "Space Vehicle Dynamics and Control," American Institute of Aeronautics and Astronautics, 2008.