DOI QR코드

DOI QR Code

Development of Panel-Based Rapid Aerodynamic Analysis Method Considering Propeller Effect

프로펠러 효과를 반영 가능한 패널 기반 신속 공력 해석 기법 개발

  • Tai, Myungsik (Department of Aerospace Engineering, Pusan National University) ;
  • Lee, Yebin (Department of Aerospace Engineering, Republic of Korea Air Force Academy) ;
  • Oh, Sejong (Department of Aerospace Engineering, Pusan National University) ;
  • Shin, Jeongwoo (Aircraft Structures Research Team, Korea Aerospace Research Institute) ;
  • Lim, Joosup (Aircraft Structures Research Team, Korea Aerospace Research Institute) ;
  • Park, Donghun (Department of Aerospace Engineering, Pusan National University)
  • Received : 2020.11.10
  • Accepted : 2021.01.18
  • Published : 2021.02.01

Abstract

Electric-powered distributed propulsion aircraft possess a complex wake flow and mutual interference with the airframe, due to the use of many propellers. Accordingly, in the early design stage, rapid aerodynamic and load analysis considering the effect of propellers for various configurations and flight conditions are required. In this study, an efficient panel-based aerodynamic analysis method that can take into account the propeller effects is developed and validated. The induced velocity field in the region of propeller wake is calculated based on Actuator Disk Theory (ADT) and is considered as the boundary condition at the vehicle's surface in the three-dimensional steady source-doublet panel method. Analyses are carried out by selecting an isolated propeller of the Korea Aerospace Research Institute (KARI)'s Quad Tilt Propeller (QTP) aircraft and the propeller-wing configuration of the former experimental study as benchmark problems. Through comparisons with the results of computational fluid dynamics (CFD) based on actuator methods, the wake velocity of propeller and the changes in the aerodynamic load distribution of the wing due to the propeller operation are validated. The method is applied to the analysis of the Optional Piloted Personal Aerial Vehicle (OPPAV) and QTP, and the practicality and validity of the method are confirmed through comparison and analysis of the computational time and results with CFD.

전기동력 분산추진 비행체는 다수의 프로펠러로 인하여 복잡한 프로펠러 후류 유동 및 기체와의 상호간섭이 발생한다. 이에 따라 초기설계 단계에서는 다양한 형상과 비행 조건에 대하여 프로펠러 구동 효과를 반영한 신속 공력 및 하중 해석이 요구된다. 본 연구에서는 프로펠러 효과를 고려할 수 있는 패널 기반의 효율적인 공력해석 기법을 개발, 검증하였다. Actuator Disk Theory(ADT)에 기반하여 프로펠러 후류 영역의 유도 속도장을 계산하고, 이를 3차원 정상 용출-중첩 패널기법의 비행체 표면 경계조건에 반영하였다. 한국항공우주연구원의 Quad Tilt Propeller(QTP) 비행체 단독 프로펠러와 선행 실험 연구의 프로펠러-날개 형상을 벤치마크 문제로 선정하여 해석을 수행하였다. Actuator 기법 기반의 전산유체역학(CFD) 결과와의 비교를 통해 프로펠러의 후류 속도장과 프로펠러 구동에 따른 날개의 공력하중 분포 변화를 검증하였다. 자율비행 개인용 항공기(Optional Piloted PAV, OPPAV)와 QTP 공력해석에 기법을 적용하고, CFD와의 해석 소요 시간 및 결과 비교, 분석을 통해 기법의 실용성과 타당성을 확인하였다.

Keywords

Acknowledgement

본 연구는 국가과학기술연구회에서 지원한 한국항공우주연구원 주요사업(전기추진 수직 이착륙 미래비행체 핵심기술 연구) 수행 결과의 일부이며, 지원에 감사드립니다.

References

  1. Choi, S. W., "Configuration Design and Performance Analysis for the OPPAV," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2019, pp. 623-624.
  2. Choi, S. W., "Configuration Design and Performance Analysis for the Sub-scale OPPAV," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2019, pp. 629-630.
  3. Hwang, S. J., Kim, C. W., Choi, S. W. and Kim, S. G., "Initial Design of the Quad-tilted VTOL UAV (QTP50)," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2016, pp. 593-594.
  4. Lee, D. G., Park, S. W., Lee, S. K., Kim, S. J. and Kim, T. U., "Structural Analysis and Integrity of QTP 50 UAV," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2017, pp. 748-749.
  5. Cho, T. H., Kim, Y. W., Chung, J. D., Park, C. W., Choi, S. W., Kim, Y. S. and Kim, T. W., "Analysis of the Propeller Force on the Wind Tunnel Test for Quadcopter Type UAV," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, April 2018, pp. 1-2.
  6. https://tech.hyundaimotorgroup.com
  7. Veldhuis, L. L. M., "Review of Propeller-Wing Aerodynamic Interference," 24th International Congress of Aeronautical Sciences, ICAS 2004-6.3.1, August 2004.
  8. Yoshikatsu, F. and Keiichi, K., "Unsteady Numerical Simulation on Angle-of-Attack Effects of Tractor-Propeller Wing and Pusher-Propeller Wing Interactions," AIAA Scitech 2020 Forum, AIAA 2020-1030, January 2020.
  9. Miranda, L. R., Elliot, R. D. and Baker, W. M., "A Generalized Vortex Lattice Method for Subsonic and Supersonic Flow Applications," NASA Contractor Report 2865, December 1977.
  10. Nordin, E., "Development of Body and Viscous Contribution to a Panel Program for Potential Flow Computation," Master Thesis, Linkoping University, Linkoping, March 2006.
  11. Filkovic, D. and Virag, Z., "Graduate Work - Aircraft 3D Panel Method," Master Thesis, Faculty of Mechanical Engineering and Naval Architecture, Zagreb, 2008.
  12. Brandao, D. P., "Development of Body and Viscous Contribution to a Panel Program for Potential Flow Computation," Master Thesis, Instituto Superior Tecnico, Lisboa, December 2015.
  13. Droandi, G. and Gibertini, G., "Assessment of a Propeller Model Embedded on a Panel Method Code for Aircraft Aerodynamics," The Journal of Aerospace Science, Vol. 91, No. 3/4, 2012, pp. 98-108.
  14. Johnson, F. T., "A General Panel Method for the Analysis and Design of Arbitrary Configurations in Incompressible Flows," NASA Contractor Report 3079, May 1980.
  15. Aljabri, A. S., "The prediction of propeller/wing interaction effects," 13th Congress of the International Council of the Aeronautical Sciences/AIAA Aircrafts Systems and Technology Conference, ICAS 82-4.4.5, Seattle, August 1982.
  16. Spalart, P. R., "On the Simple Actuator Disk," Journal of Fluid Mechanics, Vol. 494, 2003, pp. 399-405. https://doi.org/10.1017/S0022112003006128
  17. Conway, J. T., "Analytical Solution For The Actuator Disk With Variable Radial Distribution Of Load," Journal of Fluid Mechanics, Vol. 297, 1995, pp. 327-355. https://doi.org/10.1017/S0022112095003120
  18. Conway, J. T., "Exact actuator disk solutions for non-uniform heavy loading and slipstream contraction," Journal of Fluid Mechanics, Vol. 365, 1998, pp. 235-267. https://doi.org/10.1017/S0022112098001372
  19. Schaffarczyk, A. P. and Conway, J. T., "Comparison of a nonlinear actuator disk theory with numerical integration including viscous effects," CASI, Vol. 46, 2000, pp. 209-215.
  20. Conway, J. T., "Analytical Solutions for the General Non-Axisymmetric Linearized Actuator Disk," 21st AIAA Applied Aerodynamics Conference, AIAA 2003-3521, 2003.
  21. Chattot, J. J., "Actuator Disk Theory - Steady and Unsteady Models," Journal of Solar Energy Engineering, Vol. 136, 2014, pp. 031012-1-10. https://doi.org/10.1115/1.4026947
  22. Bohari B., Borlon, Q., Bronz, M. and Benard, E., "Aerodynamic model of propeller-wing interaction for distributed propeller aircraft concept," Part G: Proceedings of the Institution of Mechanical Engineers, 2019.
  23. Bontempo, R., "The Nonlinear Actuator Disk Method as Applied to Open and Ducted Rotors," Doctoral Thesis, Doctorate School in Industrial Engineering, 2014.
  24. Bontempo, R. and Manna, M., "Actuator disc methods for open propellers assessments of numerical methods," Engineering Applications of Computational Fluid Mechanics, Vol. 11, No. 1, 2017, pp. 42-53. https://doi.org/10.1080/19942060.2016.1234978
  25. Rosen, A. and Gur, O., "Approximate Actuator Disk Model of a Rotor in Hover or Axial Flow Based on Potential Flow Equations," Journal of the American Helicopter Society, Vol. 49, No. 1, 2004, pp. 80-92. https://doi.org/10.4050/JAHS.49.80
  26. Rosen, A. and Gur, O., "Novel Approach to Axisymmetric Actuator Disk Modeling," AIAA Journal, Vol. 46, No 11, 2008, pp. 2914-2925. https://doi.org/10.2514/1.37383
  27. Gamme, S., Oliveira, G. D., Ragni, D. and Lau, F., "A Fast Panel Code for Complex Actuator Disk Flows," 55th AIAA Aerospace Sciences Meeting, AIAA 2017-0752, January 2017.
  28. Prandtl, L. and Betz, A., Vier Abhandlungen zur Hydrodynamik und Aerodynamik, Universitatsverlag Gottingen, Gottingen, 1927.
  29. Rwigema, M. K., "The Evaluation of a Low-Order Propeller Performance and Wake Prediction Capability for the Calculation of Power Effects," Master Thesis, University of the Witwatersrand, Johannesburg, 2014.
  30. Gilbey, R. W. and Green, M. J., Propeller slisptream modelling for incidence and sideslip, 6th Ed., ESDU International PLC, 2006.
  31. Lee, Y. B., Lee, S. G., Oh, S. J., Choi, J. H., Cho, T. H. and Park, D. H., "Analysis of 3-axial Components Forces and Moments of Propeller Using Actuator Methods," Journal of The Korean Society for Computational Fluid Engineering, Vol. 25, No. 1, pp. 20-31.
  32. Katz, J. and Plotkin, A., Low-Speed Aerodynamics, 2nd Ed., Cambridge University Press, Cambridge, 2001.
  33. Hess, J. L. and Smith, A. M. O., "Calculation of Potential Flow about Arbitrary Bodies," Progress in Aeronautical Sciences, Vol. 8, 1967, pp. 1-138. https://doi.org/10.1016/0376-0421(67)90003-6
  34. Cho, T. W., Kim, Y. W., Lee, S. H. and Park, C. W., "Wind tunnel test of the propeller for QTP UAV," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, April 2019, pp. 548-549.
  35. Hartman, E. P. and Biermann, D., "The Aerodynamic Characteristics of Full-Scale Propellers Having 2, 3 and 4 Blades of ClarkY and R.A.F. 6 Airfoil Sections," NACA report 640, 1938.
  36. Lee, Y. B., "Computational Analysis on Longitudinal stability of Distributed Propulsion Aircraft using Actuator Method," Master Thesis, Pusan National University, Busan, 2020.
  37. Ferrer, E. and Munduate X., "CFD predictions of transition and distributed roughness over a wind turbine airfoil," 47th AIAA Aerospace Sciences Meeting, AIAA 2009-269, January 2009.
  38. Lee, S. G., Oh, S. J., Choi, S. W., Lee, Y. G. and Park, D. H., "Numerical Analysis on Aerodynamic Performances and Characteristics of Quad Tilt Rotor during Forward Flight," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 46, No. 3, 2018, pp. 197-209. https://doi.org/10.5139/JKSAS.2018.46.3.197