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Cranial Nerve Disorders: Clinical 
Application of High-Resolution 
Magnetic Resonance Imaging 
Techniques 

INTRODUCTION

Cranial-nerve disorders are frequently encountered in practice and can be caused 
by a wide spectrum of diseases, including congenital and inflammatory diseases and 
tumors of the cranial nerves, or by disease propagation from the adjacent structures 
of the brain, skull base, or other craniofacial structures. Given its excellent soft-tissue 
contrast, MRI is the best imaging modality for investigating cranial-nerve disorders (1, 
2). Although various methods have been used to identify cranial-nerve disorders, their 
imaging remains challenging because of the small caliber of cranial nerves and the 
complex regional anatomy (3). 

With recent developments in MRI techniques, visualization of the normal anatomy of 
cranial nerves or their pathologic changes became feasible because of the high spatial 
resolution, isotropic three-dimensional imaging, and fast image acquisition of these 
techniques. Guided by medical history and the results of neurological examination, 
radiologists should set the coverage range appropriately and select optimal sequences 
when conducting MRI examinations for patients with suspected cranial-nerve 
abnormalities. 

Cranial nerves comprise 12 pairs of symmetric nerves that originate from the 
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cerebrum and the brainstem (4). The peripheral cranial 
nerves consist of ten cranial nerves, from the oculomotor 
nerve to the hypoglossal nerve (2). Olfactory and optic 
nerves are direct parenchymal extensions from the 
telencephalon and diencephalon, respectively (5). These ten 
peripheral cranial nerves pass through similar anatomical 
structures, from the nuclei (located in the brainstem), 
through the skull base, and downwards to extracranial 
structures (2). When doing cranial-nerve-dedicated MRI 
examinations, one must understand the anatomical 
characteristics of each region in order to use the best 
protocols for detecting subtle changes in the cranial nerves 
(1, 2). In this review, we will discuss appropriate MRI 
techniques, focusing on various regions of the peripheral 
cranial nerves.

Voxel Size and Coverage
Although large cranial nerves can be partly seen even 

in routine MRI sequences (6, 7), few of them are usually 
visible with conventional MRI, because of their small caliber 
(4). These small structures pass through the cisternal space 
of the posterior fossa to the skull base, and therefore tend 
to be more susceptible to artifacts related to pulsation 
from blood vessels and cerebrospinal fluid (CSF) spaces 
and from the air-bone interface. Dedicated high-resolution 
MRI is essential to overcome these challenges (2, 4). High-
resolution, thin-section imaging enables full-length tracing 
of the small cranial nerves. The visualization of the trochlear 
nerve (CN IV) is especially challenging because of its small 
caliber and proximity to multiple vascular structures (8). 
Previous studies have shown that carefully conducted high-
resolution imaging (0.3 mm × 0.3 mm × 0.25 mm), with a 
scan plane set to an oblique axial direction perpendicular 
to the long axis of the cerebral aqueduct, can make the 
cisternal segment of the CN IV visible better than can 
conventional high-resolution images (0.67 mm × 0.45 
mm × 1.4 mm) (9). In practice, increased spatial resolution 
is better for visualizing small cranial nerves, although it 
involves a trade-off with reduced scan coverage, decreased 
signal-to-noise ratio, and image degradation associated 
with long acquisition times (3). Therefore, image acquisition 
and reconstruction techniques, including parallel imaging 
and compressed sensing, can be applied to reduce scan time 
while preserving image quality (10, 11). 

Multiple sub-millimetric three-dimensional isotropic 
images must be acquired with 0.6-mm voxels for cranial-
nerve MRI (2, 4). Moreover, the scan range should be 
focused to cover the areas of interest chosen in terms 

of the patients’ history and neurological signs (2). In our 
institution, routine high-resolution cranial-nerve imaging 
consists of three-dimensional heavily T2-weighted (T2W) 
imaging; three-dimensional contrast-enhanced T1-
weighted (T1W) imaging; and non-enhanced and enhanced 
three-dimensional T2 fluid-attenuated inversion recovery 
(FLAIR) with axial and coronal reconstruction. Multiplanar 
reconstruction is additionally done when indicated. In 
selected cases, CN IV sequence or special sequences for 
extracranial segments of cranial nerves are added to 
conventional cranial-nerve protocols (9, 12). 

Visualization of Normal Cranial Nerves

Cisternal and Dural Segments
Because the cisternal segment of the cranial nerve 

is surrounded by CSF, sub-millimetric fluid-sensitive 
sequences are well suited for the visualization of the 
cisternal positions of the cranial nerves (1, 2). High-
resolution three-dimensional T2W sequences show dark 
cranial nerves against the background of the bright CSF 
and offer high resolution with a section thickness of less 
than 1 mm and voxel volume of less than 1 mm3 (12-15) 
(Fig. 1). These sequences could be obtained by using fast 
gradient-echo or fast spin-echo (FSE) techniques. Fast 
gradient-echo sequences (true fast imaging with steady-
state free precession [FISP] fast imaging employing steady-
state acquisition [FIESTA], or balanced fast-field echo 
[b-FFE]) are typically susceptible to dephasing caused by 
small field inhomogeneities, resulting in banding artifacts. 
These artifacts could be reduced by doing two acquisitions 
with and without phase frequency alternations in the 
constructive interference into steady-state and fast 
imaging, employing steady-state acquisition with phase 
cycling sequences (constructive interference in steady state 
[CISS], FIESTA-C) (13). However, they typically involve longer 
scanning times and can be susceptible to blurring (16). 
One can use three-dimensional isotropic T2 fast spin-echo 
techniques to visualize the cisternal segment of cranial 
nerves, e.g., CUBE, volumetric isotropic turbo spin-echo 
acquisition (VISTA), or sampling perfection with application-
optimized contrasts by using different flip-angle evolutions 
(SPACE). These approaches were developed with short, 
non-spatially selective radiofrequency pulses, very long 
echo-train length, and variable flip angles for refocusing 
radiofrequency pulses (suppressing blurring while reducing 
flow and chemical shift artifacts). These techniques 
enable high-resolution isotropic imaging (up to 0.3 mm) 
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Fig. 1. Cranial nerves in the cisternal segment on high-
resolution three-dimensional T2 weighted sequences. 
(a) Oculomotor nerves (white arrows). (b) Trochlear 
nerves (white arrows). (c) Trigeminal nerve (white arrow), 
a meningioma in the left Meckel’s cave (asterisk). (d) 
Abducens nerves entering the Dorello’s canal (white arrows). 
(e) Facial nerve (white arrow). (f) Vestibulocochlear nerve on 
axial (left) and oblique sagittal reconstruction image (right), 
cochlear nerve (white arrows), vestibular nerves (black 
arrowheads), facial nerve (asterisk). (g) Glossopharyngeal 
nerve (white arrow). 
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with a high contrast-to-noise ratio (17, 18). These three-
dimensional T2W images have become routine in otologic 
imaging for demonstrating labyrinthine anomalies (19, 20), 
detection or differentiation of labyrinthitis ossificans (21), 
intralabyrinthine schwannomas (22), or the preoperative 
work-up of cochlear implantation (to evaluate the size of 
the cochlear nerve and cochlea as well as the patency of the 
cochlear aperture) (23, 24). High-resolution cisternographic 
images are the modality of choice in neurovascular 
compression, enabling vascular contact in the transition 
zone. Three-dimensional data offer benefits for multiplanar 
reconstruction in visualizing the culprit vessel by showing 
the full course of the transition zones of various cranial 
nerves (25-28). Because three-dimensional T2W images 
provide the highest resolution among three-dimensional 
imaging sequences, this sequence is the modality of choice 
for patients with congenital trochlear nerve palsy in order 
to detect congenital aplasia or hypoplasia of the trochlear 
nerve (29, 30).

Interdural and Foraminal Segments
The dura mater consists of two layers, the outer 

periosteal layer and the inner meningeal or cerebral layer. 
The outer layer adheres to the inner table of the skull and 
is continuous with the outer periosteum through sutures 
and the foramina. The inner layer is usually fused with the 
outer layer; however, there are interdural spaces in which 
these two layers are not fused, such as in regions with dural 
venous sinuses (1, 2). The cavernous sinus and petroclival 
venous plexus are examples of the interdural spaces.

Except for the vestibulocochlear nerve, most of the 
cranial nerves exit the cranium and run into extracranial 
structures via the skull-base foramina. The foraminal 
segment of a cranial nerve is defined from the inner margin 
of the internal orifice of the skull-base foramen to the outer 
margin of the outer table at the external orifice. Because 
the cranial nerve and abundant circumneural venous 
plexus exist in the foraminal segment of cranial nerves, 
normal nerves appear as non-enhanced filling-defect-like 
structures, surrounded by the prominently enhancing venous 
plexus on MRI (31) (Fig. 2). Therefore, three-dimensional 
high-resolution contrast-enhanced T1W images could be 
used to visualize normal cranial nerves in the interdural 
or foraminal segment. The mainstay of three-dimensional 

Fig. 1. (h) Vagus and spinal accessory nerves (left, axial; 
right, oblique sagittal), vagus nerve-spinal accessory nerve 
complex (white arrow on axial), glossopharyngeal nerve 
(black arrow), vagus nerve (white arrowhead), and spinal 
accessory nerve (black arrowhead). (i) Hypoglossal nerve 
(white arrow).

h
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sequences consists of ultrafast spoiled GE sequences with 
small flip angles and short repetition times (1). Isotropic 
data offer various benefits for multiplanar reconstruction 
in the complex skull base (32). The sequences for acquiring 
these data typically have pre-pulses (magnetization 
preparation) to provide T1W and T2W or fat suppression and 
can be combined with partial k-space sampling to further 
reduce acquisition times. Examples include volumetric 
interpolated breath-hold examination (VIBE) from Siemens 
and T1W as well as high-resolution isotropic volume 
examination from Philips (33). Special FSE sequences, such 
as VISTA and SPACE, can be used as alternatives to fast 
GE sequences to produce high-resolution fat-suppressed 
T1W imaging (34). They are also resistant to susceptibility 
artifacts, which is a useful characteristic at the skull base. 
Another advantage of these sequences arises from their 
inherent flow suppression caused by the dephasing of 
flowing spins, which can prevent vascular time-of-flight 
effects from simulating lesions at the skull base (35).

Mixed-weighting steady-state free precession (SSFP) or 
reversed fast imaging with steady-state precession (PSIF) 
and contrast administration can be also used to visualize 
nerves in the foraminal segments with the advent of high 
spatial resolution and T1 shortening effect after contrast 
administration. Normal cranial nerves can be well visualized 
inside the cavernous sinus, surrounded by bright contrast-
enhanced venous blood (36). However, gadolinium-
enhanced T1-weighted sequences have limitations for 
distinguishing pathologic from normal enhancement in 
some cranial nerves in the interdural or foraminal segments, 
including the trigeminal ganglion within the Meckel’s cave 

(2, 37) and the geniculate, tympanic, or mastoid segment of 
the facial nerve (38, 39). 

Extraforaminal Segment
The extraforaminal segment includes parts starting from 

the outer cortex of the outer margin of the skull-base 
foramen (1, 2). The cranial nerve passes through different 
types of soft tissue, including fat, vessels, glands, muscles, 
and viscera, until it reaches its final destination (1). The 
normal extraforaminal cranial nerve could appear as a 
hypointense tubular structure within hyperintense fatty 
tissue on high-resolution T1WI without fat suppression 
(2). However, for detecting pathologic signal changes 
of enhancement of the cranial nerves, fat suppression 
is mandatory to maximize the tissue contrast between 
the suppressed fatty tissue and the hyperintense nerve 
(2). Sequences such as CISS and FIESTA, which are 
fully refocused (balanced) steady-state sequences that 
demonstrate both T2 and T1 components, could help the 
differentiation of nerves with high resolution from tissues 
having various properties (1). Specifically, several reports 
have shown the value of special high-resolution sequences 
for extracranial cranial-nerve imaging, such as three-
dimensional PSIF with diffusion-weighted imaging (DWI) 
or three-dimensional double echo steady-state with water 
excitation (3D DESS-WE). The DESS sequence involves 
the acquisition of two different echoes: the gradient echo 
used in the FISP sequence and spin echo used in the PSIF 
sequence. The PSIF signal accentuates the signal intensities 
of components with long T2, whereas the FISP signal 
intensity provides more anatomic details with a contrast 

a b

Fig. 2. Cranial nerves in the foraminal and interdural segments on high-resolution contrast-enhanced T1 weighted 
sequences. (a) Cranial nerves within the cavernous sinus, oculomotor nerve (asterisk), ophthalmic nerve (white arrowhead), 
maxillary nerve (black arrowhead), mandibular nerve (curved white arrow), and abducens nerve (black arrow). (b) Lower 
cranial nerves at the jugular foramen, glossopharyngeal nerve (white arrowhead), vagus nerve (black arrowhead), spinal 
accessory nerve (curved white arrow), jugular spine (asterisk). 
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dominated by the T1/T2 ratio. In the WE technique, only 
water is excited by using section-selective composite pulses, 
thus avoiding disruptions of the steady state and ensuring 
uniform fat suppression. When DESS is combined with 
WE, the facial nerve is clearly shown without relying on 
the fatty-tissue background. The DESS-WE sequences also 
demonstrate flow sensitivity, because of which stationary 
fluids (such as saliva in parotid ducts) show high signal 
intensity with suppressed carotid artery flow. This technique 
works well for visualizing the intraparotid facial nerve and 
extracranial trigeminal nerve (40-42) (Figs. 3, 4). 

The advantages of three-dimensional PSIF-DWI arise 
from its dominant T2 contrast of reversed FISP and the 
accentuation of anisotropic diffusion characteristics 
of peripheral nerves in combination with DWI (43, 44). 
The use of three-dimensional PSIF-DWI could achieve 

excellent nerve-muscle contrast with blood suppression 
and simultaneously display the intraparotid facial nerve and 
parotid duct with excellent soft-tissue contrast. 

Imaging of Pathologic Signals of Cranial Nerves
Tradit ional ly,  gadol inium-enhanced T1W spin-

echo and three-dimensional gradient echo sequences 
were used to evaluate the pathologic enhancement in 
cranial nerves. However, because of the presence of the 
circumneural venous plexus, these techniques have shown 
significant limitations by inhibiting the evaluation of 
the real pathologic enhancement of the nerve caused by 
inflammatory or neoplastic breakdown of the blood-nerve 
barrier (38, 39, 45). 

In the last decade, isotopic three-dimensional T2W FLAIR, 
using three-dimensional turbo spin-echo sequences with 

Fig. 3. Extraforaminal segment of facial nerve on double-echo steady-state sequence with water excitation (DESS-WE) 
sequence (left, sagittal; right, axial, arrows). 

Fig. 4. A 35-year-old patient with a mucoepidermoid carcinoma in the left parotid gland. A double-echo steady-state 
sequence with water excitation (DESS-WE) sequence with coronal reconstruction shows the relationship between the main 
trunk of the facial nerve (thin arrows) and the tumor. 
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variable flip angles (VISTA, SPACE, or CUBE), was introduced 
on the 3T MR system (34). This sequence uses variable 
refocusing flip angles to constrain T2 decay over a long 
echo train with minimal blurring and can acquire isotropic 
resolutions in a clinically acceptable scan time. This ability 
of the three-dimensional high-resolution FLAIR sequence 
to find minute abnormalities mainly results from FLAIR 
imaging’s high sensitivity to subtle changes in longitudinal 
magnetization in the fluid space. This sensitivity declines 
with increasing concentration of the contrast agent in a 
manner that is different from that of other T1W images 
(46, 47). The three-dimensional-FLAIR sequence also 
suppresses the signal intensity from the fluid flowing at 
a velocity exceeding 1.0 cm/s (48). Three-dimensional 
FLAIR sequences provide exquisite CSF suppression with 
fewer CSF-related flow artifacts in the posterior fossa, 
while enabling visualization of the T2 prolongation of 
the affected lesion (49, 50) (Figs. 5-7). Previous studies 
have shown the advantage of three-dimensional FLAIR 
sequences for detecting pathologic signal alterations and 
abnormal enhancement of the nerve itself, which could 
be beneficial for the diagnosis of various cranial-nerve 
pathologies, including facial neuritis (51), vestibular neuritis 
(52, 53), Ramsay-Hunt syndrome (54), and antiGQ1b 
antibody syndrome (55). The role of high-resolution three-
dimensional FLAIR imaging has also been highlighted in 
otologic imaging to detect abnormal labyrinthine signal 
changes in the onset of sudden sensorineural hearing loss 

(56-59) and in vivo imaging of endolymphatic hydrops (60-
62). Table 1 summarizes the indications and representative 
sequences of cranial-nerve MRI.

Recent Advances in Cranial-Nerve Imaging
Cranial-nerve imaging requires a relatively long scan time 

to render small cranial nerves visible, and these are often 

Fig. 5. A 50-year-old patient with chronic inflammatory 
demyelinating polyneuropathy. Bilateral facial nerves show 
contrast enhancement, which is more visible on contrast-
enhanced fluid attenuated inversion recovery (FLAIR) (arrows 
in the upper row) than on a contrast-enhanced T1 weighted 
image (arrows in the lower row). Thickened and enhanced 
trigeminal nerves (black asterisks).  

a b c

Fig. 6. A 57-year-old woman with anti-GQ1b antibody syndrome, presenting with diplopia, areflexia, and ataxia. Precontrast 
three-dimensional fluid attenuated inversion recovery (FLAIR) image (a) shows mild hyperintensity of both oculomotor 
nerves (arrows). Post three-dimensional FLAIR image (b) shows multifocal enhancement of the left oculomotor nerve (arrow) 
including the neuromuscular junction (arrowhead). Three-dimensional CE T1- turbo field echo (TFE) (c) shows long segmental 
enhancement of both oculomotor nerve (arrows). 
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accompanied by motion artifacts associated with long scan 
time (3). Recent imaging techniques, including parallel 
imaging and compressed sensing (CS), have been introduced 
to reduce the scan time while preserving acceptable image 
quality (11). Conventional parallel-imaging techniques, 
such as sensitivity encoding (SENSE) and generalized 
autocalibrating partial-parallel acquisition (GRAPPA), have 
been widely used in cranial-nerve imaging. However, these 
have had limitations in reducing scan time and having a 
good image quality/scan range (63, 64). CS is a recently 
introduced technique in MR imaging, characterized by 
non-uniform sampling of k-space, iterative reconstruction, 
and reduced scan time (65-67). A recently published study 
has shown the benefit of combining parallel imaging 

and CS (such as in SENSE-CS) in patients with suspected 
neurovascular compression to reduce scan time yet have 
acceptable image quality (10). 

In conclusion, recent advances in MRI technology have 
enabled anatomical imaging of small cranial nerves that 
could not have been seen on conventional brain MR 
imaging. In this review, we have described the best MRI 
techniques for observing normal and pathologic changes in 
the cranial nerves for different regions of the cranial nerves. 
Radiologists should be familiar with the normal anatomy 
and basic sequences for cranial-nerve imaging in order 
to guide optimized imaging, which will eventually lead to 
improved patient management.

Table 1. Recommended Pulse Sequences for Cranial Nerve MRI according to Clinical Situation and Cranial Nerve Segments 

Cranial nerve segment Pulse sequences Representative product sequences

Anatomy Cisternal/dural cave segment 3D heavily T2-weighted fast gradient echo 3D fully refocussed (balanced) steady-state free 
precession: 

- TrueFISP (Siemens), FIESTA (GE), bFFE (Philips)

MIP of TrueFISP sequences of alternating and 
non-alternating RF pulses:

- CISS (Siemens), FIESTA-C (GE)

3D heavily T2-weighted fast spin echo Rapid recovery of longitudinal magnetization 
through a 90 degree RF pulse at the end of the 
echo train (driven equilibrium):
- RESTORE (Siemens), FRFSE (fast recovery fast 
spin echo, GE), DRIVE (Philips)

Special 3D FSE techniques

- SPACE (Siemens), CUBE (GE), VISTA (Philips)

Interdural/foraminal segment 3D contrast-enhanced T1-weighted fast 
gradient echo

bTFE (Philips), MPRAGE (Siemens), FSPGR (GE), 
THRIVE (Philips), VIBE (Siemens)

3D contrast-enhanced balanced SSFP bFFE (Philips), CISS (Siemens), FIESTA (GE)

Extraforaminal T1-weighted spin echo bFFE (Philips), CISS (Siemens), FIESTA (GE), PSIF-
DWI (Philips)

3D balanced SSFP with/without contrast 
enhancement

DESS-WE (Siemens)

3D reversed FISP

Pathology Interdural/foraminal segment 3D contrast-enhanced balanced SSFP bFFE (Philips), CISS (Siemens), FIESTA (GE),

All segments 3D contrast-enhanced T1-weighted fast 
gradient echo

bTFE (Philips), MPRAGE (Siemens), FSPGR (GE), 
THRIVE (Philips), VIBE (Siemens)

All segments 3D FLAIR with/without contrast enhancement SPACE (Siemens), CUBE (GE), VISTA (Philips)
2D = two-dimensional; 3D = three-dimensional; bFFE = balanced fast field echo; bTFE = balanced turbo field echo; CISS = constructive interference in steady state; DESS-
WE = double-echo steady-state with water excitation; DRIVE = driven equilibrium radiofrequency reset pulse; FIESTA = fast imaging employing steady state acquisition; 
FISP = fast imaging with steady-state free precession; FRFSE = fast recovery fast spin-echo; FSPGR =fast spoiled gradient echo; m-FFE = Multi-echo fast field echo; 
MPRAGE = magnetization-prepared rapid gradient echo; PSIF-DWI = reversed FISP with diffusion weighted imaging; SPACE = sampling perfection with application-
optimized contrasts by using different flip angle evolutions; SSFP = steady-state free precession; THRIVE = T1-weighted high resolution isotropic volume examination; VIBE 
= volumetric interpolated breath-hold examination; VISTA = volumetric isotropic turbo spin echo acquisition
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