References
- Albacker, C. E., Storer, N. Y., Langdon, E. M., Anthony, D. B., Yi, Z., Langenau, D. M., Zhou, Y., Langenau, D. M. and Zon, L. I. (2013) The histone methyltransferase suv39h1 suppresses embryonal rhabdomyosarcoma formation in zebrafish. PLoS ONE 8, e64969-. https://doi.org/10.1371/journal.pone.0064969
- Allan, R. K., Mok, D., Ward, B. K. and Ratajczak, T. (2006) Modulation of chaperone function and cochaperone interaction by novobiocin in the c-terminal domain of Hsp90. J. Biol. Chem. 281, 7161-7171. https://doi.org/10.1074/jbc.M512406200
- Banerji, U. (2015) O7.6 - HSP90 inhibitors in the clinic: what have we learnt? Ann. Oncol. 26, ii10. https://doi.org/10.1093/annonc/mdv085.6
- Carbone, R., Botrugno, O. A., Ronzoni, S., Insinga, A., Di Croce, L., Pelicci, P. G. and Minucci, S. (2006) Recruitment of the histone methyltransferase suv39h1 and its role in the oncogenic properties of the leukemia-associated pml-retinoic acid receptor fusion protein. Mol. Cell. Biol. 26, 1288-1296. https://doi.org/10.1128/MCB.26.4.1288-1296.2006
- Chaib, H., Nebbioso, A., Prebet, T., Castellano, R., Garbit, S., Restouin, A., Vey, N., Altucci, L. and Collette, Y. (2012) Anti-leukemia activity of chaetocin via death receptor-dependent apoptosis and dual modulation of the histone methyl-transferase suv39h1. Leukemia 26, 662-674. https://doi.org/10.1038/leu.2011.271
- Cherblanc, F. L., Chapman, K. L., Brown, R. and Fuchter, M. J. (2013) Chaetocin is a nonspecific inhibitor of histone lysine methyltransferases. Nat. Chem. Biol. 9, 136-137. https://doi.org/10.1038/nchembio.1187
- Cherblanc, F. L., Chapman-Rothe, N., Brown, R. and Fuchter, M. (2012) Current limitations and future opportunities for epigenetic therapies. Future Med. Chem. 4, 425-446. https://doi.org/10.4155/fmc.12.7
- Condelli, V., Crispo, F., Pietrafesa, M., Lettini, G., Matassa, D. S., Esposito, F., Landriscina, M. and Maddalena, F. (2019) HSP90 molecular chaperones, metabolic rewiring, and epigenetics: impact on tumor progression and perspective for anticancer therapy. Cells 8, 532. https://doi.org/10.3390/cells8060532
- Copeland, R. A., Solomon, M. E. and Richon, V. M. (2009) Protein methyltransferases as a target class for drug discovery. Nat. Rev. Drug Discov. 8, 724-732. https://doi.org/10.1038/nrd2974
- Donnelly, A. and Blagg, B. S. (2008) Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Curr. Med. Chem. 15, 2702-2717. https://doi.org/10.2174/092986708786242895
- Gliniewicz, E. F., Chambers, K. M., De Leon, E. R., Sibai, D., Campbell, H. C. and McMenimen, K. A. (2019) Chaperone-like activity of the N-terminal region of a human small heat shock protein and chaperone-functionalized nanoparticles. Proteins 87, 401-415. https://doi.org/10.1002/prot.25662
- Goyama, S., Nitta, E., Yoshino, T., Kako, S., Watanabe-Okochi, N., Shimabe, M., Imai, Y., Takahashi, K. and Kurokawa, M. (2010) EVI-1 interacts with histone methyltransferases suv39h1 and g9a for transcriptional repression and bone marrow immortalization. Leukemia 24, 81-88. https://doi.org/10.1038/leu.2009.202
- Greiner, D., Bonaldi, T., Eskeland, R., Roemer, E. and Imhof, A. (2005) Identification of a specific inhibitor of the histone methyltransferase su(var)3-9. Nat. Chem. Biol. 1, 143-145. https://doi.org/10.1038/nchembio721
- Howes, J., Lu, B. F., Powers, M., Mitsopoulos, C., Al-Lazikani, B., Linardopoulos, S., Clarke, P. and Workman, P. (2014) Abstract 2730: RNAi knockdown or chemical inhibition of anaphase-promoting complex components is synthetic lethal with HSP90 inhibition. Cancer Res. 74, 2730. https://doi.org/10.1158/1538-7445.AM2014-2730
- Jackson, S. E. (2012) Hsp90: structure and function. Top. Curr. Chem. 328, 155-240. https://doi.org/10.1007/128_2012_356
- Khandelwal, A., Crowley, V. M. and Blagg, B. S. J. (2016) Natural product inspired N-terminal Hsp90 inhibitors: from bench to bedside? Med. Res. Rev. 36, 92-118. https://doi.org/10.1002/med.21351
- Kim, Y., Alarcon, S., Lee, S., Lee, M. J., Giaccone, G., Neckers, L. and Trepel, J. B. (2009) Update on Hsp90 inhibitors in clinical trial. Curr. Top. Med. Chem. 9, 1479-1492. https://doi.org/10.2174/156802609789895728
- Kumagai, T., Shih, L. Y., Hughes, S. V., Desmond, J. C., O'Kelly, J., Hewison, M. and Koeffler, H. P. (2005) 19-Nor-1,25(OH)2D2 (a novel, noncalcemic vitamin D analogue), combined with arsenic trioxide, has potent antitumor activity against myeloid leukemia. Cancer Res. 65, 2488-2497. https://doi.org/10.1158/0008-5472.CAN-04-2800
- Lakshmikuttyamma, A., Scott, S. A., Decoteau, J. F. and Geyer, C. R. (2009) Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition. Oncogene 29, 576-588. https://doi.org/10.1038/onc.2009.361
- Li, J. and Buchner, J. (2013) Structure, function and regulation of the Hsp90 machinery. Biomed. J. 36, 106-117. https://doi.org/10.4103/2319-4170.113230
- Li, M., Zhang, X., Zhou, W. J., Chen, Y. H., Liu, H., Liu, L., Yang, C. M. and Qan, W. B. (2013) Hsp90 inhibitor BIIB021 enhances triptolideinduced apoptosis of human T-cell acute lymphoblastic leukemia cells in vitro mainly by disrupting p53-MDM2 balance. Acta Pharmacol. Sin. 34, 1545-1553. https://doi.org/10.1038/aps.2013.124
- Li, Y., Zhang, T., Jiang, Y., Lee, H. F., Schwartz, S. J. and Sun, D. (2009) (-)-Epigallocatechin-3-gallate inhibits Hsp90 function by impairing Hsp90 association with cochaperones in pancreatic cancer cell line Mia Paca-2. Mol. Pharm. 6, 1152-1159. https://doi.org/10.1021/mp900037p
- Makhnevych, T. and Houry, W. A. (2012) The role of Hsp90 in protein complex assembly. Biochim. Biophys. Acta 1823, 674-682. https://doi.org/10.1016/j.bbamcr.2011.09.001
- Mcconnell, J., Wang, Y. and Mcalpine, S. (2015) Targeting the C-terminus of Hsp90 as a cancer therapy. In Heat Shock Protein Inhibitors. Springer International Publishing.
- Mclaughlin, S. H., Smith, H. W. and Jackson, S. E. (2002) Stimulation of the weak ATPase activity of human Hsp90 by a client protein. J. Mol. Biol. 315, 787-798. https://doi.org/10.1006/jmbi.2001.5245
- Melcher, M., Schmid, M., Aagaard, L., Selenko, P., Laible, G. and Jenuwein, T. (2000) Structure-function analysis of SUV39H1 reveals a dominant role in heterochromatin organization, chromosome segregation, and mitotic progression. Mol. Cell. Biol. 20, 3728-3741. https://doi.org/10.1128/MCB.20.10.3728-3741.2000
- Mellatyar, H., Talaei, S., Pilehvar-Soltanahmadi, Y., Barzegar, A., Akbarzadeh, A., Shahabi, A., Barekati-Mowahed, M. and Zarghami, N. (2018) Targeted cancer therapy through 17-DMAG as an Hsp90 inhibitor: overview and current state of the art. Biomed. Pharmacother. 102, 608-617. https://doi.org/10.1016/j.biopha.2018.03.102
- Ochel, H. J. and Gademann, G. (2002) Heat-shock protein 90: potential involvement in the pathogenesis of malignancy and pharmacological intervention. Onkologie 25, 466-473. https://doi.org/10.1159/000067442
- Onuoha, S. C., Coulstock, E. T., Grossmann, J. G. and Jackson, S. E. (2008) Structural studies on the co-chaperone Hop and its complexes with Hsp90. J. Mol. Biol. 379, 732-744. https://doi.org/10.1016/j.jmb.2008.02.013
- Orkin, S. H. and Zon, L. I. (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631-644. https://doi.org/10.1016/j.cell.2008.01.025
- Penkler, D. L., Atilgan, C. and Tastan Bishop, O. (2018) Allosteric modulation of human hsp90α conformational dynamics. J. Chem. Inf. Model. 58, 383-404. https://doi.org/10.1021/acs.jcim.7b00630
- Plass, C., Oakes, C., Blum, W. and Marcucci, G. (2008) Epigenetics in acute myeloid leukemia. Semin. Oncol. 35, 378-387. https://doi.org/10.1053/j.seminoncol.2008.04.008
- Rao, V. K., Pal, A. and Taneja, R. (2017) A drive in SUVs: from development to disease. Epigenetics 12, 177-186. https://doi.org/10.1080/15592294.2017.1281502
- Roh, S. H., Kasembeli, M., Galaz-Montoya, J. G., Trnka, M., Lau, W. C., Burlingame, A., Chiu, W. and Tweardy, D. J. (2016) Chaperonin TRiC/CCT modulates the folding and activity of leukemogenic fusion oncoprotein AML1-ETO. J. Biol. Chem. 291, 4732-4741. https://doi.org/10.1074/jbc.M115.684878
- Rombo, R., Weiher, H. and Schmidt-Wolf, I. G. (2016) Effect of chaetocin on renal cell carcinoma cells and cytokine-induced killer cells. Ger. Med. Sci. 14, Doc04.
- Rohl, A., Rohrberg, J. and Buchner, J. (2013) The chaperone Hsp90: changing partners for demanding clients. Trends Biochem. Sci. 38, 253-262. https://doi.org/10.1016/j.tibs.2013.02.003
- Sahasrabudhe, P., Rohrberg, J., Biebl, M. M., Rutz, D. A. and Buchner, J. (2017) The plasticity of the Hsp90 co-chaperone system. Mol. Cell 67, 947-961.e5. https://doi.org/10.1016/j.molcel.2017.08.004
- Saito, T., Suzuki, Y., Koyama, K., Natori, S., Iitaka, Y. and Kinosita, T. (1988) Chetracin A and chaetocins B and C, three new epipolythiodioxopiperazines from Chaetomium spp. Chem. Pharm. Bull. 36, 1942-1956. https://doi.org/10.1248/cpb.36.1942
- Scheufler, C., Brinker, A., Bourenkov, G., Pegoraro, S., Moroder, L., Bartunik, H., Hartl, F. U. and Moarefi, I. (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101, 199-210. https://doi.org/10.1016/S0092-8674(00)80830-2
- Song, X., Zhao, Z., Qi, X., Tang, S., Wang, Q., Zhu, T., Gu, Q., Liu, M. and Li, J. (2015) Identification of epipolythiodioxopiperazines HDN1 and chaetocin as novel inhibitor of heat shock protein 90. Oncotarget 6, 5263-5274. https://doi.org/10.18632/oncotarget.3029
- Taipale, M., Krykbaeva, I., Koeva, M., Kayatekin, C., Westover, K., Karras, G. I. and Lindquist, S. (2012) Quantitative analysis of Hsp90-client interactions reveals principles of substrate recognition. Cell 150, 987-1001. https://doi.org/10.1016/j.cell.2012.06.047
- Theodoraki, M. A., Kunjappu, M., Sternberg, D. W. and Caplan, A. J. (2007) Akt shows variable sensitivity to an Hsp90 inhibitor depending on cell context. Exp. Cell Res. 313, 3851-3858. https://doi.org/10.1016/j.yexcr.2007.06.022
- Wang, Y., Fiskus, W., Natarajan, K., Yang, Y., Rao, R., Chen, J., Joshi, A., Koul, S., Upadhyay, S., Balusu, R., Fernandez, P., Buckley, K., Jillella, A., Quadt, C., Atadja, P., Levine, R. and Bhalla, K. (2009) Abstract #3722: co-treatment with pan-HDAC inhibitor panobinostat or heat shock protein (hsp) 90 inhibitor AUY922 with JAK2 inhibitor TG101209 is highly active against bone marrow progenitor cells from myeloproliferative neoplasms (MPN). Cancer Res. 69, 3722.
- Xu, W., Yuan, X., Xiang, Z., Mimnaugh, E., Marcu, M. and Neckers, L. (2005) Surface charge and hydrophobicity determine ErbB2 binding to the Hsp90 chaperone complex. Nat. Struct. Mol. Biol. 12, 120-126. https://doi.org/10.1038/nsmb885
- Yang, Y. J., Han, J. W., Youn, H. D. and Cho, E. J. (2010) The tumor suppressor, parafibromin, mediates histone H3 K9 methylation for cyclin D1 repression. Nucleic Acids Res. 38, 382-390. https://doi.org/10.1093/nar/gkp991
- Yin, X., Zhang, H., Burrows, F., Zhang, L. and Shores, C. G. (2005) Potent activity of a novel dimeric heat shock protein 90 inhibitor against head and neck squamous cell carcinoma in vitro and in vivo. Clin. Cancer Res. 11, 3889-3896. https://doi.org/10.1158/1078-0432.CCR-04-2272
- Yu, H., Cai, S., Gao, J., Wang, C., Qiao, X., Wang, H., Feng, L. and Wang, Y. (2016) Express sequence tag analysis - identification of anseriformes trypsin genes from full-length cDNA library of the duck (Anas platyrhynchos) and characterization of their structure and function. Biochemistry Mosc. 81, 152-162. https://doi.org/10.1134/S0006297916020097
- Zhang, Y. M., Gao, E. E., Wang, Q. Q., Tian, H. and Hou, J. (2018) Effects of histone methyltransferase inhibitor chaetocin on histone H3K9 methylation of cultured ovine somatic cells and development of preimplantation cloned embryos. Reprod. Toxicol. 79, 124-131. https://doi.org/10.1016/j.reprotox.2018.06.006
Cited by
- The heat shock response and small molecule regulators vol.226, 2021, https://doi.org/10.1016/j.ejmech.2021.113846