DOI QR코드

DOI QR Code

SUV39H1 is a New Client Protein of Hsp90 Degradated by Chaetocin as a Novel C-Terminal Inhibitor of Hsp90

  • Lian, Bin (Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China) ;
  • Lin, Qian (Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China) ;
  • Tang, Wei (Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China) ;
  • Qi, Xin (Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China) ;
  • Li, Jing (Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China)
  • Received : 2020.01.29
  • Accepted : 2020.09.03
  • Published : 2021.01.01

Abstract

Hsp90 is often overexpressed with activated form in cancer cells, and many key cellular proteins are dependent upon the Hsp90 machinery (these proteins are called "client protein"). Nowadays, more client proteins and more inhibitors of Hsp90 are being discovered. Chaetocin has been identified as an inhibitor of histone methyl transferase SUV39H1. Herein, we find that Chaetocin is an inhibitor of Hsp90 which binds to the C-terminal of Hsp90α. Chaetocin inhibited a variety of Hsp90 client proteins including AMl1-ETO and BCL-ABL, the mutant fusion-protein in the K562 and HL-60 cells. SUV39H1 mediates epigenetic events in the pathophysiology of hematopoietic disorders. We found that inhibition of Hsp90 by Chaetocin and 17-AAG had ability to induce degradation of SUV39H1 through proteasome pathway. In addition, SUV39H1 interacted with Hsp90 through co-chaperone HOP. These results suggest that SUV39H1 belongs to a client protein of Hsp90. Moreover, Chaetocin was able to induce cell differentiation in the two cells in the concentration range of Hsp90 inhibition. Altogether, our results demonstrate that SUV39H1 is a new client protein of Hsp90 degradated by Chaetocin as a novel C-terminal inhibitor of Hsp90. The study establishes a new relationship of Chaetocin and SUV39H1, and paves an avenue for exploring a new strategy to target SUV39H1 by inhibition of Hsp90 in leukemia.

Keywords

References

  1. Albacker, C. E., Storer, N. Y., Langdon, E. M., Anthony, D. B., Yi, Z., Langenau, D. M., Zhou, Y., Langenau, D. M. and Zon, L. I. (2013) The histone methyltransferase suv39h1 suppresses embryonal rhabdomyosarcoma formation in zebrafish. PLoS ONE 8, e64969-. https://doi.org/10.1371/journal.pone.0064969
  2. Allan, R. K., Mok, D., Ward, B. K. and Ratajczak, T. (2006) Modulation of chaperone function and cochaperone interaction by novobiocin in the c-terminal domain of Hsp90. J. Biol. Chem. 281, 7161-7171. https://doi.org/10.1074/jbc.M512406200
  3. Banerji, U. (2015) O7.6 - HSP90 inhibitors in the clinic: what have we learnt? Ann. Oncol. 26, ii10. https://doi.org/10.1093/annonc/mdv085.6
  4. Carbone, R., Botrugno, O. A., Ronzoni, S., Insinga, A., Di Croce, L., Pelicci, P. G. and Minucci, S. (2006) Recruitment of the histone methyltransferase suv39h1 and its role in the oncogenic properties of the leukemia-associated pml-retinoic acid receptor fusion protein. Mol. Cell. Biol. 26, 1288-1296. https://doi.org/10.1128/MCB.26.4.1288-1296.2006
  5. Chaib, H., Nebbioso, A., Prebet, T., Castellano, R., Garbit, S., Restouin, A., Vey, N., Altucci, L. and Collette, Y. (2012) Anti-leukemia activity of chaetocin via death receptor-dependent apoptosis and dual modulation of the histone methyl-transferase suv39h1. Leukemia 26, 662-674. https://doi.org/10.1038/leu.2011.271
  6. Cherblanc, F. L., Chapman, K. L., Brown, R. and Fuchter, M. J. (2013) Chaetocin is a nonspecific inhibitor of histone lysine methyltransferases. Nat. Chem. Biol. 9, 136-137. https://doi.org/10.1038/nchembio.1187
  7. Cherblanc, F. L., Chapman-Rothe, N., Brown, R. and Fuchter, M. (2012) Current limitations and future opportunities for epigenetic therapies. Future Med. Chem. 4, 425-446. https://doi.org/10.4155/fmc.12.7
  8. Condelli, V., Crispo, F., Pietrafesa, M., Lettini, G., Matassa, D. S., Esposito, F., Landriscina, M. and Maddalena, F. (2019) HSP90 molecular chaperones, metabolic rewiring, and epigenetics: impact on tumor progression and perspective for anticancer therapy. Cells 8, 532. https://doi.org/10.3390/cells8060532
  9. Copeland, R. A., Solomon, M. E. and Richon, V. M. (2009) Protein methyltransferases as a target class for drug discovery. Nat. Rev. Drug Discov. 8, 724-732. https://doi.org/10.1038/nrd2974
  10. Donnelly, A. and Blagg, B. S. (2008) Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Curr. Med. Chem. 15, 2702-2717. https://doi.org/10.2174/092986708786242895
  11. Gliniewicz, E. F., Chambers, K. M., De Leon, E. R., Sibai, D., Campbell, H. C. and McMenimen, K. A. (2019) Chaperone-like activity of the N-terminal region of a human small heat shock protein and chaperone-functionalized nanoparticles. Proteins 87, 401-415. https://doi.org/10.1002/prot.25662
  12. Goyama, S., Nitta, E., Yoshino, T., Kako, S., Watanabe-Okochi, N., Shimabe, M., Imai, Y., Takahashi, K. and Kurokawa, M. (2010) EVI-1 interacts with histone methyltransferases suv39h1 and g9a for transcriptional repression and bone marrow immortalization. Leukemia 24, 81-88. https://doi.org/10.1038/leu.2009.202
  13. Greiner, D., Bonaldi, T., Eskeland, R., Roemer, E. and Imhof, A. (2005) Identification of a specific inhibitor of the histone methyltransferase su(var)3-9. Nat. Chem. Biol. 1, 143-145. https://doi.org/10.1038/nchembio721
  14. Howes, J., Lu, B. F., Powers, M., Mitsopoulos, C., Al-Lazikani, B., Linardopoulos, S., Clarke, P. and Workman, P. (2014) Abstract 2730: RNAi knockdown or chemical inhibition of anaphase-promoting complex components is synthetic lethal with HSP90 inhibition. Cancer Res. 74, 2730. https://doi.org/10.1158/1538-7445.AM2014-2730
  15. Jackson, S. E. (2012) Hsp90: structure and function. Top. Curr. Chem. 328, 155-240. https://doi.org/10.1007/128_2012_356
  16. Khandelwal, A., Crowley, V. M. and Blagg, B. S. J. (2016) Natural product inspired N-terminal Hsp90 inhibitors: from bench to bedside? Med. Res. Rev. 36, 92-118. https://doi.org/10.1002/med.21351
  17. Kim, Y., Alarcon, S., Lee, S., Lee, M. J., Giaccone, G., Neckers, L. and Trepel, J. B. (2009) Update on Hsp90 inhibitors in clinical trial. Curr. Top. Med. Chem. 9, 1479-1492. https://doi.org/10.2174/156802609789895728
  18. Kumagai, T., Shih, L. Y., Hughes, S. V., Desmond, J. C., O'Kelly, J., Hewison, M. and Koeffler, H. P. (2005) 19-Nor-1,25(OH)2D2 (a novel, noncalcemic vitamin D analogue), combined with arsenic trioxide, has potent antitumor activity against myeloid leukemia. Cancer Res. 65, 2488-2497. https://doi.org/10.1158/0008-5472.CAN-04-2800
  19. Lakshmikuttyamma, A., Scott, S. A., Decoteau, J. F. and Geyer, C. R. (2009) Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition. Oncogene 29, 576-588. https://doi.org/10.1038/onc.2009.361
  20. Li, J. and Buchner, J. (2013) Structure, function and regulation of the Hsp90 machinery. Biomed. J. 36, 106-117. https://doi.org/10.4103/2319-4170.113230
  21. Li, M., Zhang, X., Zhou, W. J., Chen, Y. H., Liu, H., Liu, L., Yang, C. M. and Qan, W. B. (2013) Hsp90 inhibitor BIIB021 enhances triptolideinduced apoptosis of human T-cell acute lymphoblastic leukemia cells in vitro mainly by disrupting p53-MDM2 balance. Acta Pharmacol. Sin. 34, 1545-1553. https://doi.org/10.1038/aps.2013.124
  22. Li, Y., Zhang, T., Jiang, Y., Lee, H. F., Schwartz, S. J. and Sun, D. (2009) (-)-Epigallocatechin-3-gallate inhibits Hsp90 function by impairing Hsp90 association with cochaperones in pancreatic cancer cell line Mia Paca-2. Mol. Pharm. 6, 1152-1159. https://doi.org/10.1021/mp900037p
  23. Makhnevych, T. and Houry, W. A. (2012) The role of Hsp90 in protein complex assembly. Biochim. Biophys. Acta 1823, 674-682. https://doi.org/10.1016/j.bbamcr.2011.09.001
  24. Mcconnell, J., Wang, Y. and Mcalpine, S. (2015) Targeting the C-terminus of Hsp90 as a cancer therapy. In Heat Shock Protein Inhibitors. Springer International Publishing.
  25. Mclaughlin, S. H., Smith, H. W. and Jackson, S. E. (2002) Stimulation of the weak ATPase activity of human Hsp90 by a client protein. J. Mol. Biol. 315, 787-798. https://doi.org/10.1006/jmbi.2001.5245
  26. Melcher, M., Schmid, M., Aagaard, L., Selenko, P., Laible, G. and Jenuwein, T. (2000) Structure-function analysis of SUV39H1 reveals a dominant role in heterochromatin organization, chromosome segregation, and mitotic progression. Mol. Cell. Biol. 20, 3728-3741. https://doi.org/10.1128/MCB.20.10.3728-3741.2000
  27. Mellatyar, H., Talaei, S., Pilehvar-Soltanahmadi, Y., Barzegar, A., Akbarzadeh, A., Shahabi, A., Barekati-Mowahed, M. and Zarghami, N. (2018) Targeted cancer therapy through 17-DMAG as an Hsp90 inhibitor: overview and current state of the art. Biomed. Pharmacother. 102, 608-617. https://doi.org/10.1016/j.biopha.2018.03.102
  28. Ochel, H. J. and Gademann, G. (2002) Heat-shock protein 90: potential involvement in the pathogenesis of malignancy and pharmacological intervention. Onkologie 25, 466-473. https://doi.org/10.1159/000067442
  29. Onuoha, S. C., Coulstock, E. T., Grossmann, J. G. and Jackson, S. E. (2008) Structural studies on the co-chaperone Hop and its complexes with Hsp90. J. Mol. Biol. 379, 732-744. https://doi.org/10.1016/j.jmb.2008.02.013
  30. Orkin, S. H. and Zon, L. I. (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631-644. https://doi.org/10.1016/j.cell.2008.01.025
  31. Penkler, D. L., Atilgan, C. and Tastan Bishop, O. (2018) Allosteric modulation of human hsp90α conformational dynamics. J. Chem. Inf. Model. 58, 383-404. https://doi.org/10.1021/acs.jcim.7b00630
  32. Plass, C., Oakes, C., Blum, W. and Marcucci, G. (2008) Epigenetics in acute myeloid leukemia. Semin. Oncol. 35, 378-387. https://doi.org/10.1053/j.seminoncol.2008.04.008
  33. Rao, V. K., Pal, A. and Taneja, R. (2017) A drive in SUVs: from development to disease. Epigenetics 12, 177-186. https://doi.org/10.1080/15592294.2017.1281502
  34. Roh, S. H., Kasembeli, M., Galaz-Montoya, J. G., Trnka, M., Lau, W. C., Burlingame, A., Chiu, W. and Tweardy, D. J. (2016) Chaperonin TRiC/CCT modulates the folding and activity of leukemogenic fusion oncoprotein AML1-ETO. J. Biol. Chem. 291, 4732-4741. https://doi.org/10.1074/jbc.M115.684878
  35. Rombo, R., Weiher, H. and Schmidt-Wolf, I. G. (2016) Effect of chaetocin on renal cell carcinoma cells and cytokine-induced killer cells. Ger. Med. Sci. 14, Doc04.
  36. Rohl, A., Rohrberg, J. and Buchner, J. (2013) The chaperone Hsp90: changing partners for demanding clients. Trends Biochem. Sci. 38, 253-262. https://doi.org/10.1016/j.tibs.2013.02.003
  37. Sahasrabudhe, P., Rohrberg, J., Biebl, M. M., Rutz, D. A. and Buchner, J. (2017) The plasticity of the Hsp90 co-chaperone system. Mol. Cell 67, 947-961.e5. https://doi.org/10.1016/j.molcel.2017.08.004
  38. Saito, T., Suzuki, Y., Koyama, K., Natori, S., Iitaka, Y. and Kinosita, T. (1988) Chetracin A and chaetocins B and C, three new epipolythiodioxopiperazines from Chaetomium spp. Chem. Pharm. Bull. 36, 1942-1956. https://doi.org/10.1248/cpb.36.1942
  39. Scheufler, C., Brinker, A., Bourenkov, G., Pegoraro, S., Moroder, L., Bartunik, H., Hartl, F. U. and Moarefi, I. (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101, 199-210. https://doi.org/10.1016/S0092-8674(00)80830-2
  40. Song, X., Zhao, Z., Qi, X., Tang, S., Wang, Q., Zhu, T., Gu, Q., Liu, M. and Li, J. (2015) Identification of epipolythiodioxopiperazines HDN1 and chaetocin as novel inhibitor of heat shock protein 90. Oncotarget 6, 5263-5274. https://doi.org/10.18632/oncotarget.3029
  41. Taipale, M., Krykbaeva, I., Koeva, M., Kayatekin, C., Westover, K., Karras, G. I. and Lindquist, S. (2012) Quantitative analysis of Hsp90-client interactions reveals principles of substrate recognition. Cell 150, 987-1001. https://doi.org/10.1016/j.cell.2012.06.047
  42. Theodoraki, M. A., Kunjappu, M., Sternberg, D. W. and Caplan, A. J. (2007) Akt shows variable sensitivity to an Hsp90 inhibitor depending on cell context. Exp. Cell Res. 313, 3851-3858. https://doi.org/10.1016/j.yexcr.2007.06.022
  43. Wang, Y., Fiskus, W., Natarajan, K., Yang, Y., Rao, R., Chen, J., Joshi, A., Koul, S., Upadhyay, S., Balusu, R., Fernandez, P., Buckley, K., Jillella, A., Quadt, C., Atadja, P., Levine, R. and Bhalla, K. (2009) Abstract #3722: co-treatment with pan-HDAC inhibitor panobinostat or heat shock protein (hsp) 90 inhibitor AUY922 with JAK2 inhibitor TG101209 is highly active against bone marrow progenitor cells from myeloproliferative neoplasms (MPN). Cancer Res. 69, 3722.
  44. Xu, W., Yuan, X., Xiang, Z., Mimnaugh, E., Marcu, M. and Neckers, L. (2005) Surface charge and hydrophobicity determine ErbB2 binding to the Hsp90 chaperone complex. Nat. Struct. Mol. Biol. 12, 120-126. https://doi.org/10.1038/nsmb885
  45. Yang, Y. J., Han, J. W., Youn, H. D. and Cho, E. J. (2010) The tumor suppressor, parafibromin, mediates histone H3 K9 methylation for cyclin D1 repression. Nucleic Acids Res. 38, 382-390. https://doi.org/10.1093/nar/gkp991
  46. Yin, X., Zhang, H., Burrows, F., Zhang, L. and Shores, C. G. (2005) Potent activity of a novel dimeric heat shock protein 90 inhibitor against head and neck squamous cell carcinoma in vitro and in vivo. Clin. Cancer Res. 11, 3889-3896. https://doi.org/10.1158/1078-0432.CCR-04-2272
  47. Yu, H., Cai, S., Gao, J., Wang, C., Qiao, X., Wang, H., Feng, L. and Wang, Y. (2016) Express sequence tag analysis - identification of anseriformes trypsin genes from full-length cDNA library of the duck (Anas platyrhynchos) and characterization of their structure and function. Biochemistry Mosc. 81, 152-162. https://doi.org/10.1134/S0006297916020097
  48. Zhang, Y. M., Gao, E. E., Wang, Q. Q., Tian, H. and Hou, J. (2018) Effects of histone methyltransferase inhibitor chaetocin on histone H3K9 methylation of cultured ovine somatic cells and development of preimplantation cloned embryos. Reprod. Toxicol. 79, 124-131. https://doi.org/10.1016/j.reprotox.2018.06.006

Cited by

  1. The heat shock response and small molecule regulators vol.226, 2021, https://doi.org/10.1016/j.ejmech.2021.113846