DOI QR코드

DOI QR Code

Suppressive Effect of Carnosol on Ovalbumin-Induced Allergic Asthma

  • Lee, Jung-Eun (Laboratory of Pharmacology, College of Pharmacy, and Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Im, Dong-Soon (Laboratory of Pharmacology, College of Pharmacy, and Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University)
  • Received : 2020.04.02
  • Accepted : 2020.06.01
  • Published : 2021.01.01

Abstract

Asthma is a chronic obstructive lung disease characterized by recurrent episodes of bronchoconstriction and wheezing. Conventional asthma treatment involves the suppression of airway inflammation or improving airway flow. Rosmarinus officialis, also known as rosemary, is a Mediterranean plant that is used for the treatment of inflammatory diseases. Carnosol, a diterpenoid found in rosemary extracts, has been known to exhibit anti-inflammatory, anti-tumor, and anti-oxidant effects. The effect of carnosol on allergic responses has not been tested yet. The effect of carnosol on a murine allergic asthma model were investigated. Carnosol inhibited the degranulation of RBL-2H3 mast cells. Carnosol treatment inhibited the increase in the number of eosinophils in the bronchoalveolar lavage fluids (BALF) of mice treated with ovalbumin. Carnosol treatment also inhibited inflammatory responses and mucin production in histologic studies. Carnosol treatment inhibited the increases of IL-4 and IL-13 cytokines expression in both BALF and the lungs. These results suggest that carnosol may have a potential for allergic asthma therapy.

Keywords

References

  1. Aoki, H., Hisada, T., Ishizuka, T., Utsugi, M., Kawata, T., Shimizu, Y., Okajima, F., Dobashi, K. and Mori, M. (2008) Resolvin E1 dampens airway inflammation and hyperresponsiveness in a murine model of asthma. Biochem. Biophys. Res. Commun. 367, 509-515. https://doi.org/10.1016/j.bbrc.2008.01.012
  2. Aoki, H., Hisada, T., Ishizuka, T., Utsugi, M., Ono, A., Koga, Y., Sunaga, N., Nakakura, T., Okajima, F., Dobashi, K. and Mori, M. (2010) Protective effect of resolvin E1 on the development of asthmatic airway inflammation. Biochem. Biophys. Res. Commun. 400, 128-133. https://doi.org/10.1016/j.bbrc.2010.08.025
  3. Averell, C. M., Laliberte, F., Duh, M. S., Wu, J. W., Germain, G. and Faison, S. (2019) Characterizing real-world use of tiotropium in asthma in the USA. J. Asthma Allergy 12, 309-321. https://doi.org/10.2147/JAA.S216932
  4. Chan, M. M., Ho, C. T. and Huang, H. I. (1995) Effects of three dietary phytochemicals from tea, rosemary and turmeric on inflammationinduced nitrite production. Cancer Lett. 96, 23-29. https://doi.org/10.1016/0304-3835(95)03913-H
  5. da Rosa, J. S., Facchin, B. M., Bastos, J., Siqueira, M. A., Micke, G. A., Dalmarco, E. M., Pizzolatti, M. G. and Frode, T. S. (2013) Systemic administration of Rosmarinus officinalis attenuates the inflammatory response induced by carrageenan in the mouse model of pleurisy. Planta Med. 79, 1605-1614. https://doi.org/10.1055/s-0033-1351018
  6. Fish, S. C., Donaldson, D. D., Goldman, S. J., Williams, C. M. and Kasaian, M. T. (2005) IgE generation and mast cell effector function in mice deficient in IL-4 and IL-13. J. Immunol. 174, 7716-7724. https://doi.org/10.4049/jimmunol.174.12.7716
  7. Heo, J. Y. and Im, D. S. (2019) Anti-allergic effects of salvianolic acid A and tanshinone IIA from Salvia miltiorrhiza determined using in vivo and in vitro experiments. Int. Immunopharmacol. 67, 69-77. https://doi.org/10.1016/j.intimp.2018.12.010
  8. Huang, J., Su, M., Lee, B. K., Kim, M. J., Jung, J. H. and Im, D. S. (2018) Suppressive effect of 4-hydroxy-2-(4-hydroxyphenethyl) isoindoline-1,3-dione on ovalbumin-induced allergic asthma. Biomol. Ther. (Seoul) 26, 539-545. https://doi.org/10.4062/biomolther.2018.006
  9. Johnson, J. J. (2011) Carnosol: a promising anti-cancer and anti-inflammatory agent. Cancer Lett. 305, 1-7. https://doi.org/10.1016/j.canlet.2011.02.005
  10. Kashyap, D., Kumar, G., Sharma, A., Sak, K., Tuli, H. S. and Mukherjee, T. K. (2017) Mechanistic insight into carnosol-mediated pharmacological effects: recent trends and advancements. Life Sci. 169, 27-36. https://doi.org/10.1016/j.lfs.2016.11.013
  11. Kim, M. J. and Im, D. S. (2019) Suppressive effects of type I angiotensin receptor antagonists, candesartan and irbesartan on allergic asthma. Eur. J. Pharmacol. 852, 25-33. https://doi.org/10.1016/j.ejphar.2019.02.035
  12. Lane, S. J. and Lee, T. H. (1996) Mast cell effector mechanisms. J. Allergy Clin. Immunol. 98, S67-S71; discussion S71-S72. https://doi.org/10.1016/S0091-6749(96)70019-2
  13. Lee, B. K., Park, S. J., Nam, S. Y., Kang, S., Hwang, J., Lee, S. J. and Im, D. S. (2018) Anti-allergic effects of sesquiterpene lactones from Saussurea costus (Falc.) Lipsch. determined using in vivo and in vitro experiments. J. Ethnopharmacol. 213, 256-261. https://doi.org/10.1016/j.jep.2017.11.018
  14. Lee, D. Y., Hwang, C. J., Choi, J. Y., Park, M. H., Song, M. J., Oh, K. W., Son, D. J., Lee, S. H., Han, S. B. and Hong, J. T. (2017) Inhibitory effect of carnosol on phthalic anhydride-induced atopic dermatitis via inhibition of STAT3. Biomol. Ther. (Seoul) 25, 535-544. https://doi.org/10.4062/biomolther.2017.006
  15. Lemanske, R. F., Jr. and Busse, W. W. (2010) Asthma: clinical expression and molecular mechanisms. J. Allergy Clin. Immunol. 125, S95-S102. https://doi.org/10.1016/j.jaci.2009.10.047
  16. Li, X., Zhao, L., Han, J. J., Zhang, F., Liu, S., Zhu, L., Wang, Z. Z., Zhang, G.X . and Zhang, Y. (2018) Carnosol modulates Th17 cell differentiation and microglial switch in experimental autoimmune encephalomyelitis. Front. Immunol. 9, 1807. https://doi.org/10.3389/fimmu.2018.01807
  17. Lo, A. H., Liang, Y. C., Lin-Shiau, S. Y., Ho, C. T. and Lin, J. K. (2002) Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-κB in mouse macrophages. Carcinogenesis 23, 983-991. https://doi.org/10.1093/carcin/23.6.983
  18. Locksley, R. M. (2010) Asthma and allergic inflammation. Cell 140, 777-783. https://doi.org/10.1016/j.cell.2010.03.004
  19. Mengoni, E. S., Vichera, G., Rigano, L. A., Rodriguez-Puebla, M. L., Galliano, S. R., Cafferata, E. E., Pivetta, O. H., Moreno, S. and Vojnov, A. A. (2011) Suppression of COX-2, IL-1b and TNF-a expression and leukocyte infiltration in inflamed skin by bioactive compounds from Rosmarinus officinalis L. Fitoterapia 82, 414-421. https://doi.org/10.1016/j.fitote.2010.11.023
  20. Newcomb, D. C. and Peebles, R. S., Jr. (2013) Th17-mediated inflammation in asthma. Curr. Opin. Immunol. 25, 755-760. https://doi.org/10.1016/j.coi.2013.08.002
  21. Park, K. W., Kundu, J., Chae, I. G., Kim, D. H., Yu, M. H., Kundu, J. K. and Chun, K. S. (2014) Carnosol induces apoptosis through generation of ROS and inactivation of STAT3 signaling in human colon cancer HCT116 cells. Int. J. Oncol. 44, 1309-1315. https://doi.org/10.3892/ijo.2014.2281
  22. Park, S. J. and Im, D. S. (2019) Blockage of sphingosine-1-phosphate receptor 2 attenuates allergic asthma in mice. Br. J. Pharmacol. 176, 938-949. https://doi.org/10.1111/bph.14597
  23. Park, S. J., Lee, S. J., Nam, S. Y. and Im, D. S. (2018) GPR35 mediates lodoxamide-induced migration inhibitory response but not CXCL17-induced migration stimulatory response in THP-1 cells; is GPR35 a receptor for CXCL17? Br. J. Pharmacol. 175, 154-161. https://doi.org/10.1111/bph.14082
  24. Poeckel, D., Greiner, C., Verhoff, M., Rau, O., Tausch, L., Hornig, C., Steinhilber, D., Schubert-Zsilavecz, M. and Werz, O. (2008) Carnosic acid and carnosol potently inhibit human 5-lipoxygenase and suppress pro-inflammatory responses of stimulated human polymorphonuclear leukocytes. Biochem. Pharmacol. 76, 91-97. https://doi.org/10.1016/j.bcp.2008.04.013
  25. Rau, O., Wurglics, M., Paulke, A., Zitzkowski, J., Meindl, N., Bock, A., Dingermann, T., Abdel-Tawab, M. and Schubert-Zsilavecz, M. (2006) Carnosic acid and carnosol, phenolic diterpene compounds of the labiate herbs rosemary and sage, are activators of the human peroxisome proliferator-activated receptor gamma. Planta Med. 72, 881-887. https://doi.org/10.1055/s-2006-946680
  26. Schwager, J., Richard, N., Fowler, A., Seifert, N. and Raederstorff, D. (2016) Carnosol and related substances modulate chemokine and cytokine production in macrophages and chondrocytes. Molecules 21, 465. https://doi.org/10.3390/molecules21040465
  27. Singletary, K. W. (1996) Rosemary extract and carnosol stimulate rat liver glutathione-S-transferase and quinone reductase activities. Cancer Lett. 100, 139-144. https://doi.org/10.1016/0304-3835(95)04082-X
  28. Trinh, H. K. T., Lee, S. H., Cao, T. B. T. and Park, H. S. (2019) Asthma pharmacotherapy: an update on leukotriene treatments. Expert Rev. Respir. Med. 13, 1169-1178. https://doi.org/10.1080/17476348.2019.1670640
  29. Wakashin, H., Hirose, K., Iwamoto, I. and Nakajima, H. (2009) Role of IL-23-Th17 cell axis in allergic airway inflammation. Int. Arch. Allergy Immunol. 149 Suppl 1, 108-112.
  30. Yeo, I. J., Park, J. H., Jang, J. S., Lee, D. Y., Park, J. E., Choi, Y. E., Joo, J. H., Song, J. K., Jeon, H. O. and Hong, J. T. (2019) Inhibitory effect of Carnosol on UVB-induced inflammation via inhibition of STAT3. Arch. Pharm. Res. 42, 274-283. https://doi.org/10.1007/s12272-018-1088-1

Cited by

  1. Carnosol attenuates bleomycin-induced lung damage via suppressing fibrosis, oxidative stress and inflammation in rats vol.287, 2021, https://doi.org/10.1016/j.lfs.2021.120059