References
- Ahn, S. H., Park, S. Y., Baek, J. E., Lee, S. Y., Baek, W. Y., Lee, S. Y., Lee, Y. S., Yoo, H. J., Kim, H., Lee, S. H., Im, D. S., Lee, S. K., Kim, B. J. and Koh, J. M. (2016) Free fatty acid receptor 4 (GPR120) stimulates bone formation and suppresses bone resorption in the presence of elevated n-3 fatty acid levels. Endocrinology 157, 2621-2635. https://doi.org/10.1210/en.2015-1855
- Azevedo, C. M., Watterson, K. R., Wargent, E. T., Hansen, S. V., Hudson, B. D., Kepczynska, M. A., Dunlop, J., Shimpukade, B., Christiansen, E., Milligan, G., Stocker, C. J. and Ulven, T. (2016) Nonacidic free fatty acid receptor 4 agonists with antidiabetic activity. J. Med. Chem. 59, 8868-8878. https://doi.org/10.1021/acs.jmedchem.6b00685
- Briscoe, C. P., Peat, A. J., McKeown, S. C., Corbett, D. F., Goetz, A. S., Littleton, T. R., McCoy, D. C., Kenakin, T. P., Andrews, J. L., Ammala, C., Fornwald, J. A., Ignar, D. M. and Jenkinson, S. (2006) Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br. J. Pharmacol. 148, 619-628. https://doi.org/10.1038/sj.bjp.0706770
- Chen, Y. L., Lin, Y. P., Sun, C. K., Huang, T. H., Yip, H. K. and Chen, Y. T. (2018a) Extracorporeal shockwave against inflammation mediated by GPR120 receptor in cyclophosphamide-induced rat cystitis model. Mol. Med. 24, 60. https://doi.org/10.1186/s10020-018-0062-1
- Chen, Y., Zhang, D., Ho, K. W., Lin, S., Suen, W. C., Zhang, H., Zha, Z., Li, G. and Leung, P. S. (2018b) GPR120 is an important inflammatory regulator in the development of osteoarthritis. Arthritis Res. Ther. 20, 163. https://doi.org/10.1186/s13075-018-1660-6
- Christian, M. (2020) Elucidation of the roles of brown and brite fat genes: GPR120 is a modulator of brown adipose tissue function. Exp. Physiol. 105, 1201-1205. https://doi.org/10.1113/EP087877
- Christiansen, E., Watterson, K. R., Stocker, C. J., Sokol, E., Jenkins, L., Simon, K., Grundmann, M., Petersen, R. K., Wargent, E. T., Hudson, B. D., Kostenis, E., Ejsing, C. S., Cawthorne, M. A., Milligan, G. and Ulven, T. (2015) Activity of dietary fatty acids on FFA1 and FFA4 and characterisation of pinolenic acid as a dual FFA1/FFA4 agonist with potential effect against metabolic diseases. Br. J. Nutr. 113, 1677-1688. https://doi.org/10.1017/S000711451500118X
- Cornish, J., MacGibbon, A., Lin, J. M., Watson, M., Callon, K. E., Tong, P. C., Dunford, J. E., van der Does, Y., Williams, G. A., Grey, A. B., Naot, D. and Reid, I. R. (2008) Modulation of osteoclastogenesis by fatty acids. Endocrinology 149, 5688-5695. https://doi.org/10.1210/en.2008-0111
- Davenport, A. P., Alexander, S. P., Sharman, J. L., Pawson, A. J., Benson, H. E., Monaghan, A. E., Liew, W. C., Mpamhanga, C. P., Bonner, T. I. and Neubig, R. R. (2013) International union of basic and clinical pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol. Rev. 65, 967-986. https://doi.org/10.1124/pr.112.007179
- Egerod, K. L., Engelstoft, M. S., Lund, M. L., Grunddal, K. V., Zhao, M., Barir-Jensen, D., Nygaard, E. B., Petersen, N., Holst, J. J. and Schwartz, T. W. (2015) Transcriptional and functional characterization of the g protein-coupled receptor repertoire of gastric somatostatin cells. Endocrinology 156, 3909-3923. https://doi.org/10.1210/EN.2015-1388
- Engelstoft, M. S., Park, W. M., Sakata, I., Kristensen, L. V., Husted, A. S., Osborne-Lawrence, S., Piper, P. K., Walker, A. K., Pedersen, M. H., Nohr, M. K., Pan, J., Sinz, C. J., Carrington, P. E., Akiyama, T. E., Jones, R. M., Tang, C., Ahmed, K., Offermanns, S., Egerod, K. L., Zigman, J. M. and Schwartz, T. W. (2013) Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells. Mol. Metab. 2, 376-392. https://doi.org/10.1016/j.molmet.2013.08.006
- Finlin, B. S., Zhu, B., Kok, B. P., Godio, C., Westgate, P. M., Grayson, N., Sims, R., Bland, J. S., Saez, E. and Kern, P. A. (2017) The influence of a KDT501, a novel isohumulone, on adipocyte function in humans. Front. Endocrinol. 8, 255. https://doi.org/10.3389/fendo.2017.00255
- Fredriksson, R., Lagerstrom, M. C., Lundin, L. and Schioth, H. B. (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256-1272. https://doi.org/10.1124/mol.63.6.1256
- Garrel, G., Simon, V., Denoyelle, C., Cruciani-Guglielmacci, C., Migrenne, S., Counis, R., Magnan, C. and Cohen-Tannoudji, J. (2011) Unsaturated fatty acids stimulate LH secretion via novel PKCepsilon and -theta in gonadotrope cells and inhibit GnRH-induced LH release. Endocrinology 152, 3905-3916. https://doi.org/10.1210/en.2011-1167
- Gong, Z., Yoshimura, M., Aizawa, S., Kurotani, R., Zigman, J. M., Sakai, T. and Sakata, I. (2014) G protein-coupled receptor 120 signaling regulates ghrelin secretion in vivo and in vitro. Am. J. Physiol. Endocrinol. Metab. 306, E28-E35. https://doi.org/10.1152/ajpendo.00306.2013
- Gozal, D., Qiao, Z., Almendros, I., Zheng, J., Khalyfa, A., Shimpukade, B. and Ulven, T. (2016) Treatment with TUG891, a free fatty acid receptor 4 agonist, restores adipose tissue metabolic dysfunction following chronic sleep fragmentation in mice. Int. J. Obes. (Lond.) 40, 1143-1149. https://doi.org/10.1038/ijo.2016.37
- Graciano, M. F., Valle, M. M., Curi, R. and Carpinelli, A. R. (2013) Evidence for the involvement of GPR40 and NADPH oxidase in palmitic acid-induced superoxide production and insulin secretion. Islets 5, 139-148. https://doi.org/10.4161/isl.25459
- Han, L., Song, S., Niu, Y., Meng, M. and Wang, C. (2017) Eicosapentaenoic acid (EPA) induced macrophages activation through GPR120-mediated Raf-ERK1/2-IKKβ-NF-κB p65 signaling pathways. Nutrients 9, 937. https://doi.org/10.3390/nu9090937
- Hansen, K. B., Rosenkilde, M. M., Knop, F. K., Wellner, N., Diep, T. A., Rehfeld, J. F., Andersen, U. B., Holst, J. J. and Hansen, H. S. (2011) 2-Oleoyl glycerol is a GPR119 agonist and signals GLP-1 release in humans. J. Clin. Endocrinol. Metab. 96, E1409-E1417. https://doi.org/10.1210/jc.2011-0647
- Hansen, S. V. and Ulven, T. (2017) Pharmacological tool compounds for the free fatty acid receptor 4 (FFA4/GPR120). Handb. Exp. Pharmacol. 236, 33-56. https://doi.org/10.1007/164_2016_60
- Hara, T., Hirasawa, A., Sun, Q., Sadakane, K., Itsubo, C., Iga, T., Adachi, T., Koshimizu, T. A., Hashimoto, T., Asakawa, Y. and Tsujimoto, G. (2009) Novel selective ligands for free fatty acid receptors GPR120 and GPR40. Naunyn Schmiedebergs Arch. Pharmacol. 380, 247-255. https://doi.org/10.1007/s00210-009-0425-9
- Hasan, A. U., Ohmori, K., Hashimoto, T., Kamitori, K., Yamaguchi, F., Noma, T., Igarashi, J., Tsuboi, K., Tokuda, M., Nishiyama, A. and Kohno, M. (2017) GPR120 in adipocytes has differential roles in the production of pro-inflammatory adipocytokines. Biochem. Biophys. Res. Commun. 486, 76-82. https://doi.org/10.1016/j.bbrc.2017.03.001
- Hirasawa, A., Tsumaya, K., Awaji, T., Katsuma, S., Adachi, T., Yamada, M., Sugimoto, Y., Miyazaki, S. and Tsujimoto, G. (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat. Med. 11, 90-94. https://doi.org/10.1038/nm1168
- Huang, Z., Guo, F., Xia, Z., Liang, Y., Lei, S., Tan, Z., Ma, L. and Fu, P. (2020) Activation of GPR120 by TUG891 ameliorated cisplatininduced acute kidney injury via repressing ER stress and apoptosis. Biomed. Pharmacother. 126, 110056. https://doi.org/10.1016/j.biopha.2020.110056
- Hudson, B. D., Shimpukade, B., Mackenzie, A. E., Butcher, A. J., Pediani, J. D., Christiansen, E., Heathcote, H., Tobin, A. B., Ulven, T. and Milligan, G. (2013) The pharmacology of TUG-891, a potent and selective agonist of the free fatty acid receptor 4 (FFA4/GPR120), demonstrates both potential opportunity and possible challenges to therapeutic agonism. Mol. Pharmacol. 84, 710-725. https://doi.org/10.1124/mol.113.087783
- Ichimura, A., Hirasawa, A., Poulain-Godefroy, O., Bonnefond, A., Hara, T., Yengo, L., Kimura, I., Leloire, A., Liu, N. and Iida, K. (2012) Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483, 350-354. https://doi.org/10.1038/nature10798
- Im, D. S. (2012) Omega-3 fatty acids in anti-inflammation (pro-resolution) and GPCRs. Prog. Lipid Res. 51, 232-237. https://doi.org/10.1016/j.plipres.2012.02.003
- Im, D. S. (2013) Intercellular lipid mediators and GPCR drug discovery. Biomol. Ther. (Seoul) 21, 411-422. https://doi.org/10.4062/biomolther.2013.080
- Inoue, A., Ishiguro, J., Kitamura, H., Arima, N., Okutani, M., Shuto, A., Higashiyama, S., Ohwada, T., Arai, H., Makide, K. and Aoki, J. (2012) TGFa shedding assay: an accurate and versatile method for detecting GPCR activation. Nat. Methods 9, 1021-1029. https://doi.org/10.1038/nmeth.2172
- Janssen, S., Laermans, J., Iwakura, H., Tack, J. and Depoortere, I. (2012) Sensing of fatty acids for octanoylation of ghrelin involves a gustatory G-protein. PLoS ONE 7, e40168. https://doi.org/10.1371/journal.pone.0040168
- Kang, S., Huang, J., Lee, B. K., Jung, Y. S., Im, E., Koh, J. M. and Im, D. S. (2018) Omega-3 polyunsaturated fatty acids protect human hepatoma cells from developing steatosis through FFA4 (GPR120). Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863, 105-116. https://doi.org/10.1016/j.bbalip.2017.11.002
- Kern, P. A., Finlin, B. S., Ross, D., Boyechko, T., Zhu, B., Grayson, N., Sims, R. and Bland, J. S. (2017) Effects of KDT501 on metabolic parameters in insulin-resistant prediabetic humans. J. Endocr. Soc. 1, 650-659. https://doi.org/10.1210/js.2017-00202
- Kim, H. J., Yoon, H. J., Kim, B. K., Kang, W. Y., Seong, S. J., Lim, M. S., Kim, S. Y. and Yoon, Y. R. (2016) G protein-coupled receptor 120 signaling negatively regulates osteoclast differentiation, survival, and function. J. Cell. Physiol. 231, 844-851. https://doi.org/10.1002/jcp.25133
- Konda, V. R., Desai, A., Darland, G., Grayson, N. and Bland, J. S. (2014) KDT501, a derivative from hops, normalizes glucose metabolism and body weight in rodent models of diabetes. PLoS ONE 9, e87848. https://doi.org/10.1371/journal.pone.0087848
- Konno, Y., Ueki, S., Takeda, M., Kobayashi, Y., Tamaki, M., Moritoki, Y., Oyamada, H., Itoga, M., Kayaba, H., Omokawa, A. and Hirokawa, M. (2015) Functional analysis of free fatty acid receptor GPR120 in human eosinophils: implications in metabolic homeostasis. PLoS ONE 10, e0120386. https://doi.org/10.1371/journal.pone.0120386
- Li, Z., Zhou, Z. and Zhang, L. (2020) Current status of GPR40/FFAR1 modulators in medicinal chemistry (2016-2019): a patent review. Expert Opin. Ther. Pat. 30, 27-38. https://doi.org/10.1080/13543776.2020.1698546
- Mo, Z., Tang, C., Li, H., Lei, J., Zhu, L., Kou, L., Li, H., Luo, S., Li, C., Chen, W. and Zhang, L. (2020) Eicosapentaenoic acid prevents inflammation induced by acute cerebral infarction through inhibition of NLRP3 inflammasome activation. Life Sci. 242, 117133. https://doi.org/10.1016/j.lfs.2019.117133
- Moran, B. M., Abdel-Wahab, Y. H., Flatt, P. R. and McKillop, A. M. (2014) Evaluation of the insulin-releasing and glucose-lowering effects of GPR120 activation in pancreatic β-cells. Diabetes Obes. Metab. 16, 1128-1139. https://doi.org/10.1111/dom.12330
- Murtaza, B., Hichami, A., Khan, A. S., Shimpukade, B., Ulven, T., Ozdener, M. H. and Khan, N. A. (2020) Novel GPR120 agonist TUG891 modulates fat taste perception and preference and activates tongue-brain-gut axis in mice. J. Lipid Res. 61, 133-142. https://doi.org/10.1194/jlr.ra119000142
- Nakazato, M., Murakami, N., Date, Y., Kojima, M., Matsuo, H., Kangawa, K. and Matsukura, S. (2001) A role for ghrelin in the central regulation of feeding. Nature 409, 194-198. https://doi.org/10.1038/35051587
- Oh, D. Y., Talukdar, S., Bae, E. J., Imamura, T., Morinaga, H., Fan, W., Li, P., Lu, W. J., Watkins, S. M. and Olefsky, J. M. (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687-698. https://doi.org/10.1016/j.cell.2010.07.041
- Oh, D. Y., Walenta, E., Akiyama, T. E., Lagakos, W. S., Lackey, D., Pessentheiner, A. R., Sasik, R., Hah, N., Chi, T. J., Cox, J. M., Powels, M. A., Di Salvo, J., Sinz, C., Watkins, S. M., Armando, A. M., Chung, H., Evans, R. M., Quehenberger, O., McNelis, J., BognerStrauss, J. G. and Olefsky, J. M. (2014) A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat. Med. 20, 942-947. https://doi.org/10.1038/nm.3614
- Patnaik, S. S., Lagana, A. S., Vitale, S. G., Buttice, S., Noventa, M., Gizzo, S., Valenti, G., Rapisarda, A. M. C., La Rosa, V. L. and Magno, C. (2017) Etiology, pathophysiology and biomarkers of interstitial cystitis/painful bladder syndrome. Arch. Gynecol. Obstet. 295, 1341-1359. https://doi.org/10.1007/s00404-017-4364-2
- Raptis, D. A., Limani, P., Jang, J. H., Ungethum, U., Tschuor, C., Graf, R., Humar, B. and Clavien, P. A. (2014) GPR120 on Kupffer cells mediates hepatoprotective effects of omega3-fatty acids. J. Hepatol. 60, 625-632. https://doi.org/10.1016/j.jhep.2013.11.006
- Schilperoort, M., van Dam, A. D., Hoeke, G., Shabalina, I. G., Okolo, A., Hanyaloglu, A. C., Dib, L. H., Mol, I. M., Caengprasath, N., Chan, Y. W., Damak, S., Miller, A. R., Coskun, T., Shimpukade, B., Ulven, T., Kooijman, S., Rensen, P. C. and Christian, M. (2018) The GPR120 agonist TUG-891 promotes metabolic health by stimulating mitochondrial respiration in brown fat. EMBO Mol. Med. 10, e8047. https://doi.org/10.15252/emmm.201708047
- Serhan, C. N., Chiang, N. and Dalli, J. (2018) New pro-resolving n-3 mediators bridge resolution of infectious inflammation to tissue regeneration. Mol. Aspects Med. 64, 1-17. https://doi.org/10.1016/j.mam.2017.08.002
- Shimpukade, B., Hudson, B. D., Hovgaard, C. K., Milligan, G. and Ulven, T. (2012) Discovery of a potent and selective GPR120 agonist. J. Med. Chem. 55, 4511-4515. https://doi.org/10.1021/jm300215x
- Son, S. E., Park, S. J., Koh, J. M. and Im, D. S. (2020) Free fatty acid receptor 4 (FFA4) activation ameliorates 2,4-dinitrochlorobenzene-induced atopic dermatitis by increasing regulatory T cells in mice. Acta Pharmacol. Sin. 41, 1337-1347. https://doi.org/10.1038/s41401-020-0435-1
- Song, T., Zhou, Y., Peng, J., Tao, Y. X., Yang, Y., Xu, T., Peng, J., Ren, J., Xiang, Q. and Wei, H. (2016) GPR120 promotes adipogenesis through intracellular calcium and extracellular signal-regulated kinase 1/2 signal pathway. Mol. Cell. Endocrinol. 434, 1-13. https://doi.org/10.1016/j.mce.2016.06.009
- Sparks, S. M., Chen, G., Collins, J. L., Danger, D., Dock, S. T., Jayawickreme, C., Jenkinson, S., Laudeman, C., Leesnitzer, M. A., Liang, X., Maloney, P., McCoy, D. C., Moncol, D., Rash, V., Rimele, T., Vulimiri, P., Way, J. M. and Ross, S. (2014) Identification of diarylsulfonamides as agonists of the free fatty acid receptor 4 (FFA4/GPR120). Bioorg. Med. Chem. Lett. 24, 3100-3103. https://doi.org/10.1016/j.bmcl.2014.05.012
- Stone, V. M., Dhayal, S., Brocklehurst, K. J., Lenaghan, C., Sorhede Winzell, M., Hammar, M., Xu, X., Smith, D. M. and Morgan, N. G. (2014) GPR120 (FFAR4) is preferentially expressed in pancreatic d cells and regulates somatostatin secretion from murine islets of Langerhans. Diabetologia 57, 1182-1191. https://doi.org/10.1007/s00125-014-3213-0
- Su, X. L., Liu, Y. G., Shi, M., Zhao, Y. Y., Liang, X. Y., Zhang, L. J., Wei, L. L. and Zhao, Y. F. (2020) The GPR120 agonist TUG-891 inhibits the motility and phagocytosis of mouse alveolar macrophages. Biomed. Res. Int. 2020, 1706168.
- Suckow, A. T. and Briscoe, C. P. (2017) Key questions for translation of FFA receptors: from pharmacology to medicines. Handb. Exp. Pharmacol. 236, 101-131. https://doi.org/10.1007/164_2016_45
- Sun, M., Wu, W., Liu, Z. and Cong, Y. (2017) Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J. Gastroenterol. 52, 1-8. https://doi.org/10.1007/s00535-016-1242-9
- Sun, Q., Hirasawa, A., Hara, T., Kimura, I., Adachi, T., Awaji, T., Ishiguro, M., Suzuki, T., Miyata, N. and Tsujimoto, G. (2010) Structureactivity relationships of GPR120 agonists based on a docking simulation. Mol. Pharmacol. 78, 804-810. https://doi.org/10.1124/mol.110.066324
- Suzuki, T., Igari, S., Hirasawa, A., Hata, M., Ishiguro, M., Fujieda, H., Itoh, Y., Hirano, T., Nakagawa, H., Ogura, M., Makishima, M., Tsujimoto, G. and Miyata, N. (2008) Identification of G protein-coupled receptor 120-selective agonists derived from PPARg agonists. J. Med. Chem. 51, 7640-7644. https://doi.org/10.1021/jm800970b
- Takahashi, K., Fukushima, K., Onishi, Y., Minami, K., Otagaki, S., Ishimoto, K., Fukushima, N., Honoki, K. and Tsujiuchi, T. (2018) Involvement of FFA1 and FFA4 in the regulation of cellular functions during tumor progression in colon cancer cells. Exp. Cell Res. 369, 54-60. https://doi.org/10.1016/j.yexcr.2018.05.005
- Takahashi, K., Fukushima, K., Onishi, Y., Node, Y., Inui, K., Fukushima, N., Honoki, K. and Tsujiuchi, T. (2017) Different effects of Gprotein-coupled receptor 120 (GPR120) and GPR40 on cell motile activity of highly migratory osteosarcoma cells. Biochem. Biophys. Res. Commun. 484, 675-680. https://doi.org/10.1016/j.bbrc.2017.01.175
- Tan, J. K., McKenzie, C., Marino, E., Macia, L. and Mackay, C. R. (2017) Metabolite-sensing G protein-coupled receptors-facilitators of diet-related immune regulation. Annu. Rev. Immunol. 35, 371-402. https://doi.org/10.1146/annurev-immunol-051116-052235
- Ulven, T. and Christiansen, E. (2015) Dietary fatty acids and their potential for controlling metabolic diseases through activation of FFA4/GPR120. Annu. Rev. Nutr. 35, 239-263. https://doi.org/10.1146/annurev-nutr-071714-034410
- Villegas-Comonfort, S., Takei, Y., Tsujimoto, G., Hirasawa, A. and Garcia-Sainz, J. A. (2017) Effects of arachidonic acid on FFA4 receptor: Signaling, phosphorylation and internalization. Prostaglandins Leukot. Essent. Fatty Acids 117, 1-10. https://doi.org/10.1016/j.plefa.2017.01.013
- Wang, C., Liu, Y., Pan, Y. and Jin, H. (2020) Effect of GSK-137647A, the first non-carboxylic FFA4 agonist, on the osteogenic and adipogenic differentiation of bone mesenchymal stem cells in db/db mice. J. Pharm. Pharmacol. 72, 461-469. https://doi.org/10.1111/jphp.13217
- Wang, Y., Xie, T., Zhang, D. and Leung, P. S. (2019) GPR120 protects lipotoxicity-induced pancreatic β-cell dysfunction through regulation of PDX1 expression and inhibition of islet inflammation. Clin. Sci. (Lond.) 133, 101-116. https://doi.org/10.1042/CS20180836
- Watterson, K. R., Hansen, S. V., Hudson, B. D., Alvarez-Curto, E., Raihan, S. Z., Azevedo, C. M., Martin, G., Dunlop, J., Yarwood, S. J. and Ulven, T. (2017) Probe-dependent negative allosteric modulators of the long-chain free fatty acid receptor FFA4. Mol. Pharmacol. 91, 630-641. https://doi.org/10.1124/mol.116.107821
- Wellhauser, L. and Belsham, D. D. (2014) Activation of the omega-3 fatty acid receptor GPR120 mediates anti-inflammatory actions in immortalized hypothalamic neurons. J. Neuroinflammation 11, 60. https://doi.org/10.1186/1742-2094-11-60
- Wu, Q., Wang, H., Zhao, X., Shi, Y., Jin, M., Wan, B., Xu, H., Cheng, Y., Ge, H. and Zhang, Y. (2013) Identification of G-protein-coupled receptor 120 as a tumor-promoting receptor that induces angiogenesis and migration in human colorectal carcinoma. Oncogene 32, 5541-5550. https://doi.org/10.1038/onc.2013.264
- Yore, M. M., Syed, I., Moraes-Vieira, P. M., Zhang, T., Herman, M. A., Homan, E. A., Patel, R. T., Lee, J., Chen, S. and Peroni, O. D. (2014) Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159, 318-332. https://doi.org/10.1016/j.cell.2014.09.035
- Zhao, C., Zhou, J., Meng, Y., Shi, N., Wang, X., Zhou, M., Li, G. and Yang, Y. (2020) DHA sensor GPR120 in host defense exhibits the dual characteristics of regulating dendritic cell function and skewing the balance of Th17/Tregs. Int. J. Biol. Sci. 16, 374-387. https://doi.org/10.7150/ijbs.39551
- Zhao, J., Wang, H., Shi, P., Wang, W. and Sun, Y. (2017) GPR120, a potential therapeutic target for experimental colitis in IL-10 deficient mice. Oncotarget 8, 8397-8405. https://doi.org/10.18632/oncotarget.14210
- Zhao, Y. Y., Fu, H., Liang, X. Y., Zhang, B. L., Wei, L. L., Zhu, J. X., Chen, M. W. and Zhao, Y. F. (2019) Lipopolysaccharide inhibits GPR120 expression in macrophages via Toll-like receptor 4 and p38 MAPK activation. Cell Biol. Int. doi: 10.1002/cbin.11204 [Online ahead of print].
Cited by
- Structure based prediction of a novel GPR120 antagonist based on pharmacophore screening and molecular dynamics simulations vol.19, 2021, https://doi.org/10.1016/j.csbj.2021.11.005
- Overexpression of NREP Promotes Migration and Invasion in Gastric Cancer Through Facilitating Epithelial-Mesenchymal Transition vol.9, 2021, https://doi.org/10.3389/fcell.2021.746194
- Anti-Atherosclerotic Potential of Free Fatty Acid Receptor 4 (FFAR4) vol.9, pp.5, 2021, https://doi.org/10.3390/biomedicines9050467
- Advances in Technologies for Highly Active Omega-3 Fatty Acids from Krill Oil: Clinical Applications vol.19, pp.6, 2021, https://doi.org/10.3390/md19060306