DOI QR코드

DOI QR Code

The Expression of Corazonin Neurons in Pupa and Adult Stage of Scuttle Fly

  • Park, Hohyun (Department of Biomedical Laboratory Science, Mokpo Science University)
  • Received : 2021.11.08
  • Accepted : 2021.12.15
  • Published : 2021.12.31

Abstract

The scuttle fly is a fly species in the Phoridae family. Scuttle fly which moves abruptly after standing for a while and stop suddenly to rush off again. These characteristic behaviors of the scuttle fly seem to be related to muscular and nervous system or neurotransmitters. Thus, we focused at the neurotransmitter, corazonin (Crz) that is known to be related to resistance to stress and investigated the developmental process of the neurons in the scuttle fly. In a previous studies, we found that there are three groups of corazoninergic neurons in the larval CNS of the scuttle. Larva has 3 pairs of Crz neurons at the dorsolateral area of the brain, 1 pair at the dorsomedial brain and 8 pairs at the ventral nerve cord. In this studies, among these neurons, 1 pair of dorsomedial brain and 8 pairs of ventral nerve cord disappear in early pupal stage after metamorphosis. Only the 3 pairs of dorsolateral brain persist expression of Crz gene through all the period of pupa stage. This group of neurons converge gradually to frontal center of the brain and situated at the medial region. These pairs of corazoninergic neurons keep their number and location in adult stage. In the future, we expect further studies on the histological characteristics of corazonin-expressing cells and the expression of corazonin gene.

Keywords

Acknowledgement

This study was supported by reserch fund Mokpo Science University, 2021.

References

  1. Altstein M, Nassel DR. Neuropeptide signaling in insects. In: Geary, T. G., Maule, A. G. (Eds.), Neuropeptide Systems as Targets for Parasite and Pest Control. 2010. pp. 155-165.
  2. Baggerman G, Schoofs L. The use of mass spectrometry and capillary chromatography in the identification and quantification of neuropeptides in insects. Ph.D. Thesis, KU. Leuven. 2002. pp. 44.
  3. Boerjan B, Verleyen P, Huybrechts J, Schoofs L, De Loof A. In search for a common denominator for the diverse functions of arthropod corazonin; a role in the physiology of stress? Gen Comp Endocrinol. 2010. 166: 222-233. https://doi.org/10.1016/j.ygcen.2009.09.004
  4. Choi SH. "The Regulation of Neuropeptide Corazonin and Its Functional Analyses in Drosophila melanogaster." PhD diss., University of Tennessee. 2009.
  5. Choi YJ, Lee G, Park JH. Programmed cell death mechanisms of identifiable peptidergic neurons in Drosophila melanogaster. Development. 2006. 133: 2223-2232. https://doi.org/10.1242/dev.02376
  6. Choi YJ, Lee G, Hall JC, Park JH. Comparative analysis of Corazonin-encoding genes (Crz's) in Drosophila species and functional insights into Crz-expressing neurons. J Comp Neurol. 2005. 482: 372-385. https://doi.org/10.1002/cne.20419
  7. Hansen IA, Sehnal F, Meyer SR, Scheller K. Corazonin gene expression in the waxmoth Galleria mellonella. Insect Mol Biol. 2001. 10: 341-346. https://doi.org/10.1046/j.0962-1075.2001.00272.x
  8. Hay BA, Guo M. Caspase-dependent cell death in Drosophila. Annu Rev Cell Dev Biol. 2006. 22: 623-650. https://doi.org/10.1146/annurev.cellbio.21.012804.093845
  9. Hoste B, Simpson SJ, De Loof A, Breuer M. Behavioral differences in Locusta migratoria associated with albinism and their relation to [His(7)]-corazonin. Physiol Entomol. 2003. 28: 32-38. https://doi.org/10.1046/j.1365-3032.2003.00312.x
  10. Hua YJ, Ishibashi J, Saito H, Tawfik A, Sakakibara M, Tanaka Y, Derua R, Waelkens E, Baggerman G, De Loof A, Schoofs L, Tanaka S. Identification of [Arg7] corazonin in the silkworm, Bombyx mori and the cricket, Gryllus bimaculatus, as a factor inducing dark color in an albino strain of the locust, Locusta migratoria. J Insect Physiol. 2000. 46: 853-860. https://doi.org/10.1016/S0022-1910(99)00173-0
  11. Kim J, Kim JW, Park JH. Characterization and expression of corazonin gene in the scuttle fly, Megaselia scalaris. 2013. GenBank; KF318884.1
  12. Kim YJ, Spalovska-Valachova I, Cho KH, Zitnanova I, Park Y. Corazonin receptor signaling in ecdysis initiation. Proc Natl Acad Sci U S A. 2004. 101: 6704-6709. https://doi.org/10.1073/pnas.0305291101
  13. Lee G, Kim KM, Kikuno K, Wang Z, Choi YJ, Park JH. Developmental regulation and functions of the expression of the neuropeptide corazonin in Drosophila melanogaster. Cell Tissue Res. 2008. 331: 659-673. https://doi.org/10.1007/s00441-007-0549-5
  14. Lee G, Wang Z, Sehgal R, Chen CH, Kikuno K, Hay B, Park JH. Drosophila caspases involved in developmentally regulated programmed cell death of peptidergic neurons during early metamorphosis. J Comp Neurol. 2011. 519: 34-48. https://doi.org/10.1002/cne.22498
  15. Li XF, Bowe JE, Mitchell JC, Brain SD, Lightman SL, O'Byrne KT. Stress-induced suppression of the gonadotropin-releasing hormone pulse generator in the female rat: a novel neural action for calcitonin gene-related peptide. Endocrinology. 2004. 145: 1556-1563. https://doi.org/10.1210/en.2003-1609
  16. Maeno K, Tanaka S. Hormonal control of phase-related changes in the number of antennal sensilla in the desert locust, Schistocerca gregaria: possible involvement of [His7]-corazonin. J Insect Physiol. 2004. 50: 855-865. https://doi.org/10.1016/j.jinsphys.2004.06.008
  17. Nassel DR, Winther AM. Drosophila neuropeptides in regulation of physiology and behavior. Prog Neurobiol. 2010. 92: 42-104. https://doi.org/10.1016/j.pneurobio.2010.04.010
  18. Nikolarakis KE, Almeida OF, Herz A. Corticotropin-releasing factor (CRF) inhibits gonadotropin-releasing hormone (GnRH) release from superfused rat hypothalami in vitro. Brain Res. 1986. 377: 388-390. https://doi.org/10.1016/0006-8993(86)90887-5
  19. Park HH. The Expression of Corazonin Neurons in Larvae Stage of Scuttle Fly. Biomedical Laboratory Sciences. 2020. 26: 1-9.
  20. Porras MG, De Loof A, Breuer M, Arechiga H. Corazonin promotes tegumentary pigment migration in the crayfish Procambarus clarkii. Peptides. 2003. 24: 1581-1589. https://doi.org/10.1016/j.peptides.2003.08.016
  21. Predel R, Agricola H, Linde D, Wollweber L, Veenstra JA, Penzlin H. The insect neuropeptide corazonin: physiological and immunocytochemical studies in Blattariae. Zoology (ZACS). 1994. 98: 35-49.
  22. Predel R, Herbert Z, Eckert M. Neuropeptides in perisympathetic organs of Manduca sexta; specific composition and changes during development. Peptides. 2003. 24: 1457-1464. https://doi.org/10.1016/j.peptides.2003.07.020
  23. Predel R, Kellner R, Gade G. Myotropic neuropiptides from the retrocerebral complex of the stick insect, Carausius morosus (Phasmatodea: Lonchodidae). Eur. J. Entomol. 1999. 96: 275-278.
  24. Predel R, Nachman RJ, Gade G. Myostimulatory neuropeptides in cockroaches: structures, distribution, pharmacological activities, and mimetic analogs. J Insect Physiol. 2001. 47: 311-324. https://doi.org/10.1016/S0022-1910(00)00129-3
  25. Predel R, Neupert S, Russell WK, Scheibner O, Nachman RJ. Corazonin in insects. Peptides. 2007. 28: 3-10. https://doi.org/10.1016/j.peptides.2006.10.011
  26. Riddiford LM. Hormones and Drosophila development. In: Bate M, Arias A. M, editors. The development of Drosophila melanogaster. Cold Spring Harbor, NY: Cold Spring Harbor Press. 1993. p 899-939.
  27. Roller L, Tanaka Y, Tanaka S. Corazonin and corazonin-like substances in the central nervous system of the Pterygote and Apterygote insects. Cell Tissue Tes. 2003. 312: 393-406. https://doi.org/10.1007/s00441-003-0722-4
  28. Saifullah ASM, Tomioka K. Pigment-dispersing factor sets the night state of the medulla bilateral neurons in the potic lobe of the cricket, Gryllus bimaculatus. J Insect Physiol. 2003. 49: 231-239. https://doi.org/10.1016/S0022-1910(02)00270-6
  29. Schoofs L, Baggerman G, Veelaert D, Breuer M, Tanaka S, De Loof A. The pigmentotropic hormone [His7]-corazonin, absent in a Locusta igratoria albino strain, occurs in an albino strain of Schistocerca gregaria. Mol Cell Endocrinol. 2000. 168: 101-109. https://doi.org/10.1016/S0303-7207(00)00306-3
  30. Shiga S, Davis NT, Hildebrand JG. Role of neurosecretory cells in the photoperiodic induction of pupal diapause of the tobacco hornworm Manduca sexta. J Comp Neurol. 2003. 462: 275-285. https://doi.org/10.1002/cne.10683
  31. Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell. 2002. 9: 459-470. https://doi.org/10.1016/S1097-2765(02)00482-3
  32. Slama K. The effect of corazonin on heartbeat reversal in pupae of the tobacco hornworm, Manduca sexta (Lepidoptera: Sphingidae). Eur J Entomol. 2004. 101: 513-521. https://doi.org/10.14411/eje.2004.073
  33. Slama K, Sakai T, Takeda M. Effect of corazonin and cardioactive peptide on heartbeat in the adult American cockroach (Periplaneta americana). Arch Insect Biochem Physiol. 2006. 62: 91-103. https://doi.org/10.1002/arch.20131
  34. Tanaka S. Endocrine mechanism of controlling body-color poly - morphism in locusts. Arch Insect Biochem Physiol. 2001. 47: 139-149. https://doi.org/10.1002/arch.1045
  35. Tanaka S, Zhu DH, Hoste B, Breuer M. The dark-color inducing neuropoptide, His7-corazonin, causes a shift in morphometric characteristics towards the gregarious phase in isolated-reared (solitarious) Locusta migratoria. J Insect Physiol. 2002a. 48: 1065-1074. https://doi.org/10.1016/S0022-1910(02)00199-3
  36. Tanaka Y, Hua Y, Roller L, Tanaka S. Corazonin reduces the spinning rate in the silk worm, Bombyx mori. J Insect Physiol. 2002b. 48: 707-714. https://doi.org/10.1016/S0022-1910(02)00094-X
  37. Tawfik AI, Tanaka S, De Loof A, Schoofs L, Baggerman G, Waelkens E, Derua R, Milner Y, Yerushalmi Y, Pener MP. Identification of the gregarization - associated dark - pigmentotropin in locusts through an albino mutant. Proc Natl Acad Sci U S A. 1999. 96: 7083-7087. https://doi.org/10.1073/pnas.96.12.7083
  38. Tellam DJ, Perone MJ, Dunn IC, Radovick S, Brennand J, Rivier JE, Castro MG, Lovejoy DA. Direct regulation of GnRH transcription by CRF-like peptides in an immortalized neuronal cell line. Neuroreport. 1998. 9: 3135-3140. https://doi.org/10.1097/00001756-199810050-00003
  39. Truman JW, Talbot WS, Fahrbach SE, Hogness DS. Ecdysone receptor expression in the CNS correlates with stage-specific responses to ecdysteroids during Drosophila and Manduca development. Development. 1994. 120: 219-234. https://doi.org/10.1242/dev.120.1.219
  40. Truman JW, Taylor BJ, Awad TA. Formation of the adult nervous system. In: Bate, M., Arias A. M., editors. The development of Drosophila melanogaster. Cold Spring Harbor, NY: Cold Spring Harbor Press. 1993. p 1245-1275.
  41. Veenstra JA. Isolation and structure of corazonin, a cardio-active peptide from the America cockroach. FEBS Lett. 1989. 250: 231-234. https://doi.org/10.1016/0014-5793(89)80727-6
  42. Veenstra JA. Presence of corazonin in three insect species, and isolation and identification of [His7] corazonin from Schistocerca americana. Peptides. 1991. 12: 1285-1289. https://doi.org/10.1016/0196-9781(91)90208-7
  43. Veenstra JA. Isolation and structure of the Drosophila corazonin gene. Biochem. Biophys Res Commun. 1994. 204: 292-296. https://doi.org/10.1006/bbrc.1994.2458
  44. Veenstra JA, Davis NT. Localization of corazonin in the nervous system of the cockroach Periplaneta americana. Cell Tissue Res. 1993. 274: 57-64. https://doi.org/10.1007/BF00327985
  45. Verleyen P, Baggerman G, Mertens I, Vandersmissen T, Huybrechts J, Van Lommel A, De Loof A, Schoofs L. Cloning and characterization of a third isoform of corazonin in the honey bee Apis mellifera. Peptides. 2006. 27: 493-499. https://doi.org/10.1016/j.peptides.2005.03.065
  46. Wise S, Davis NT, Tyndale E, Noveral J, Folwell MG. Neuroanatomical studies of period gene expression in the hawkmoth, Manduca sexta. J Comp Neurol. 2002. 447: 366-380. https://doi.org/10.1002/cne.10242