DOI QR코드

DOI QR Code

A study to evaluate the safety of iodine intake levels in women of childbearing age: 2013-2015 Korea National Health and Nutrition Examination Survey

가임기 여성의 요오드 섭취 수준의 안전성 평가 연구: 2013-2015 국민건강영양조사 자료 활용

  • Lee, Jung-Sug (Department of Food and Nutrition, Kookmin University)
  • Received : 2021.11.11
  • Accepted : 2021.12.10
  • Published : 2021.12.31

Abstract

Purpose: This study was conducted to evaluate the safety of iodine intake based on ingestion levels and urinary iodine excretion of women of childbearing age (15-45 years old) using data from the 2013-2015 Korea National Health and Nutrition Examination Survey. Methods: Iodine intake was calculated using the 24 hours dietary recall method and urinary iodine excretion. The iodine nutrition database for the analysis of dietary iodine intake was constructed using the food composition database of the Rural Development Administration (RDA), the Korean Nutrition Society (KNS), the Ministries of Food and Drug Safety, China and, Japan. The World Health Organization (WHO) evaluation criteria and hazard quotient (HQ) calculated using biomonitoring equivalents (BE) were applied to evaluate the safety of the iodine intake. Results: Of the study subjects, 15.22% had a urinary iodine concentration level of less than 100 ㎍/L, which was diagnosed as deficient, and 48.16% had an excessive iodine concentration of over 300 ㎍/L. Urinary iodine concentration was 878.71 ㎍/L, iodine/creatinine was 589.00 ㎍/g, and iodine/creatinine was significantly higher at the age of 30-45 years. The dietary iodine intake was 273.47 ㎍/day, and the iodine intake calculated from the urinary iodine excretion was 1,198.10 ㎍/day. Foods with a high contribution to iodine intake were vegetables, seafood, seaweed and processed foods. The HQ was 1.665 when the urinary iodine content was > 1,000 ㎍/L. Conclusion: The results of this study implicate that the urinary iodine concentration, rather than the dietary iodine intake, is more appropriate to evaluate the iodine status under the current situation that a comprehensive iodine database for Koreans has not been established.

본 연구는 제6기 (2013-2015년) 국민건강영양조사 자료를 활용하여 만 15-45세의 가임기 여성 1,559명을 대상으로 요오드 섭취 및 소변 중 요오드 함량을 기준으로 요오드 섭취의 안전성을 평가하였다. 요오드 섭취량 분석을 위해 요오드 영양성분 DB를 구축한 후 24시간 식사조사자료와 매칭하여 식이를 통한 요오드 섭취량을 분석하였고, 소변 중 요오드 함량을 적용하여 하루 단위의 요오드 섭취량을 산출하였다. 또한 요오드 섭취의 안전성 평가를 위해 WHO의 평가기준을 적용하였고, 요오드의 영양소 섭취기준 중 상한섭취량을 기준으로 하여 BE를 산출한 후 소변 중 요오드 함량을 적용하여 HQ를 계산하였다. 그 결과 소변 중 요오드 함량이 100 ㎍/L 미만이어서 요오드 결핍으로 진단되는 비율은 15.22%이었고, 요오드 섭취 과잉으로 진단되는 300 ㎍/L 이상인 대상자는 48.16%이었다. 소변 중 요오드 함량은 평균 878.71 ㎍/L이었고, 요오드/크레아티닌은 589.00 ㎍/g이었으며, 요오드/크레아티닌은 30-45세 연령군이 15-18세, 19-29세 연령군에 비해 유의적으로 높았다. 식이를 통한 요오드 섭취량은 273.47 ㎍/day, 소변 중 요오드 함량을 통해 산출된 요오드 섭취량은 1,198.10 ㎍/day로, 두 조사방법에 의한 차이는 924.63 ㎍/day로 식이를 통한 요오드 섭취량보다 소변을 통해 산출된 요오드 섭취량이 더 높았다. 요오드 섭취량에 기여도가 높은 식품은 채소류, 어패류, 해조류 및 가공식품이었고, 요오드 섭취의 위험도를 평가하는 HQ는 한국인 영양소섭취기준 적용 시 0.228이었고, 소변 중 요오드 함량이 1,000 ㎍/L 이상 시 평균 1.665로 1 이상의 높은 수준이었다. 혈중 TSH는 2.14 mIU/L, free T4는 1.10 ng/L이었으며, 소변 중 요오드 수준과 HQ는 혈중 TSH 농도에 유의적인 차이를 보이지 않았으나, 혈중 free T4 농도는 연령과 소변 중 요오드 수준이 증가할수록 유의적으로 감소하였다. 본 연구결과 국내 가임기 여성의 과반수는 요오드를 과잉 섭취하였고, 특히 상위 10% 정도는 HQ 1 이상으로 건강에 위험할 정도의 극단적인 섭취량을 보였다, 또한, 식이와 소변을 통해 산출된 요오드 섭취량 사이에 차이가 상당히 큰 것으로 보아 충분한 요오드 DB가 구축되지 않은 현 상황에서 식이를 통한 요오드 영양상태를 평가하기보다는 소변으로 배출된 요오드 함량을 적용하여 요오드 영양상태를 평가하는 것이 더 적절할 것으로 사료되며, 과잉의 요오드 섭취가 갑상샘질환 뿐만이 아니라 관련 질환의 유병율에 미치는 다양한 연구가 수행될 필요가 있을 것으로 판단된다.

Keywords

Acknowledgement

This research was supported by grants from the 2021 Amorepacific Foundation.

References

  1. Institute of Medicine (US) Panel on Micronutrients. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, D.C.: National Academy Press; 2001.
  2. Fisher DA, Oddie TH. Thyroid iodine content and turnover in euthyroid subjects: validity of estimation of thyroid iodine accumulation from short-term clearance studies. J Clin Endocrinol Metab 1969; 29(5): 721-727. https://doi.org/10.1210/jcem-29-5-721
  3. Expert Group on Vitamins and Minerals. Safe upper levels for vitamins and minerals. London: Food Standards Agency; 2003.
  4. Scientific Committee on Food. Opinion of the scientific committee on food on the tolerable upper level of iodine. Brussels: European Commission; 2002.
  5. Suzuki M, Tamura T. Iodine intake of Japanese male university students: urinary iodine excretion of sedentary and physically active students and sweat iodine excretion during exercise. J Nutr Sci Vitaminol (Tokyo) 1985; 31(4): 409-415. https://doi.org/10.3177/jnsv.31.409
  6. Han MR, Ju DL, Park YJ, Paik HY, Song Y. An iodine database for common Korean foods and the association between iodine intake and thyroid Disease in Korean adults. Int J Thyroidol 2015; 8(2): 170-182. https://doi.org/10.11106/ijt.2015.8.2.170
  7. Ko YM, Kwon YS, Park YK. An iodine database establishment and iodine intake in Korean adults: based on the 1998-2014 Korea National Health and Nutrition Examination Survey. J Nutr Health 2017; 50(6): 624-644. https://doi.org/10.4163/jnh.2017.50.6.624
  8. Jolin T, Escobardelrey F. Evaluation of iodine/creatinine ratios of casual samples as indices of daily urinary iodine output during field studies. J Clin Endocrinol Metab 1965; 25(4): 540-542. https://doi.org/10.1210/jcem-25-4-540
  9. Nath SK, Moinier B, Thuillier F, Rongier M, Desjeux JF. Urinary excretion of iodide and fluoride from supplemented food grade salt. Int J Vitam Nutr Res 1992; 62(1): 66-72.
  10. Soldin OP, Tractenberg RE, Pezzullo JC. Do thyroxine and thyroid-stimulating hormone levels reflect urinary iodine concentrations? Ther Drug Monit 2005; 27(2): 178-185. https://doi.org/10.1097/01.ftd.0000149954.20089.0b
  11. Cho YW, Kim YS, Baick SH, Oh DY, Kim WJ, Chang NS, et al. Analysis of daily intake and urinary excretion of iodine in normal control and patient with thyroid disease. J Korean Soc Endocrinol 1994; 9: 307-317.
  12. Kim HM, Lee HC, Park KS, Joo HY, Kim KR, Hong CS, et al. A study on the urinary iodide excretion in normal subjects and patients with thyroid disease. Korean J Intern Med 1985; 29: 625-631.
  13. Kim JY, Kim KR. Dietary iodine intake and urinary iodine excretion in patients with thyroid diseases. Yonsei Med J 2000; 41(1): 22-28. https://doi.org/10.3349/ymj.2000.41.1.22
  14. Kim JY, Moon SJ, Kim KR, Sohn CY, Oh JJ. Dietary iodine intake and urinary iodine excretion in normal Korean adults. Yonsei Med J 1998; 39(4): 355-362. https://doi.org/10.3349/ymj.1998.39.4.355
  15. World Health Organization. Assessment of iodine deficiency disorders and monitoring their elimination: a guide for programme managers, 3rd ed. Geneva: World Health Organization; 2007.
  16. Hays SM, Poddalgoda D, Macey K, Aylward L, Nong A. Biomonitoring Equivalents for interpretation of urinary iodine. Regul Toxicol Pharmacol 2018; 94: 40-46. https://doi.org/10.1016/j.yrtph.2018.01.017
  17. Shin YL. Pediatric thyroid disorders. J Korean Med Assoc 2018; 61(10): 607-615. https://doi.org/10.5124/jkma.2018.61.10.607
  18. Ershow AG, Goodman G, Coates PM, Swanson CA. Assessing iodine intake, iodine status, and the effects of maternal iodine supplementation: introduction to articles arising from 3 workshops held by the NIH Office of Dietary Supplements. Am J Clin Nutr 2016; 104 Suppl 3(Suppl 3): 859S-863S. https://doi.org/10.3945/ajcn.115.111161
  19. Ershow AG, Goodman G, Coates PM, Swanson CA. Research needs for assessing iodine intake, iodine status, and the effects of maternal iodine supplementation. Am J Clin Nutr 2016; 104 Suppl 3(Suppl 3): 941S-949S. https://doi.org/10.3945/ajcn.116.134858
  20. Mills JL, Buck Louis GM, Kannan K, Weck J, Wan Y, Maisog J, et al. Delayed conception in women with low-urinary iodine concentrations: a population-based prospective cohort study. Hum Reprod 2018; 33(3): 426-433. https://doi.org/10.1093/humrep/dex379
  21. National Institute of Agricultural Sciences. Food composition database [Internet]. Wanju: National Institute of Agricultural Sciences; 2021 [cited 2021 Mar 1]. Available from: http://koreanfood.rda.go.kr/kfi/fct/fctIntro/list?menuId=PS03562.
  22. The Korean Nutrition Society. CAN Pro 5.0 DB [Internet]. Seoul: The Korean Nutrition Society; 2019 [cited 2021 Jul 10]. Available from: http://canpro5.kns.or.kr/.
  23. Ministry of Food and Drug Safety. Food nutrition composition database [Internet]. Cheongju: Ministry of Food and Drug Safety; 2021 [cited 2021 Jul 20]. Available from: https://www.foodsafetykorea.go.kr/fcdb/.
  24. Ministry of Education, Culture, Sports, Science and Technology (MEXT). Standard tables of food composition in Japan- 2015 - (seventh revised version) [Internet]. Tokyo: Ministry of Education, Culture, Sports, Science and Technology; 2021 [cited 2021 Jun 20]. Available from: https://www.mext.go.jp/en/policy/science_technology/policy/title01/detail01/1374030.htm.
  25. Chinese Center for Disease Control and Prevention. China food composition tables standard edition, 6th ed - vegetable food. Beijing: Peking University Press; 2018.
  26. Chinese Center for Disease Control and Prevention. China food composition tables standard edition, 6th ed - animal food. Beijing: Peking University Press; 2019.
  27. Aylward LL, Hays SM, Vezina A, Deveau M, St-Amand A, Nong A. Biomonitoring equivalents for interpretation of urinary fluoride. Regul Toxicol Pharmacol 2015; 72(1): 158-167. https://doi.org/10.1016/j.yrtph.2015.04.005
  28. St-Amand A, Werry K, Aylward LL, Hays SM, Nong A. Screening of population level biomonitoring data from the Canadian Health Measures Survey in a risk-based context. Toxicol Lett 2014; 231(2): 126-134. https://doi.org/10.1016/j.toxlet.2014.10.019
  29. Teng W, Shan Z, Teng X, Guan H, Li Y, Teng D, et al. Effect of iodine intake on thyroid diseases in China. N Engl J Med 2006; 354(26): 2783-2793. https://doi.org/10.1056/NEJMoa054022
  30. de Benoist B, McLean E, Andersson M, Rogers L. Iodine deficiency in 2007: global progress since 2003. Food Nutr Bull 2008; 29(3): 195-202. https://doi.org/10.1177/156482650802900305
  31. Caldwell KL, Pan Y, Mortensen ME, Makhmudov A, Merrill L, Moye J. Iodine status in pregnant women in the National Children's Study and in U.S. women (15-44 years), National Health and Nutrition Examination Survey 2005-2010. Thyroid 2013; 23(8): 927-937. https://doi.org/10.1089/thy.2013.0012
  32. Kim HI, Oh HK, Park SY, Jang HW, Shin MH, Kim SW, et al. Urinary iodine concentration and thyroid hormones: Korea National Health and Nutrition Examination Survey 2013-2015. Eur J Nutr 2019; 58(1): 233-240. https://doi.org/10.1007/s00394-017-1587-8
  33. Herrick KA, Perrine CG, Aoki Y, Caldwell KL. Iodine status and consumption of key iodine sources in the U.S. population with special attention to reproductive age women. Nutrients 2018; 10(7): E874.
  34. Imaeda N, Kuriki K, Fujiwara N, Goto C, Tokudome Y, Tokudome S. Usual dietary intakes of selected trace elements (Zn, Cu, Mn, I, Se, Cr, and Mo) and biotin revealed by a survey of four-season 7-consecutive day weighed dietary records in middle-aged Japanese dietitians. J Nutr Sci Vitaminol (Tokyo) 2013; 59(4): 281-288. https://doi.org/10.3177/jnsv.59.281
  35. Jeon MJ, Kim WG, Kwon H, Kim M, Park S, Oh HS, et al. Excessive iodine intake and thyrotropin reference interval: data from the Korean National Health and Nutrition Examination Survey. Thyroid 2017; 27(7): 967-972. https://doi.org/10.1089/thy.2017.0078