Acknowledgement
We greatly appreciated using the Convergence Research Laboratory (established by the MNU Innovation Support Project in 2019) to conduct this research. This research was funded by the Basic Science Research Program of National Research Foundation Korea, grant number 2019R1A2C1005899.
References
- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. 2021. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71: 209-249. https://doi.org/10.3322/caac.21660
- Qian J, Fang D, Lu H, Cao Y, Zhang J, Ding R, et al. 2018. Tanshinone IIA promotes IL2-mediated SW480 colorectal cancer cell apoptosis by triggering INF2-related mitochondrial fission and activating the Mst1-Hippo pathway. Biomed. Pharmacother. 108: 1658-1669. https://doi.org/10.1016/j.biopha.2018.09.170
- Rijo P, Pesic M, Fernandes AS, Santos CN. 2020. Natural products: optimizing cancer treatment through modulation of redox balance. Oxid. Med. Cell Longev. 2020: 2407074.
- Yang SY, Sales KM, Fuller B, Seifalian AM, Winslet MC. 2009. Apoptosis and colorectal cancer: implications for therapy. Trends Mol. Med. 15: 225-233. https://doi.org/10.1016/j.molmed.2009.03.003
- Entezar-Almahdi E, Mohammadi-Samani S, Tayebi L, Farjadian F. 2020. Recent advances in designing 5-fluorouracil delivery systems: a stepping stone in the safe treatment of colorectal cancer. Int. J. Nanomedicine 15: 5445-5458. https://doi.org/10.2147/IJN.S257700
- Tian ZY, Du GJ, Xie SQ, Zhao J, Gao WY, Wang CJ. 2007. Synthesis and bioevaluation of 5-fluorouracil derivatives. Molecules 12: 2450-2457. https://doi.org/10.3390/12112450
- Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. 2019. Phytochemicals in cancer treatment: from preclinical studies to clinical practice. Front. Pharmacol. 10: 1614. https://doi.org/10.3389/fphar.2019.01614
- Kwak AW, Yoon G, Lee MH, Cho SS, Shim JH, Chae JI. 2020. Picropodophyllotoxin, an epimer of podophyllotoxin, causes apoptosis of human esophageal squamous cell carcinoma cells through ROS-mediated JNK/P38 MAPK pathways. Int.J. Mol. Sci. 21: 4640. https://doi.org/10.3390/ijms21134640
- Zhao W, Cong Y, Li HM, Li S, Shen Y, Qi Q, et al. 2021. Challenges and potential for improving the druggability of podophyllotoxinderived drugs in cancer chemotherapy. Nat. Prod. Rep. 38: 470-488. https://doi.org/10.1039/D0NP00041H
- Wu X, Sooman L, Wickstrom M, Fryknas M, Dyrager C, Lennartsson J, et al. 2013. Alternative cytotoxic effects of the postulated IGF-IR inhibitor picropodophyllin in vitro. Mol. Cancer Ther. 12: 1526-1536. https://doi.org/10.1158/1535-7163.MCT-13-0091
- Schieber M, Chandel NS. 2014. ROS function in redox signaling and oxidative stress. Curr. Biol. 24: R453-462. https://doi.org/10.1016/j.cub.2014.03.034
- Choi BH, Kim JM, Kwak MK. 2021. The multifaceted role of NRF2 in cancer progression and cancer stem cells maintenance. Arch. Pharm. Res. 44: 263-280. https://doi.org/10.1007/s12272-021-01316-8
- Shi X, Zhang Y, Zheng J, Pan J. 2012. Reactive oxygen species in cancer stem cells. Antioxid. Redox Signal. 16: 1215-1228. https://doi.org/10.1089/ars.2012.4529
- Falone S, Lisanti MP, Domenicotti C. 2019. Oxidative stress and reprogramming of mitochondrial function and dynamics as targets to modulate cancer cell behavior and chemoresistance. Oxid. Med. Cell Longev. 2019: 4647807.
- Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, et al. 2020. ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med. 52: 192-203. https://doi.org/10.1038/s12276-020-0384-2
- Cargnello M, Roux PP. 2011. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 75: 50-83. https://doi.org/10.1128/MMBR.00031-10
- Fulda S, Debatin KM. 2006. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25: 4798-4811. https://doi.org/10.1038/sj.onc.1209608
- Kaufmann T, Strasser A, Jost PJ. 2012. Fas death receptor signalling: roles of Bid and XIAP. Cell Death Differ. 19: 42-50. https://doi.org/10.1038/cdd.2011.121
- Parrish AB, Freel CD, Kornbluth S. 2013. Cellular mechanisms controlling caspase activation and function. Cold Spring Harb. Perspect. Biol. 5: a008672.
- De Chiara G, Marcocci ME, Torcia M, Lucibello M, Rosini P, Bonini P, et al. 2006. Bcl-2 Phosphorylation by p38 MAPK: identification of target sites and biologic consequences. J. Biol. Chem. 281: 21353-21361. https://doi.org/10.1074/jbc.M511052200
- Ding Q, Xie XL, Wang MM, Yin J, Tian JM, Jiang XY, et al. 2019. The role of the apoptosis-related protein BCL-B in the regulation of mitophagy in hepatic stellate cells during the regression of liver fibrosis. Exp. Mol. Med. 51: 1-13.
- Keum N, Giovannucci E. 2019. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 16: 713-732. https://doi.org/10.1038/s41575-019-0189-8
- Lopez J, Tait SW. 2015. Mitochondrial apoptosis: killing cancer using the enemy within. Br. J. Cancer 112: 957-962. https://doi.org/10.1038/bjc.2015.85
- Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N. 2014. Apoptosis and molecular targeting therapy in cancer. Biomed Res. Int. 2014: 150845. https://doi.org/10.1155/2014/150845
- Villanueva J, Yung Y, Walker JL, Assoian RK. 2007. ERK activity and G1 phase progression: identifying dispensable versus essential activities and primary versus secondary targets. Mol. Biol. Cell 18: 1457-1463. https://doi.org/10.1091/mbc.E06-10-0908
- Narasimha AM, Kaulich M, Shapiro GS, Choi YJ, Sicinski P, Dowdy SF. 2014. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. Elife 3: e02872. https://doi.org/10.7554/elife.02872
- Cheng X, Feng H, Wu H, Jin Z, Shen X, Kuang J, et al. 2018. Targeting autophagy enhances apatinib-induced apoptosis via endoplasmic reticulum stress for human colorectal cancer. Cancer Lett. 431: 105-114. https://doi.org/10.1016/j.canlet.2018.05.046
- Ling YH, Liebes L, Zou Y, Perez-Soler R. 2003. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J. Biol. Chem. 278: 33714-33723. https://doi.org/10.1074/jbc.M302559200
- Richa S, Dey P, Park C, Yang J, Son JY, Park JH, et al. 2020. A New histone deacetylase inhibitor, MHY4381, induces apoptosis via generation of reactive oxygen species in human prostate cancer cells. Biomol. Ther. (Seoul) 28: 184-194. https://doi.org/10.4062/biomolther.2019.074
- Adams CJ, Kopp MC, Larburu N, Nowak PR, Ali MMU. 2019. Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Front. Mol. Biosci. 6: 11. https://doi.org/10.3389/fmolb.2019.00011
- Lindner P, Christensen SB, Nissen P, Moller JV, Engedal N. 2020. Cell death induced by the ER stressor thapsigargin involves death receptor 5, a non-autophagic function of MAP1LC3B, and distinct contributions from unfolded protein response components. Cell Commun. Signal. 18: 12. https://doi.org/10.1186/s12964-019-0499-z
- Lee AS. 2005. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35: 373-381. https://doi.org/10.1016/j.ymeth.2004.10.010
- Pfaffenbach KT, Gentile CL, Nivala AM, Wang D, Wei Y, Pagliassotti MJ. 2010. Linking endoplasmic reticulum stress to cell death in hepatocytes: roles of C/EBP homologous protein and chemical chaperones in palmitate-mediated cell death. Am. J. Physiol. Endocrinol. Metab. 298: E1027-1035. https://doi.org/10.1152/ajpendo.00642.2009
- Hu H, Tian M, Ding C, Yu S. 2018. The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front. Immunol. 9: 3083. https://doi.org/10.3389/fimmu.2018.03083
- Darling NJ, Cook SJ. 2014. The role of MAPK signalling pathways in the response to endoplasmic reticulum stress. Biochim. Biophys. Acta 1843: 2150-2163. https://doi.org/10.1016/j.bbamcr.2014.01.009
- Wada T, Penninger JM. 2004. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23: 2838-2849. https://doi.org/10.1038/sj.onc.1207556
- Ko YH, Kim SK, Kwon SH, Seo JY, Lee BR, Kim YJ, et al. 2019. 7,8,4'-Trihydroxyisoflavone, a metabolized product of daidzein, attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Biomol. Ther. (Seoul) 27: 363-372. https://doi.org/10.4062/biomolther.2018.211
- Kulisz A, Chen N, Chandel NS, Shao Z, Schumacker PT. 2002. Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes. Am. J. Physiol. Lung Cell Mol. Physiol. 282: L1324-1329.
- Zorov DB, Juhaszova M, Sollott SJ. 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94: 909-950. https://doi.org/10.1152/physrev.00026.2013
- Levine B, Sinha S, Kroemer G. 2008. Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 4: 600-606. https://doi.org/10.4161/auto.6260
- Lee YJ, Kim WI, Kim SY, Cho SW, Nam HS, Lee SH, et al. 2019. Flavonoid morin inhibits proliferation and induces apoptosis of melanoma cells by regulating reactive oxygen species, Sp1 and Mcl-1. Arch. Pharm. Res. 42: 531-542. https://doi.org/10.1007/s12272-019-01158-5
- Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. 1997. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479-489. https://doi.org/10.1016/S0092-8674(00)80434-1
- Shi Y. 2002. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell 9: 459-470. https://doi.org/10.1016/S1097-2765(02)00482-3