DOI QR코드

DOI QR Code

Discovery of Argyrin-Producing Archangium gephyra MEHO_001 and Identification of Its Argyrin Biosynthetic Genes

  • Received : 2021.07.19
  • Accepted : 2021.08.24
  • Published : 2021.12.28

Abstract

Argyrins are a group of anticancer and antibacterial octapeptide bioactive substances isolated from myxobacteria. In this study, we showed that the myxobacterium Archangium gephyra MEHO_001, isolated in Korea, produces argyrins A and B. MEHO_001 cells tend to aggregate when cultured in liquid media. Hence, a dispersion mutant, MEHO_002, was isolated from MEHO_001. The MEHO_002 strain produced approximately 3.5 times more argyrins than that produced by the wild-type strain MEHO_001. We determined the whole-genome sequence of A. gephyra MEHO_002 and identified a putative argyrin biosynthetic gene cluster comprising five genes, arg1-arg5, encoding non-ribosomal peptide synthases and tailoring enzymes. Inactivation of arg2 by plasmid insertion disrupted argyrin production. The amino acid sequences of the proteins encoded by arg2-arg5 of A. gephyra MEHO_002 were 90-98% similar to those encoded by the argyrin biosynthetic genes of Cystobacter sp. SBCb004, an argyrin-producing myxobacterium with identical domain organization.

Keywords

References

  1. Sasse F, Steinmetz H, Schupp T, Petersen F, Memmert K, Hofmann H, et al. 2002. Argyrins, immunosuppressive cyclic peptides from myxobacteria. I. Production, isolation, physico-chemical and biological properties. J. Antibiot. 55: 543-551. https://doi.org/10.7164/antibiotics.55.543
  2. Vollbrecht L, Steinmetz H, Hofle G, Oberer L, Rihs G, Bovermann G, et al. 2002. Argyrins, immunosuppressive cyclic peptides from myxobacteria. II. Structure elucidation and stereochemistry. J. Antibiot. 55: 715-721. https://doi.org/10.7164/antibiotics.55.715
  3. Ferrari P, Vekey K, Galimberti M, Gallo GG, Selva E, Zerilli LF. 1996. Antibiotics A21459 A and B, new inhibitors of bacterial protein synthesis. II. Structure elucidation. J. Antibiot. 49: 150-154. https://doi.org/10.7164/antibiotics.49.150
  4. Selva E, Gastaldo L, Saddler GS, Toppo G, Ferrari P, Carniti G, et al. 1996. Antibiotics A21459 A and B, new inhibitors of bacterial protein synthesis. I. Taxonomy, isolation and characterization. J. Antibiot 49: 145-149. https://doi.org/10.7164/antibiotics.49.145
  5. Pogorevc D, Tang Y, Hoffmann M, Zipf G, Bernauer HS, Popoff A, et al. 2019. Biosynthesis and heterologous production of argyrins. ACS Synth. Biol. 8: 1121-1133. https://doi.org/10.1021/acssynbio.9b00023
  6. Nyfeler B, Hoepfner D, Palestrant D, Kirby CA, Whitehead L, Yu R, et al. 2012. Identification of elongation factor G as the conserved cellular target of argyrin B. PLoS One 7: e42657. https://doi.org/10.1371/journal.pone.0042657
  7. Ley SV, Priour A, Heusser C. 2002. Total synthesis of the cyclic heptapeptide Argyrin B: a new potent inhibitor of T-cell independent antibody formation. Org. Lett. 4: 711-714. https://doi.org/10.1021/ol017184m
  8. Nickeleit I, Zender S, Sasse F, Geffers R, Brandes G, Sorensen I, et al. 2008. Argyrin A reveals a critical role for the tumor suppressor protein p27kip1 in mediating antitumor activities in response to proteasome inhibition. Cancer Cell. 14: 23-35. https://doi.org/10.1016/j.ccr.2008.05.016
  9. Bulow L, Nickeleit I, Girbig AK, Brodmann T, Rentsch A, Eggert U, et al. 2010. Synthesis and biological characterization of argyrin F. ChemMedChem 5: 832-836. https://doi.org/10.1002/cmdc.201000080
  10. Stauch B, Simon B, Basile T, Schneider G, Malek NP, Kalesse M, et al. 2010. Elucidation of the structure and intermolecular interactions of a reversible cyclic-peptide inhibitor of the proteasome by NMR spectroscopy and molecular modeling. Angew. Chem. Int. Ed. Engl. 49: 3934-3938. https://doi.org/10.1002/anie.201000140
  11. Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, et al. 1994. Cloning of p27kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78: 59-66. https://doi.org/10.1016/0092-8674(94)90572-x
  12. Allardyce DJ, Bell CM, Loizidou EZ. 2019. Argyrin B, a non-competitive inhibitor of the human immunoproteasome exhibiting preference for β1i. Chem. Biol. Drug Des. 94: 1556-1567. https://doi.org/10.1111/cbdd.13539
  13. Chen X, Bui KC, Barat S, Nguyen MLT, Bozko P, Sipos B, et al. 2017. Therapeutic effects of Argyrin F in pancreatic adenocarcinoma. Cancer Lett. 399: 20-28. https://doi.org/10.1016/j.canlet.2017.04.003
  14. Hyun H, Choi J, Kang D, Kim Y, Lee P, Chung GJY, et al. 2021. Screening of myxobacteria carrying tubulysin biosynthetic genes. Microbiol. Biotechnol. Lett. 49: 32-38. https://doi.org/10.48022/mbl.2010.10001
  15. Shin H, Youn J, An D, Cho K. 2013. Production of antimicrobial substances by strains of myxobacteria Corallococcus and Myxococcus. Korean J. Microbiol. Biotechnol. 41: 44-51. https://doi.org/10.4014/kjmb.1210.10011
  16. Zimbro MJ, Power DA, Miller SM, Wilson GE, Johnson JA (eds.). 2009. Difco and BBL manual: Manual of microbiological culture media. 2nd ed. Becton Dickinson and Co., Sparks, MD.
  17. Cho K, Zusman DR. 1999. AsgD, a new two-component regulator required for A-signalling and nutrient sensing during early development of Myxococcus xanthus. Mol. Microbiol. 34: 268-281. https://doi.org/10.1046/j.1365-2958.1999.01594.x
  18. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, N.Y., USA.
  19. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, et al. 2019. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47: W81-W87. https://doi.org/10.1093/nar/gkz310
  20. Johnson M, Zaretskaya I, Raytselis Y, Mereshuk Y, McGinnis S, Madden TL. 2008. NCBI BLAST: a better web interface. Nucleic Acids Res. 36: W5-W9. https://doi.org/10.1093/nar/gkn201
  21. Shimkets LJ. 1986. Correlation of energy-dependent cell cohesion with social motility in Myxococcus xanthus. J. Bacteriol. 166: 837-841. https://doi.org/10.1128/jb.166.3.837-841.1986
  22. Gerth K, Pradella S, Perlova O, Beyer S, Muller R. 2003. Myxobacteria: proficient producers of novel natural products with various biological activities - past and future biotechnological aspects with the focus on the genus Sorangium. J. Biotechnol. 106: 233-253. https://doi.org/10.1016/j.jbiotec.2003.07.015
  23. Schaberle TF, Lohr F, Schmitz A, Konig GM. 2014. Antibiotics from myxobacteria. Nat. Prod. Rep. 31: 953-972. https://doi.org/10.1039/c4np00011k
  24. Hyun H, Cho K. 2018. Secondary metabolites of myxobacteria. Korean J. Microbiol. 54: 175-187. https://doi.org/10.7845/KJM.2018.8042
  25. Choi J, Park T, Kang D, Lee J, Kim Y, Lee P, et al. 2021. Analysis of tubulysin biosynthetic genes in Archangium gephyra. Microbiol. Biotechnol. Lett. 49: 458-465.