DOI QR코드

DOI QR Code

Minor Coat Protein pIII Domain (N1N2) of Bacteriophage CTXф Confers a Novel Surface Plasmon Resonance Biosensor for Rapid Detection of Vibrio cholerae

  • Shin, Hae Ja (Department of Bio-Pharmaceutical Engineering, College of Bio-Health, Dongseo University) ;
  • Hyeon, Seok Hywan (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Cho, Jae Ho (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Lim, Woon Ki (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
  • Received : 2021.09.26
  • Accepted : 2021.11.10
  • Published : 2021.12.28

Abstract

Bacteriophages are considered excellent sensing elements for platforms detecting bacteria. However, their lytic cycle has restricted their efficacy. Here, we used the minor coat protein pIII domain (N1N2) of phage CTXφ to construct a novel surface plasmon resonance (SPR) biosensor that could detect Vibrio cholerae. N1N2 harboring the domains required for phage adsorption and entry was obtained from Escherichia coli using recombinant protein expression and purification. SDS-PAGE revealed an approximate size of 30 kDa for N1N2. Dot blot and transmission electron microscopy analyses revealed that the protein bound to the host V. cholerae but not to non-host E. coli K-12 cells. Next, we used amine-coupling to develop a novel recombinant N1N2 (rN1N2)-functionalized SPR biosensor by immobilizing rN1N2 proteins on gold substrates and using SPR to monitor the binding kinetics of the proteins with target bacteria. We observed rapid detection of V. cholerae in the range of approximately 103 to 109 CFU/ml but not of E. coli at any tested concentration, thereby confirming that the biosensor exhibited differential recognition and binding. The results indicate that the novel biosensor can rapidly monitor a target pathogenic microorganism in the environment and is very useful for monitoring food safety and facilitating early disease prevention.

Keywords

Acknowledgement

This work was supported by a grant from the Basic Science Research Program (2016R1D1A1B01015961) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Republic of Korea.

References

  1. Bonnin-Jusserand M, Copin S, Le Bris C, Brauge T, Gay M, Brisabois A, et al. 2019. Vibrio species involved in seafood-borne outbreaks (Vibrio cholerae, V. parahaemolyticus and V. vulnificus): Review of microbiological versus recent molecular detection methods in seafood products. Crit. Rev. Food Sci. Nutr. 59: 597-610. https://doi.org/10.1080/10408398.2017.1384715
  2. Faruque SM, Mekalanos JJ. 2012. Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence 3: 556-565. https://doi.org/10.4161/viru.22351
  3. Lazcka O, Del Campo FJ, Munoz FX. 2007. Pathogen detection: a perspective of traditional methods and biosensors. Biosens. Bioelectron. 22: 1205-1217. https://doi.org/10.1016/j.bios.2006.06.036
  4. Dwivedi HP, Jaykus LA. 2011. Detection of pathogens in foods: the current state-of-the-art and future directions. Crit. Rev. Microbiol. 37: 40-63. https://doi.org/10.3109/1040841X.2010.506430
  5. D'Souza SF. 2001. Microbial biosensors. Biosens. Bioelectron. 16: 337-353. https://doi.org/10.1016/S0956-5663(01)00125-7
  6. Belkin S. 2003. Microbial whole-cell sensing systems of environmental pollutants. Curr. Opin. Microbiol. 6: 206-212. https://doi.org/10.1016/S1369-5274(03)00059-6
  7. Shin HJ. 2011. Genetically engineered microbial biosensors for in situ monitoring of environmental pollution. Appl. Microbiol. Biotechnol. 89: 867-877. https://doi.org/10.1007/s00253-010-2990-8
  8. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E. 1999. Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron. 14: 599-624. https://doi.org/10.1016/S0956-5663(99)00039-1
  9. Singh A, Arya SK, Glass N, Hanifi-Moghaddam P, Naidoo R, Szymanski CM, et al. 2010. Bacteriophage tailspike proteins as molecular probes for sensitive and selective bacterial detection. Biosens. Bioelectron. 26: 131-138. https://doi.org/10.1016/j.bios.2010.05.024
  10. Singh A, Poshtiban S, Evoy S. 201. Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors-Basel. 13: 1763-1786. https://doi.org/10.3390/s130201763
  11. Jelinek R, Kolusheva S. 2004. Carbohydrate biosensors. Chem. Rev. 104: 5987-6015. https://doi.org/10.1021/cr0300284
  12. Elsholz B, Worl R, Blohm L, Albers J, Feucht H, Grunwald T, et al. 2006. Automated detection and quantitation of bacterial RNA by using electrical microarrays. Anal. Chem. 78: 4794-4802. https://doi.org/10.1021/ac0600914
  13. Torres-Chavolla E, Alocilja EC. 2009. Aptasensors for detection of microbial and viral pathogens. Biosens. Bioelectron. 24: 3175-3182. https://doi.org/10.1016/j.bios.2008.11.010
  14. Dover JE, Hwang GM, Mullen EH, Prorok BC, Suh SJ. 2009. Recent advances in peptide probe-based biosensors for detection of infectious agents. J. Microbiol. Methods 78: 10-19. https://doi.org/10.1016/j.mimet.2009.04.008
  15. Ilic B, Czaplewski D, Craighead HG, Neuzil P, Campagnolo C, Batt C. 2000. Mechanical resonant immunospecific biological detector. Appl. Phys. Lett. 77: 450-452. https://doi.org/10.1063/1.127006
  16. Shin HJ, Park HH, Lim WK. 2005. Freeze-dried recombinant bacteria for on-site detection of phenolic compounds by color change. J. Biotechnol. 119: 36-43. https://doi.org/10.1016/j.jbiotec.2005.06.002
  17. Balasubramanian S, Sorokulova IB, Vodyanoy VJ, Simonian AL. 2007. Lytic phage as a specific and selective probe for detection of Staphylococcus aureus-A surface plasmon resonance spectroscopic study. Biosens. Bioelectron. 22: 948-955. https://doi.org/10.1016/j.bios.2006.04.003
  18. Lee DY, Jeong IY, Park DS, Shin HJ. 2014. Electrochemical biosensing of salicylate by recombinant Escherichia coli cells immobilized in polyvinyl alcohol beads. Sensor. Mater. 26: 665-675.
  19. Shin HJ, Lim WK. 2016. Comparative evaluation of an electrochemical bioreporter for detecting phenolic compounds. Prep. Biochem. Biotechnol. 46: 71-77. https://doi.org/10.1080/10826068.2014.979207
  20. Tawil N, Sacher E, Mandeville R, Meunier M. 2012. Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages. Biosens. Bioelectron. 37: 24-29. https://doi.org/10.1016/j.bios.2012.04.048
  21. Gervais L, Gel M, Allain B, Tolba M, Brovko L, Zourob M, et al. 2007. Immobilization of biotinylated bacteriophages on biosensor surfaces. Sensor. Actuat. B-Chem. 125: 615-621. https://doi.org/10.1016/j.snb.2007.03.007
  22. Nanduri V, Sorokulova IB, Samoylov AM, Simonian AL, Petrenko VA, Vodyanoy V. 2007. Phage as a molecular recognition element in biosensors immobilized by physical adsorption. Biosens. Bioelectron. 22: 986-992. https://doi.org/10.1016/j.bios.2006.03.025
  23. Huang S, Li SQ, Yang H, Johnson M, Wan J, Chen I. 2008. Optimization of phage-based magnetoelastic biosensor performance. Sensor. Transl. Med. 3: 87-96.
  24. Singh A, Glass N, Tolba M, Brovko L, Griffiths M, Evoy, S. 2009. Immobilization of bacteriophages on gold surfaces for the specific capture of pathogens. Biosens. Bioelectron. 24: 3645-3651. https://doi.org/10.1016/j.bios.2009.05.028
  25. Singh A, Arutyunov D, McDermott MT, Szymanski CM, Evoy S. 2011. Specific detection of Campylobacter jejuni using the bacteriophage NCTC 12673 receptor binding protein as a probe. Analyst 136: 4780-4786. https://doi.org/10.1039/c1an15547d
  26. Dutt S, Tanha J, Evoy S, Singh A. 2013. Immobilization of P22 bacteriophage Tailspike protein on Si surface for optimized Salmonella capture. J. Anal. Bioanal. Tech. http://doi:10.4172/2155-9872.S7-007.
  27. Shin HJ, Lim WK. 2018. Rapid label-free detection of E. coli using a novel SPR biosensor containing a fragment of tail protein from phage lambda. Prep. Biochem. Biotechnol. 48: 498-505. https://doi.org/10.1080/10826068.2018.1466154
  28. Hyeon SH, Lim WK, Shin HJ. 2020. Novel surface plasmon resonance biosensor that uses full-length Det7 phage tail protein for rapid and selective detection of Salmonella enterica serovar Typhimurium. Biotechnol. Appl. Biochem. 68: 5-12. https://doi.org/10.1002/bab.1883
  29. Faruque SM, Albert MJ, Mekalanos JJ. 1998. Epidemiology, genetics, and ecology of toigenic Vibrio cholerae. Microbiol. Mol. Biol. 62: 1301-1314. https://doi.org/10.1128/MMBR.62.4.1301-1314.1998
  30. Heilpern AJ, Waldor MK. 2003. pIIICTX, a predicted CTXφ minor coat protein, can expand the host range of Coliphage fd to include Vibrio cholerae. J. Bacteriol. 185: 1037-1044. https://doi.org/10.1128/JB.185.3.1037-1044.2003
  31. Ford CG, Kolappan S, Phan HTH, Waldor MK, Winther-Larsen HC, Craig L. 2012. Crystal structures of a CTXφ pIII domain unbound and in complex with a Vibrio cholerae TolA domain reveal novel interaction interfaces. J. Biol. Chem. 287: 36258-36272. https://doi.org/10.1074/jbc.M112.403386
  32. Rakonjac J, Model P. 1998. Roles of pIII in filamentous phage assembly. J. Mol. Biol. 282: 25-41. https://doi.org/10.1006/jmbi.1998.2006
  33. Sambrook J, Fritsch EF, Maniatis T. 2001. Molecular Cloning: a laboratory manual, 3rd Edition, CSHL Press, New York.