DOI QR코드

DOI QR Code

Characteristics of Probiotics Isolated from Korean Traditional Foods and Antibacterial Activity of Synbiotics

한국전통발효식품에서 분리한 Probiotics의 특징 및 Synbiotics 항균활성 효과

  • Moon, Chae-Yun (Department of Aquatic Biomedical Sciences, Jeju National University) ;
  • Heo, Moon-Soo (Department of Aquatic Biomedical Sciences, Jeju National University)
  • 문채윤 (제주대학교 해양과학대학 수산생명의학과) ;
  • 허문수 (제주대학교 해양과학대학 수산생명의학과)
  • Received : 2021.06.08
  • Accepted : 2021.08.09
  • Published : 2021.12.28

Abstract

Traditional foods are manufactured according to the characteristics of each region for the nations of the world. Korea has mainly farmed, and seasonings have developed around rice and vegetables. In fermented foods, lactic acid bacteria such as Lactobacillus sp. and Pediococcus sp. and Bacillus sp. were isolated and identified from fermented foods. In this study, lactic acid bacteria were isolated and identified from commercially available traditional Korean fermented foods, and candidate strains were selected through antibacterial activity tests on human and fish disease bacteria. Thereafter, the final strain was selected by examining the resistance to simulated gastric and intestinal fluids, and hemolysis. The three (M1, K1, C13) final selected latic acid bacteria were miced with prebiotics and the antibacterial activity of synbiotics was evaluated. As for the fist antibacterial activity result, C13 showed high antibacterial acitivity in human diseases and fish diseases. Then, M1, K1 and C13, which did not produce β-haemolysis and were resistant to simulated gastric and intestinal fluids, were subjected to the second antibacterial activity of synbiotics. When the three prebiotics (FOS, GOS, Inulin) and probiotics (M1, K1, C13) were mixed, the antibacterial activity was increased or inhibited. Based on the 16S rRNA gene sequencing results, K1 and M1 were analyzed as Bacillus tequiensis 99.72%, Bacillus subtilis 99.65%, Bacillus inaquosorum 99.72%, Bacillus cabrialesii 99.72%, Bacillus stercoris 99.58%, Bacillus spizizenii 99.58%, Bacillus halotolerans 99.58%, and Bacillus mojavensis 99.51%. And C13 was analyzed as Bacillus velezensis 99.71%, Bacillus nematocida 99.36%, Bacillus amyloliquefaciens 99.44%, Bacillus atrophaeus 99.22%, and Bacillus nakamurai 99.44%.

세계 각국의 민족은 자신의 국토의 삶과 기후 풍토, 지역 특산 산물과 식습관 및 식생활 등에 따라 색다른 전통식품이 만들어 진다. 한국은 오랫동안 농경을 중심으로 먹거리를 해오며 쌀과 함께 곁들일 채소류를 중심으로 조미료가 발달되었고, 염절임 기법을 통해 발효식품을 만들었다. 이러한 발효식품에서 주로 찾아볼 수 있는 종은 Lactobacillus sp.과 Pediococcus sp. 및 Bacillus sp. 등과 같은 유산균을 분리할 수 있었고 다양한 방법으로 동정 되어왔다. 본 연구에서는 시장에서 시판되고 있는 한국전통발효식품을 통해 유산균을 분리 및 동정하였고, 유해세균에 대한 항균능력이 우수한 균주를 선별하였다. 그리고 우수 후보 균주의 인공위액 및 담즙액에 대한 내성과 용혈능 등을 검토하여 최종 균주를 선별하였다. 최종 선별된 유산균은 3종의 prebiotics와 혼합한 synbiotics로서의 항균활성 능력을 평가하였다. 1차 항균 활성에서 C13은 인체 및 어류질병세균에서 가장 넓은 항균 스펙트럼을 보였고, β-haemolysis를 생산하지 않고 인공위액과 담즙액의 내성을 지닌 M1, K1 및 C13을 synbiotics의 2차 항균 활성을 수행하였다. Prebiotics 3종(FOS, GOS, Inulin)과 선별된 균주가 혼합된 synbiotics에서는 이전 보다 항균 활성이 증진 또는 저해됨을 알 수 있었다. 16 rDNA 염기서열 결과, K1과 M1은 Bacillus tequiensis 99.72%, Bacillus subtilis 99.65%, Bacillus inaquosorum 99.72%, Bacillus cabrialesii 99.72%, Bacillus stercoris 99.58%, Bacillus spizizenii 99.58%, Bacillus halotolerans 99.58%, Bacillus mojavensis 99.51%로 분석되었다. 그리고 C13은 Bacillus velezensis 99.71%, Bacillus nematocida 99.36%, Bacillus amyloliquefaciens 99.44%, Bacillus atrophaeus 99.22%, Bacillus nakamurai 99.44%로 분석되었다.

Keywords

Acknowledgement

This work was supported by the research grant of Jeju National University in 2021.

References

  1. Shin DH. 2010. Globalization trends and prospect of Korean traditional fermented foods. Food Sci. Ind. 43: 69-82. https://doi.org/10.23093/FSI.2010.43.3.69
  2. Kim SM. 2020. The present condition and development prospect of the fermented fishery products. Food Sci. Biotechnol. 53: 200-214.
  3. Lee KW, Park JY, Sa HD, Jeong JH, Jin DE, Heo HJ, et al. 2014. Probiotic properties of pediococcus strains isolated from jeotgals, salted and fermented Korean sea-food. Anaerobe 28: 199-206. https://doi.org/10.1016/j.anaerobe.2014.06.013
  4. Park KY, Jeong JK, Lee YE, Daily 3rd JW. 2014. Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. J. Med. Food. 17: 6-20. https://doi.org/10.1089/jmf.2013.3083
  5. Miriam BB, Julio PD, Sergio MQ, Carolina GL, Angel G. 2012. Probiotic mechanisms of action. Ann. Nutr. Metab. 61: 160-174. https://doi.org/10.1159/000342079
  6. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al. 2010. Prebiotic effects: metabolic and health benefits. Br. J. Nutr. 104: S1-S63.
  7. Sekhon BS, Jairath S. 2010. Prebiotics, probiotics and synbiotics: an overview. J. Pharm. Educ. Res. 1: 13-36.
  8. Ziggers-Anim D. 2000. A new prebiotic derived from whey. Anim. Feed Sci. Technol. 5: 34-36.
  9. Li X, Xu C. 2008. Effects of supplementation of fructooligosaccharide and/or Bacillus subtilis to diets on performance and on intestinal microflora in broilers. Arch. Tierz. 51: 64-70.
  10. Dehaghani PG, Baboli MJ, Moghadam AT, Ziaei-Nejad S, Pourfarhadi M. 2015. Effect of symbiotic dietary supplementation on survival, growth performance and digestive enzyme activities on common carp (Cyprinus carpio) fingerlings. Czech J. Anim. Sci. 60: 224-232.
  11. Brinques GB, Ayub MAZ. 2011. Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestional conditions, refrigeration, and yogurt. J. Food Eng. 103: 123-128. https://doi.org/10.1016/j.jfoodeng.2010.10.006
  12. Zanjani MAK, Tarzi BG, Sharifan A, Mohammadi N. 2014. Microencapsulation of probiotics by calcium alginate-gelatinized starch with chitosan coating and evaluation of survival in simulated human gastro-intestional condition. Iran J. Pharm. Res. 13: 843-852.
  13. Khochamit N, Siripornadulsil S, SuKon P, Siripornadulsil W. 2015. Antibacterial activity and genotypic-phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: potential as a probiotic strain. Microbiol. Res. 170: 36-50. https://doi.org/10.1016/j.micres.2014.09.004
  14. Paster BJ, Olsen I, AAS JA, Dewhirst FE. 2000. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol. 2000. 42: 80-87.
  15. Marsh PD, Moter A, Devine DA. 2000. Dental plaque biofilms: communities, conflict and control. Periodontol. 2000. 55: 16-35. https://doi.org/10.1111/j.1600-0757.2009.00339.x
  16. Samot J, Badet C. 2013. Antibacterial activity of probiotic candidates for oral health. Anaerobe 19: 34-38. https://doi.org/10.1016/j.anaerobe.2012.11.007
  17. Lewin CS. 1992. Mechanisms of resistance development in aquatic microorganisms. pp. 288-301. In: Chemotherapy in Aquaculture: from Theory to Reality (Michel C and Alderman DJ eds). Iffice international des Epizooties, Paris, France.
  18. Byun JW, Park SC, Benno Y, Oh TK. 1997. Probiotic effect of Lactobacillus sp. DS-12 in flounder (Paralichthys olivaceus). J. Gen. Appl. Microbiol. 43: 305-308. https://doi.org/10.2323/jgam.43.305
  19. Kim DH, Subramanian D, Heo MS. 2017. Dietary effect of probiotic bacteria, Bacillus amyloliquefaciens-JFP2 on growth and innate immune response in rock bream oplegnathus fasciatus, challenged with Streptococcus iniae. Isr. J. Aquac. 69: 11.
  20. Tapia-Paniagua ST, Chabrillon M, Diza-Rosales P, Banda IGD I, Lobo C, Balebona C, et al. 2010. Intestinal microbiota diversity of the flat fish Solea senegalensis (kaup, 1858) following probiotic administration. Microb. Ecol. 60: 310-319. https://doi.org/10.1007/s00248-010-9680-z
  21. Bergan T, Ekstron B, Nord CE. 1986. Ecological impacts of antibacterial agents: Stockholm. Scand J. Infect. Dis. 18: 1-203. https://doi.org/10.3109/inf.1986.18.suppl-49.01
  22. Tagg JR, Dajani AS, Wannamaker LW. 1976. Bacteriocins of grampositive bacteria. Bacteriol. Res. 40: 722-756. https://doi.org/10.1128/br.40.3.722-756.1976
  23. Cleveland J, Montville TJ, Nes IF, Chikindas ML. 2001. Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71: 1-20. https://doi.org/10.1016/S0168-1605(01)00560-8
  24. Drider D, Fimland G, Hechard Y, Mcmullen LM, Prevost H. 2006. The continuing story of class IIa bacteriocins. Microbiol. Mol. Biol. Rev. 70: 564-582. https://doi.org/10.1128/MMBR.00016-05
  25. Mandadzhieva T, Ignatova-ivanova T, Kambarev S, lliev l, lvanova l. 2011. Utilization of different prebiotics by Lactobacillus spp. and Lactococcus spp. Biotechnol. Biotechnol. Equip. 25: 117-120. https://doi.org/10.5504/BBEQ.2011.0132
  26. Munoz M, Mosquera A, Almeciga-Diaz CJ, Melendez AP, Sanchez OF. 2012. Fructooligosaccharides metabolism and effect on bacteriocin production in Lactobacillus strains isolated from ensiled corn and molasses. Anaerobe 18: 321-330. https://doi.org/10.1016/j.anaerobe.2012.01.007
  27. Bosscher D, Loo JV, Franck A. 2006. Inulin and oligofructose as prebiotics in the prevention of intestinal infections and diseases. Nutr. Res. Rev. 19: 216-226. https://doi.org/10.1017/S0954422407249686
  28. Patel S, Goyal A. 2012. The current trends and future perspectives of prebiotics research: a review. 3 Biotech. 2: 115-125. https://doi.org/10.1007/s13205-012-0044-x
  29. Vamanu E, Vamanu A. 2010. The influence of prebiotics on bacteriocin synthesis using the strain Lactobacillus paracasei CMGB16. Afr. J. Microbiol. Res. 4: 534-537.