DOI QR코드

DOI QR Code

Spatial Variation of Wave Force Acting on a Vertical Detached Breakwater Considering Diffraction

회절을 고려한 직립 이안제에 작용하는 파력의 공간적 변화

  • Jung, Jae-Sang (Sangju District Office, Geyongbuk Regional Headquarter, Korea Rural Community Corporation) ;
  • Lee, Changhoon (Department of Civil and Environmental Engineering, Sejong University)
  • 정재상 (한국농어촌공사 경북지역본부 상주지사) ;
  • 이창훈 (세종대학교 건설환경공학과)
  • Received : 2021.11.29
  • Accepted : 2021.12.13
  • Published : 2021.12.31

Abstract

In this study, the analytical solution for diffraction near a vertical detached breakwater was suggested by superposing the solutions of diffraction near a semi-infinite breakwater suggested previously using linear wave theory. The solutions of wave forces acting on front, lee and composed wave forces on both side were also derived. Relative wave amplitude changed periodically in space owing to the interactions between diffracting waves and standing waves on front side and the interactions between diffracting waves from both tips of a detached breakwater on lee side. The wave forces on a vertical detached breakwater were investigated with monochromatic, uni-directional random and multi-directional random waves. The maximum composed wave force considering the forces on front and lee side reached maximum 1.6 times of wave forces which doesn't consider diffraction. This value is larger than the maximum composed wave force of semi-infinite breakwater considering diffraction, 1.34 times, which was suggested by Jung et al. (2021). The maximum composed wave forces were calculated in the order of monochromatic, uni-directional random and multi-directional random waves in terms of intensity. It was also found that the maximum wave force of obliquely incident waves was sometimes larger than that of normally incident waves. It can be known that the considerations of diffraction, the composed wave force on both front and lee side and incident wave angle are important from this study.

본 연구에서는 기존에 선형파 이론으로 제시된 반무한방파제 주변의 회절에 대한 해를 중첩하여 직립 이안제 주변에 발생하는 회절에 관한 해석해를 제시하였다. 그리고, 이를 이용하여 이안제 전면과 후면, 그리고 전·후면에 작용하는 합성파력에 대한 해를 유도하였다. 이안제 전면과 후면에서는 회절파와 중복파, 이안제 양쪽에서 회절한 회절파와 회절파 사이의 간섭에 의해 상대진폭이 공간상에서 주기적으로 변하는 양상을 보였다. 규칙파, 일방향 불규칙파 및 다방향 불규칙파를 대상으로 직립 이안제에 작용하는 파력을 검토하였다. 규칙파 내습시 이안제 전·후면의 파력을 모두 고려한 최대 합성파력의 경우 회절을 고려하지 않았을 경우에 비해 최대 1.6배까지 파력이 증가하는 것으로 나타났다. 이는 Jung et al.(2021)이 반무한 방파제에 대해 회절효과를 고려하여 검토한 결과인 1.34배보다 큰 수치이다. 이안제에 작용하는 최대파력은 규칙파, 일방향 불규칙파, 다방향 불규칙파 순으로 크게 계산되었다. 파랑이 비스듬히 입사하는 경우 이안제에 수직으로 입사하는 경우보다 최대파력이 크게 나타나는 경우도 발견되었다. 따라서, 이안제를 설계할 때, 회절효과, 이안제 전·후면에 작용하는 파력, 파랑의 입사각의 고려가 중요함을 알 수 있다.

Keywords

Acknowledgement

본 연구는 국토교통부 국토교통과학기술촉진연구사업의 연구비지원(과제번호: 21CTAP-C164367-01)에 의해 수행되었습니다.

References

  1. Allsop, N.W.H., Vicinanza, D. and McKenna, J.E. (1996). Wave forces on vertical composite breakwaters. Report SR 443, HR Wallingford, Wallingford, UK.
  2. Choi, G.-H., Jun, J.-H., Lee, K.-H. and Kim, D.-S. (2020). 3D-numerical simulation of wave pressure acting on caisson and wave characteristics near tip of composite breakwater. Journal of Korean Society of Coastal and Ocean Engineers, 32(3), 180-201 (in Korean). https://doi.org/10.9765/KSCOE.2020.32.3.180
  3. Cuomo, G., Allsop, W., Bruce, T. and Pearson, J. (2010). Breaking wave loads at vertical seawalls and breakwaters. Coastal Engineering, 57(4), 424-439. https://doi.org/10.1016/j.coastaleng.2009.11.005
  4. Goda, Y. (1975). New wave pressure formulae for composite breakwaters. In Coastal Engineering, 1974, 1702-1720.
  5. Hasselmann, K., Barnett, T., Bouws, E., Carlson, H., Cartwright, D., Enke, D., Ewing, J., Gienapp, H., Hasselmann, D., Kruseman, P. and Meerburg, A. (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutches Hydrographisches Institut, 1-95.
  6. Ito, Y. and Tanimoto, K. (1971). Meandering damage of composite type breakwater. Port and Harbour Research Institute (PHRI), 485 (in Japanese).
  7. Jung, J.-S. and Lee, C. (2020). Spatial variation of diffracting wave amplitudes on the front and lee sides of the semi-infinite breakwater. Journal of Korean Society of Coastal and Ocean Engineers, 32(4), 203-210 (in Korean). https://doi.org/10.9765/KSCOE.2020.32.4.203
  8. Jung, J.-S., Lee, C. and Cho, Y.-S. (2016). Distribution of wave forces at points on a vertical structure of semi-infinite breakwater considering diffraction. Journal of Korean Society of Coastal and Ocean Engineers, 28(4), 240-249 (in Korean). https://doi.org/10.9765/KSCOE.2016.28.4.240
  9. Jung, J.-S., Lee, C. and Park, Y.S. (2021). Variation of wave forces along a semi-infinite breakwater due to wave diffraction. Journal of Waterway Port Coastal and Ocean Engineering, 147(5), 04021028. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000647
  10. Kim, H., Do, K.D. and Suh, K.-D. (2011). Scattering of obliquely incident water waves by partially reflecting non-transmitting breakwaters. Ocean Engineering, 38, 148-158. https://doi.org/10.1016/j.oceaneng.2010.10.001
  11. Lamb, H. (1945). Hydrodynamics. sixth ed., Dover, New York.
  12. Lee, C., Jung, J.-S. and Haller, M.C. (2010). Asymmetry in directional spreading function of random waves due to refraction. Journal of Waterway Port Coastal and Ocean Engineering, 136(1), 1-9. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000006
  13. Lee, H.S. and Kim, S.D. (2006). A comparison of several wave spectra for the random wave diffraction by a semi-infinite breakwater. Ocean Engineering, 33(14-15), 1954-1971. https://doi.org/10.1016/j.oceaneng.2005.09.013
  14. McIver, P. (1999). Water-wave diffraction by thin porous breakwater. Journal of Waterway Port Coastal and Ocean Engineering, 125(2), 66-70. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:2(66)
  15. McIver, P. (2005). Diffraction of water waves by a segmented permeable breakwater. Journal of Waterway Port Coastal and Ocean Engineering, 131(2), 69-76. https://doi.org/10.1061/(ASCE)0733-950X(2005)131:2(69)
  16. Penney, W.G. and Price, A.T. (1952). The diffraction theory of sea waves by breakwaters and the shelter afforded by breakwaters. Philos. Trans. R. Soc. London, A(244), 236-253. https://doi.org/10.1098/rsta.1952.0003
  17. Sommerfeld, A. (1896). Mathematische theorie der diffraction. Mathematische Annalen, 47, 317-374 (in German). https://doi.org/10.1007/BF01447273
  18. Suh, K.-D. and Kim, H. (2008). Water wave scattering by partially reflecting breakwaters. KSCE Journal of Civil Engineering, 12(2), 71-76. https://doi.org/10.1007/s12205-008-0071-7
  19. Takayama, T. and Higashira, K. (2002). Statistical analysis on damage characteristics of breakwaters. Journal of Ocean Development ,18, 263-268 (in Japanese).
  20. Wood, D.J., Peregrine, D.H. and Bruce, T. (2000). Wave impact on a wall using pressure-impulse theory. I: trapped air. Journal of Waterway Port Coastal and Ocean Engineering, 126(4), 182-190. https://doi.org/10.1061/(ASCE)0733-950X(2000)126:4(182)
  21. Yu, X. (1995). Diffraction of water waves by porous breakwaters. Journal of Waterway Port Coastal and Ocean Engineering, 121(6), 275-282. https://doi.org/10.1061/(ASCE)0733-950X(1995)121:6(275)