DOI QR코드

DOI QR Code

Estimation and Analysis of Wave Spectrum Parameter using HeMOSU-2 Observation Data

HeMOSU-2 관측 자료를 이용한 파랑 스펙트럼 매개변수 추정 및 분석

  • Lee, Uk-Jae (Marine Bigdata Center, Korea Institute of Ocean Science & Technology) ;
  • Ko, Dong-Hui (Coastal Development and Ocean Energy Research Center, Korea Institute of Ocean Science & Technology) ;
  • Kim, Ji-Young (Korea Electric Power Research Institute) ;
  • Cho, Hong-Yeon (Marine Big-data Center, Korea Institute of Ocean Science and Technology, University of Science and Technology)
  • 이욱재 (한국해양과학기술원 해양빅데이터센터) ;
  • 고동휘 (한국해양과학기술원 연안개발에너지연구센터) ;
  • 김지영 (한국전력공사 전력연구원) ;
  • 조홍연 (한국해양과학기술원 해양빅데이터센터, 과학기술연합대학원 대학 KIOST SCHOOL)
  • Received : 2021.11.10
  • Accepted : 2021.11.30
  • Published : 2021.12.31

Abstract

In this study, wave spectrum data were calculated using the water surface elevation data observed at 5Hz intervals from the HeMOSU-2 meteorological tower installed on the west coast of Korea, and wave parameters were estimated using wave spectrum data. For all significant wave height ranges, the peak enhancement parameter (γopt) of the JONSWAP spectrum and the scale parameter (α) and shape parameter (β) of the modify BM spectrum were estimated based on the observed spectrum, and the distribution of each parameter was confirmed. As a result of the analysis, the peak enhancement parameter (γopt) of the JONSWAP spectrum was calculated to be 1.27, which is very low compared to the previously proposed 3.3. And in the range of all significant wave heights, the distribution of the peak enhancement parameter (γopt) was shown as a combined distribution of probability mass function (PMF) and probability density function (PDF). In addition, the scale parameter (α) and shape parameter (β) of the modify BM spectrum were estimated to be [0.245, -1.278], which are lower than the existing [0.300, -1.098], and the result of the linear correlation analysis between the two parameters was β = -3.86α.

본 연구에서는 국내 서해안에 설치된 HeMOSU-2 기상타워에서 5 Hz 간격으로 관측한 수면변동자료를 이용하여 파랑 스펙트럼 정보를 산정하였으며, 이를 통해 파랑 매개변수를 추정하였다. 모든 유의 파고 범위에 대하여 관측 스펙트럼을 기준으로 JONSWAP 스펙트럼의 첨두증대계수(γopt)와 수정 BM 스펙트럼의 척도계수(α) 및 형상계수(β)를 추정하였으며, 각각의 매개변수 분포를 확인하였다. 분석 결과, JONSWAP 스펙트럼의 첨두증대계수(γopt)는 기존에 제안되고 있는 3.3에 비해 매우 낮은 수준인 1.27로 산정됐으며, 전체 파고 범위에서 첨두증대계수(γopt)의 분포는 확률질량함수와 확률밀도함수의 결합형태로 나타났다. 또한, 수정 BM 스펙트럼의 척도계수(α) 및 형상계수(β)는 기존 [0.300, -1.098]에 비해 낮은 수준인 [0.253, -1.377]로 추정됐으며, 두 매개변수간 선형 상관관계 분석 결과 β = -3.86α로 나타났다.

Keywords

Acknowledgement

본 연구는 해양수산부의 "독도의 지속가능한 이용연구 - 독도 데이터베이스 구축 관리 및 독도종합정보시스템 개편(과제번호: PG-52262)"의 일환으로 수행되었습니다. 연구지원에 감사드립니다.

References

  1. Amurol Jamal, S., Ewans, K. and Sheikh, R. (2014). Measured Wave Spectra Offshore Sabah & Sarawak, Malaysia. In Offshore Technology Conference-Asia. OnePetro.
  2. Bretschneider, C.L. (1968). Significant waves and wave spectrum. Ocean Industry, 40-46.
  3. Cho, H.Y., Jeong, W.M., Oh, S.H. and Baek, W.D. (2020). Parameter estimation and fitting error analysis of the representative spectrums using the wave spectrum off the Namhangjin, East Sea. Journal of Korean Society of Coastal and Ocean Engineers, 32(5), 363-371. https://doi.org/10.9765/KSCOE.2020.32.5.363
  4. Ewans, K. and McConochie, J. (2018). On the Uncertainties of Estimating JONSWAP Spectrum Peak Parameters. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 51227, p. V003T02A034). American Society of Mechanical Engineers.
  5. Feng, W.B., Yang, B., Cao, H.J. and Ni, X.Y. (2012). Study on wave spectra in south coastal waters of Jiangsu. In Applied Mechanics and Materials. Trans Tech Publications Ltd, 212, 193-200. https://doi.org/10.4028/www.scientific.net/AMM.212-213.193
  6. Goda, Y. (1988). Statistical variability of sea state parameters as a function of wave spectrum. Coastal Engineering in Japan, 31(1), 39-52. https://doi.org/10.1080/05785634.1988.11924482
  7. Goda, Y. (2010). Random seas and design of maritime structures (Vol. 33). World Scientific Publishing Company.
  8. Hasselmann, K., Barnett, T.P., Bouws, E., Carlson, H., Carwright, D.E., Enke, K., Ewing, J.A., Gienapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Muller, P., Olbers, D.J., Richter, K., Sell, W. and Walden, H. (1973). Measurements of windwave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutsches Hydrographisches Zeitschrift, 8(12), 1-95.
  9. Huang, N.E., Long, S.R., Tung, C.C., Yuen, Y. and Bliven, L.F. (1981). A unified two-parameter wave spectral model for a general sea state. Journal of Fluid Mechanics, 112, 203-224. https://doi.org/10.1017/S0022112081000360
  10. Jung, J.S. and Yoon, J.S. (2019). Experimental study for overtopping discharges of sea dike having Low Mound and High Wave Wall (LMHW). Journal of Korean Society of Coastal and Ocean Engineers, 31(6), 335-343. https://doi.org/10.9765/KSCOE.2019.31.6.335
  11. Kang, D.H. and Lee, B.G. (2014). Evaluation of wave characteristics and JONSWAP spectrum model in the northeastern Jeju island on fall and winter. Journal of the Korean Society for Marine Environment and Energy, 17(2), 63-69. https://doi.org/10.7846/JKOSMEE.2014.17.2.63
  12. Kim, Y.T. and Lee, J.I. (2019). Hydraulic experiments on reflection coefficients for perforated wall caisson with rock fill. Journal of Korean Society of Coastal and Ocean Engineers, 31(6), 403-408. https://doi.org/10.9765/KSCOE.2019.31.6.403
  13. Lee, D.S., Oh, S.-H. and Cho, B.S. (2016). Experimental investigation on the change of stability coefficient of Tetrapod according to difference in density. Journal of Korean Society of Coastal and Ocean Engineers, 28(3), 124-131. https://doi.org/10.9765/KSCOE.2016.28.3.124
  14. Lee, U.J., Ko, D.H., Cho, H.Y. and Oh, N.S. (2021). Correlation analysis between wave parameters using wave data observed in HeMOSU-1&2. Journal of Korean Society of Coastal and Ocean Engineers, 33(4), 139-147. https://doi.org/10.9765/KSCOE.2021.33.4.139
  15. Mazaheri, S. and Imani, H. (2019). Evaluation and modification of JONSWAP spectral parameters in the Persian Gulf considering offshore wave characteristics under storm conditions. Ocean Dynamics, 69(5), 615-639. https://doi.org/10.1007/s10236-019-01265-3
  16. Ministry of Oceans and Fisheries (2019). Report on the deep water design wave estimation in the Korea.
  17. Mitsuyasu, H. (1970). On the growth of wind-generated waves (2) - spectral shape of wind waves at finite fetch. Proc. 17th Japanese Conf. Coastal Eng., 1-7.
  18. Munk, W.H. (1951). Origin and generation of waves. Scripps Institution of Oceanography La Jolla Calif.
  19. Pierson, W.J. and Moskowitz, L. (1964). A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. Journal of Geophysical Research, 69, 5181-5190. https://doi.org/10.1029/JZ069i024p05181
  20. Suh, K.D., Kwon, H.D. and Lee, D.Y. (2010). Some statistical characteristics of large deepwater waves around the Korean Peninsula. Coastal Engineering, 57(4), 375-384. https://doi.org/10.1016/j.coastaleng.2009.10.016
  21. Tucker, M.J. (1994). Nearshore waveheight during storms. Coastal Engineering, 24(1-2), 111-136. https://doi.org/10.1016/0378-3839(94)90029-9
  22. Xie, B., Ren, X., Jia, X. and Li, Z. (2019). Research on ocean wave spectrum and parameter statistics in the northern South China Sea. In Offshore Technology Conference. OnePetro.