DOI QR코드

DOI QR Code

A Study on the Interaction Smart Space Model in the Untact Environment

언택트 환경에서의 스마트 인터랙션 공간 모델 연구

  • Yun, Chang Ok (Foundation of Industry-university Cooperation, Dongseo University) ;
  • Lee, Byung Chun (Department of Digital Contents, Dongseo University) ;
  • Kwon, Kyung Su (Department of Digital Contents, Dongseo University)
  • 윤창옥 (동서대학교 산학협력단) ;
  • 이병춘 (동서대학교 디지털콘텐츠학부) ;
  • 권경수 (동서대학교 디지털콘텐츠학부)
  • Received : 2020.12.15
  • Accepted : 2021.01.20
  • Published : 2021.01.28

Abstract

Recently, as the importance of forced indoor living has increased in the untact era, the connection and relationship between space environments is increasing. That is, the smart interaction environment for providing services in various spaces collects and processes a number of surrounding environment information through various sensors to provide desired information according to the required place and time. In this environment, a new type of interaction paradigm is needed for the user to select and focus on environmental information. In this paper, we provide guidelines based on models and patterns for designing various interactions around space. Through interaction model-based technology, we provide guidelines for space-oriented interaction design. We propose an ideal interaction environment through guideline-based patterns and templates. Finally, by providing a space-oriented interaction environment suitable for smart interaction, users can freely obtain desired information.

최근 언택트(Untact) 시대에 강제적인 실내 생활의 중요성이 높아지면서 공간 환경들의 연계성과 관계성이 높아졌다. 즉, 다양한 공간에서의 서비스 제공을 위한 스마트 인터랙션 환경은 다양한 센서들을 통해 주변 정보를 수집 가공하여 필요한 장소와 시간에 맞게 사용자에게 정보들을 제공한다. 이러한 환경에서 사용자가 정보에 대한 선택과 집중을 위한 새로운 형태의 인터랙션 패러다임이 필요하다. 본 논문에서는 다양한 인터랙션 환경을 중심으로 인터랙션 공간 설계를 위한 패턴들에 대해서 연구한다. 즉, 인터랙션 모델기반의 기술을 통해 공간 중심으로 인터랙션 설계를 위한 가이드라인을 제공한다. 또한 다양한 사례를 기반으로 패턴과 템플릿 연구를 통해 이상적인 인터랙션 환경을 제안한다. 이를 통해 스마트 인터랙션 환경에 적합한 공간 중심 인터랙션 모델을 제공함으로써 사용자가 원하는 정보를 얻도록 한다.

Keywords

References

  1. S. CARD, A. NEWELL & T. MORAN. (1983). The Psychology of Human-Computer Interaction. L. Erlbaum Associates Inc.
  2. H. S. Ryu. (2012). Trend and Direction of Smart Interaction, DIGIECO.
  3. H. Ishii & B. Ullmer. (1997). Tangible bits: towards seamless interfaces between people, bits and atoms. In Proceedings of the ACM SIGCHI Conference on Human factors in computing systems, ACM, 234-241.
  4. P. Wellner, W. Mackay & R. Gold. (1993). Back to the real world. Communications of the ACM, 36(7), 24-26. https://doi.org/10.1145/159544.159555
  5. Y. M. Park & W.T. Woo. (2005). ARTable: AR based Interaction System using Tangible Objects. In Proceedings of the Korean Information Science Society Conference, 523-525.
  6. L. Kim, H. Cho & S. Park. (2007). SmartPuck System: Tangible Interface for Physical Manipulation of Digital Information. Journal of KISS, 34(4), 226-230.
  7. J. Y. Han. (2005). Low-cost multi-touch sensing through frustrated total internal reflection. In Proceedings of the 18th annual ACM symposium on User interface software and technology, ACM, 115-118.
  8. Microsoft. (n. d.). Microsoft Surface. [Online] http://www.microsoft.com/surface.
  9. J. Rekimoto. (2008). SmartSkin: an infrastructure for freehand manipulation on interactive surfaces. In Proceedings of the SIGCHI conference on Human factors in computing systems, 113-120.
  10. J. Rekimoto & M. Saitoh. (1999). Augmented surfaces: a spatially continuous work space for hybrid computing environments. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems, 378-385.
  11. D. Vogel & R. Balakrishnan. (2004). Interactive public ambient displays: transitioning from implicit to explicit, public to personal, interaction with multiple users. In Proceedings of the 17th annual ACM symposium on User interface software and technology, 137-146.
  12. R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin & H. Fuchs. (1998). The office of the future: A unified approach to image-based modeling and spatially immersive displays. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques, 179-188.
  13. C. Ganser, A. Steinemann & R. Hofer (2007). Infractables: Supporting collocated group work by combining pen-based and tangible interaction, IEEE.
  14. P. Milgram & F. Kishino. (1994). A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information and Systems, 77(12), 1321-1329.
  15. S. Choi, J. Jung & Y. Seo. (2008). Technology Trend and Application for Tabletop Device and Interactive Wall Display. Communications of the KISS, 26(3), 5-14.
  16. C. O. Yun, J. H. Kim, T. S. Yun & D. H. Lee. (2009). Development of Game Environment System based on Spatial Augmented Reality using Real Creature. Journal of Korea Multimedia Society, 12(6), 856-866.
  17. C. O. Yun, T. S. Yun & D. H. Lee. (2009). Spatial Interaction System for Providing Interactive Zone in Large-Scale Display Environment. 12th International conference, 132-136.
  18. C. O. Yun, Y. S. Choi & T. S. Yun. (2015). Development of Smart Contents Platform for providing Digital Signage Environment. Journal of the Korea Industrial Information Systems Research, 20(2), 25-37. https://doi.org/10.9723/jksiis.2015.20.2.025
  19. C. O. Yun, J. H. Kim, W. S. Joo & T. S. Yun. (2015). Development of multi arcade game platform applying smart devices. Journal of Korea Game Society, 15(5), 119-130. https://doi.org/10.7583/JKGS.2015.15.5.119
  20. T. Pederson, L. E. Janlert & D. Surie. (2010). Situative Space model for mobile mixed-reality Computing. IEEE Pervasive Computing, 10(4), 73-83. https://doi.org/10.1109/MPRV.2010.51
  21. C. O. Yun. (2016). Space-centric design for smart interactions. Doctoral dissertation. Dongseo University, Busan.