DOI QR코드

DOI QR Code

Changes in Growth and Yield of Different Rice Varieties under Different Planting Densities in Low-Density Transplanting Cultivation

벼 드문모심기 재식밀도에 따른 품종별 생육 및 수량 변이

  • Yang, SeoYeong (Crop Cultivation & Physiology Research Division, Crop National Institute of Crop Science, Rural Development Administration) ;
  • Hwang, WoonHa (Crop Cultivation & Physiology Research Division, Crop National Institute of Crop Science, Rural Development Administration) ;
  • Jeong, JaeHyeok (Crop Cultivation & Physiology Research Division, Crop National Institute of Crop Science, Rural Development Administration) ;
  • Lee, HyeonSeok (Crop Cultivation & Physiology Research Division, Crop National Institute of Crop Science, Rural Development Administration) ;
  • Lee, ChungGeun (Crop Cultivation & Physiology Research Division, Crop National Institute of Crop Science, Rural Development Administration)
  • 양서영 (농촌진흥청 국립식량과학원) ;
  • 황운하 (농촌진흥청 국립식량과학원) ;
  • 정재혁 (농촌진흥청 국립식량과학원) ;
  • 이현석 (농촌진흥청 국립식량과학원) ;
  • 이충근 (농촌진흥청 국립식량과학원)
  • Received : 2021.10.03
  • Accepted : 2021.11.08
  • Published : 2021.12.01

Abstract

Low-density transplanting is a cultivation technology that reduces labor and production costs. In this study, the growth and yield of several varieties with different tillering characteristics were analyzed in order to establish an appropriate planting density for low-density transplanting. Varieties with Low-Tillering (LT), Medium-Tillering (MT), and High-Tillering (HT) were planted at a density of 37-80 hills/3.3 m2. As the planting density decreased, the number of tillers per hill increased, but the number of tillers per square meter of hill decreased, especially for the LT variety. Decreasing density extended the tillering stage, which was longest in the LT variety. As the planting density decreased, SPAD(Soil plant analysis development, chlorophyll meter) values just before heading increased while canopy light interception decreased. Such changes were much greater in the LT variety than in the MT and HT varieties. The heading date tended to be delayed by 0-2 days as the planting density decreased, and there was no difference in the length of the period from first heading to full heading. As the number of spikelets per panicle increased, the number of spikelets per square meter did not differ according to the planting density. Decreasing planting density did not affect the grain weight; nevertheless, the yield ultimately decreased because of the decreasing ripening rate. The optimal planting density for stable low-density transplanting cultivation was determined to be over 50 hills/3.3 m2. In addition, these results suggest that LT varieties should be avoided, since these showed large decreases in growth and yield with decreasing planting density.

벼 드문모심기는 노동력과 생산비용을 절감할 수 있는 재배기술로 본 연구에서는 드문모심기의 적정 재식밀도 설정을 위해 분얼특성이 다른 품종별 생육 및 수량을 분석하였다. 37주~80주/3.3 m2 재식밀도에서 소얼형, 중간형, 다얼형 품종을 가지고 시험한 결과는 다음과 같다. 1. 재식밀도는 낮아질수록 주당 분얼수(이삭수)는 많아지지만 면적당 분얼수(이삭수)는 적어졌는데 소얼형 품종일수록 적었다. 분얼 발생기간이 길어졌고 소얼형 품종에서 가장 길어졌다. 2. 재식밀도 감소에 따라 출수기 직전의 엽색은 진해지고 군락피복도는 감소하였다. 분얼이 많은 호평과 예찬보다는 소얼형인 신동진에서 변화폭이 컸다. 3. 출수기는 재식밀도가 낮아질수록 0~2일 늦춰지는 경향을 보였고 수전기간은 차이가 나지 않았다. 4. 재식밀도 감소에 따라 천립중은 유의한 차이가 없었다. 반면 재식밀도가 줄어들면서 면적당 영화수와 등숙률의 저하로 수량이 감소되었다. 5. 안정적인 드문모심기 재배를 위한 재식밀도는 50주/3.3 m2 이상으로 판단된다. 또한 소얼형인 신동진이 재식밀도 감소에 따른 생육 및 수량 감소가 큰 것으로 나타나 분얼이 적은 품종보다는 많은 품종을 선택하여야 할 것으로 생각된다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 연구사업(세부과제명: 벼 밀파육묘 파종량별 적정 재식밀도 및 재식본수 구명, PJ01414502)의 지원에 의해 이루어진 결과의 일부입니다. 연구사업 수행에 협조해 주신 모든 분들에게 감사드립니다.

References

  1. Adams, J. E. and G. F. Arkin. 1977. A light interception method for measuring row crop ground cover. Soil Sci. Soc. Am. J.. 41 : 789-792. https://doi.org/10.2136/sssaj1977.03615995004100040037x
  2. Ahn, J. W., B. J. Lee, S. Y. Kim, D. Y. Hwang, S. H. Oh, J. H. Kim, and Y. C. Ku. 2006. Influence of rice planting density on head rice yield in low nitrogen application. 2006 KSCS Spring Conference. pp. 264-265.
  3. Asmamaw, B. A. 2017. Effect of planting density on growth, yield and yield attributes of rice (Oryza sativa L.). Afr. J. Agric. Res. 12(35) : 2713-2721. https://doi.org/10.5897/AJAR2014.9455
  4. Fagade, S. O. and S. K. De Datta. 1971. Leaf area index, tillering capacity, and grain yield of tropical rice as affected by plant density and nitrogen level1. J. Agron. 63 : 503-506. https://doi.org/10.2134/agronj1971.00021962006300030047x
  5. Fagade, S. O. and A. A. Ojo. 1977. Influence of plant density and nitrogen on yield and milling quality of lowland rice in Nigeria. Exp. Agric. 13(1) : 17-24. https://doi.org/10.1017/S0014479700007560
  6. Gendua, P. A., Y. Yamamoto, A. Miyazaki, T. Yoshida, and Y. Wang. 2009. Responses of yielding ability, sink size and percentage of filled grains to the cultivation practices in a chinese large-panicle-type rice cultivar, Yangdao 4. Plant Prod. Sci. 12(2) : 243-256. https://doi.org/10.1626/pps.12.243
  7. Hwang, W. H., J. H. Jeong, H. S. Lee, S. Y. Yang, and C. G. Lee. 2021. Seeding rate and days for low-density transplant cultivation. Korean J. Crop Sci. 66(2) : 112-119. https://doi.org/10.7740/KJCS.2021.66.2.112
  8. Ichikawa, T., S. Azuma, E. Nara, I. Sakaguti, and M. Kanetaka. 2008. Transplanting culture by dense sowing and sparse planting of cv Koshihikari. 4. The yield components. The Hokuriku Crop Sci. 43 : 31-32.
  9. Kanetaka, M., A. Takahashi, and S. Azuma. 2004. Transplanting culture by dense sowing and sparse planting of Koshihikari. I. Comparison with the above cultivation and conventional cultivation with transplanting. The Hokuriku Crop Sci. 40 : 11-14.
  10. Korea Meteorological Administration (KMA). 2021. Automated Synoptic Observing System. Retrieved from https://data.kma.go.kr
  11. Lee, S. H., E. H. Son, S. C. Hong, S. H. Oh, J. Y. Lee, J. H. Park, S. H. Wool, and C. W. Lee. 2016. Growth and Yield Under Low Solar Radiation During the Reproductive Growth Stages of Rice Plants. Korean J. Crop Sci. 61(2) : 87-91. https://doi.org/10.7740/KJCS.2016.61.2.087
  12. Moradpour, S., R. Koohi, M. Babaei. and M. G. Khorshidi. 2013. Effect of planting date and planting density on rice yield and growth analysis (Fajr variety). Intl. J. Agri. Crop Sci. 5(3) : 267-272.
  13. Nakano, H., S. Morita, H. Kitagawa, H. Wada, and M. Takahashi. 2012. Grain yield response to planting density in forage rice with a large number of spikelets. Crop Sci. Soc. Am. 52(1) : 345-350. https://doi.org/10.2135/cropsci2011.02.0071
  14. R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/.
  15. Rural Development Administration (RDA). 2012. Standard of analysis and survey for agricultural research. RDA, Jeonju, Korea.
  16. Rural Development Administration (RDA). 2019. Basic statistics for rural development. RDA, Jeonju, Korea.
  17. Rural Development Administration (RDA). 2020. Rice quality improvement technology. RDA, Jeonju, Korea. pp. 106-109.
  18. Statistics Korea. 2021a. Crop production survey. Retrieved from https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0031&conn_path=I2
  19. Statistics Korea. 2021b. Census of Agriculture, Forestry and Fisheries. Retrieved from https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1EA1041&conn_path=I2
  20. Takeda, T. and O. Hirota. 1971. Relationship between spacing and grain yield of rice plant. Jpn. J. Crop Sci. 40(3) : 381-385. https://doi.org/10.1626/jcs.40.381
  21. Tinghong, Y., L. Yuwei, Z. Jianglin, H. Wenfeng, Z. Weifeng, L. Jianwei, X. Yongzhong, and L. Xiaokun. 2019. Nitrogen, phosphorus, and potassium fertilization affects the flowering time of rice (Oryza sativa L.). Glob. Ecol. Conserv. 20 : e00753. https://doi.org/10.1016/j.gecco.2019.e00753
  22. Yang, W. H., S. G. Kang, J. H. Park, S. J. Kim, J. S. Choi, and Y. H. Yoon. 2017. Relationship between panicle production and yielding traits influenced by transplanting density in mid-maturing quality rice 'Haiami' in the mid-plain area of Korea. Korean J. Crop Sci. 62(3) : 193-202. https://doi.org/10.7740/KJCS.2017.62.3.193
  23. Zhou, C., Y. Huang, B. Jia, Y. Wang, Y. Wang, Q. Xu, R. Li, S. Wang, and F. Dou. 2018. Effects of cultivar, nitrogen rate, and planting density on rice-grain quality. Agron. 8(11) : 246-258. https://doi.org/10.3390/agronomy8110246