과제정보
본 성과물은 농촌진흥청 연구사업(세부과제번호: PJ013837022021) 의 지원에 의해 수행되었음.
참고문헌
- Ahn, H. Y., S. I. Na, C. W. Park, S. Y. Hong, K. H. So, and K. D. Lee, 2020: Analysis of UAV-based multispectral reflectance variability for agriculture monitoring. Korean Journal of Remote Sensing 36(6-1), 1379-1391. https://doi.org/10.7780/KJRS.2020.36.6.1.8
- Ashley, D. A., and W. J. Ethridge, 1978: Irrigation effects on vegetative and reproductive development of three soybean cultivars 1. Agronomy Journal 70(3), 467-471. https://doi.org/10.2134/agronj1978.00021962007000030026x
- Candiago, S., F. Remondino, M. De Giglio, M. Dubbini, and M. Gattelli, 2015: Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote sensing 7(4), 4026-4047. https://doi.org/10.3390/rs70404026
- Gitelson, A. A., Y. J. Kaufman, and M. N. Merzlyak, 1996: Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment 58(3), 289-298. https://doi.org/10.1016/S0034-4257(96)00072-7
- Jang, S. H., C. S. Ryu, Y. S. Kang, S. R. Jun, J. W. Park, H. Y. Song, K. S. Kang, D. W. Kang, K. Zou, and T. H. Jun, 2019: Estimation of fresh weight, dry weight, and leaf area index of soybean plant using multispectral camera mounted on rotor-wing UAV. Korean Journal of Agricultural and Forest Meteorology 21(4), 327-336. https://doi.org/10.5532/KJAFM.2019.21.4.327
- Jung, K. Y., E. Y. Yun, C. Y. Park, J. B. Hwang, Y. D. Choi, S. H. Jeon, and H. A. Lee, 2012: Effect of soil compaction levels and textures on soybean (Glycine max L.) root elongation and yield. Korean Journal of Soil Science and Fertilizer 45(3), 332-338. https://doi.org/10.7745/KJSSF.2012.45.3.332
- Kang, Y. S., S. H. Kim, J. G. Kang, Y. K. Hong, T. K. Sarkar, and C. S. Ryu, 2016: Estimation of leaf dry mass and nitrogen content for soybean using multi-spectral camera mounted on unmanned aerial vehicle. Journal of Agriculture & Life Science 50(6), 183-190.
- Kang, Y. S., C. S. Ryu, S. H. Kim, S. R. Jun, S. H. Jang, J. W. Park, and T. K. Sarkar, 2018: Yield prediction of Chinese cabbage (Brassicaceae) using broadband multispectral imagery mounted unmanned aerial system in the air and narrowband hyperspectral imagery on the ground. Journal of Biosystems Engineering 43(2), 138-147. https://doi.org/10.5307/JBE.2018.43.2.138
- Kang, Y. S., J. W. Nam, Y. Kim, S. T. Lee, D. G. Seong, S. H. Jang, and C. S. Ryu, 2021: Assessment of regression models for predicting rice yield and protein content using unmanned aerial vehicle-based multispectral imagery. Remote Sensing 13(8), 1508. https://doi.org/10.3390/rs13081508
- Kim, I. J., S. Y. Son, S. Y. Nam, I. M. Ryu, T. J. Kim, C. H. Lee, and T. S. Kim, 2004: Effect of alternative row pinching on growth and yield in soybean. Korean Journal of Crop Science 49(6), 457-462.
- Kurbanov, R. K., and N. I. Zakharova, 2020: Application of vegetation indices to assess the condition of crops. Agricultural Machinery and Technologies 14(4), 4-11. https://doi.org/10.22314/2073-7599-2020-14-4-4-11
- Lee, J. E., G. H. Jung, S. K. Kim, M. T. Kim, S. H. Shin, and W. T. Jeon, 2019: Effects of growth period and cumulative temperature on flowering, ripening and yield of soybean by sowing times. Korean Journal of Crop Science 64(4), 406-413.
- Lee, K. D., S. I. Na, C. W. Park, S. Y. Hong, K. H. So, and H. Y. Ahn, 2020: Diurnal change of reflectance and vegetation index from UAV image in clear day condition. Korean Journal of Remote Sensing 36(5-1), 735-747. https://doi.org/10.7780/KJRS.2020.36.5.1.7
- Lee, K., H. An, C. Park, K. So, S. Na, and S. Jang, 2019: Estimation of rice grain yield distribution using UAV imagery. Journal of the Korean Society of Agricultural Engineers 61(4), 1-10. https://doi.org/10.5389/KSAE.2019.61.4.001
- Lee, Y. H., H. S. Cho, J. H. Kim, W. G. Sang, P. Shin, J. K. Baek, and M. C. Seo, 2018: The effects of increased temperature on seed nutrition, protein, and oil contents of soybean [Glycine max (L.)]. Korean Journal of Crop Science 63(4), 331-337. https://doi.org/10.7740/KJCS.2018.63.4.331
- Lee, Y. H., W. G. Sang, J. I. Cho, and M. C. Seo, 2019: Duration of drought stress effects on soybean growth characteristic and seed yield distribution patterns. Korean Journal of Agricultural and Forest Meteorology 21(4), 269-276. https://doi.org/10.5532/KJAFM.2019.21.4.269
- Morellos, A., X. E. Pantazi, D. Moshou, T. Alexandridis, R. Whetton, G. Tziotzios, J. Wiebensohn, R. Bill, and A. M. Mouazen, 2016: Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosystems Engineering 152, 104-116. https://doi.org/10.1016/j.biosystemseng.2016.04.018
- Mutanga, O., and A. K. Skidmore, 2004: Narrow band vegetation indices overcome the saturation problem in biomass estimation. International Journal of Remote Sensing 25(19), 3999-4014. https://doi.org/10.1080/01431160310001654923
- Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering, 1974: Monitoring vegetation systems in the Great Plains with ERTS. NASA Special Publication 351, 309pp.
- Scott, H. D., J. DeAngulo, M. B. Daniels, and L. S. Wood, 1989: Flood duration effects on soybean growth and yield. Agronomy Journal 81(4), 631-636. https://doi.org/10.2134/agronj1989.00021962008100040016x
- Scott, W. O., and S. A. Aldrich, 1983: Modern soybean production. S&A Publication. Inc., Champaign, Illinois.
- Perry, E. M., and J. R. Davenport, 2007: Spectral and spatial differences in response of vegetation indices to nitrogen treatments on apple. Computers and Electronics in Agriculture 59(1-2), 56-65. https://doi.org/10.1016/j.compag.2007.05.002
- Souza, G. M., T. A. Catuchi, S. C. Bertolli, and R. P. Soratto, 2013: Soybean under water deficit: physiological and yield responses. A Comprehensive Survey of International Soybean Research: Genetics, Physiology Agronomy and Nitrogen Relationships, 273-298.
- Stehr, N. J., 2015: Drones: The newest technology for precision agriculture. Natural Sciences Education 44(1), 89-91. https://doi.org/10.4195/nse2015.04.0772
- Wang, J., B. Gong, Y. Wang, Y. Wen, J. Zhou, and Q. He, 2017: The potential multiple mechanisms and microbial communities in simultaneous nitrification and denitrification process treating high carbon and nitrogen concentration saline wastewater. Bioresource Technology 243, 708-715. https://doi.org/10.1016/j.biortech.2017.06.131