DOI QR코드

DOI QR Code

Feasibility Analysis of the Bridge Analytical Model Calibration with the Response Correction Factor Obtained from the Pseudo-Static Load Test

의사정적재하시험 응답보정계수에 의한 교량 해석모델 보정의 타당성 분석

  • 한만석 (인하대학교 토목공학과) ;
  • 신수봉 (인하대학교 사회인프라공학과)
  • Received : 2021.09.02
  • Accepted : 2021.10.20
  • Published : 2021.12.31

Abstract

Currently, the response correction factor is calculated by comparing the response measured by the load test on a bridge with the response analyzed in the initial analytical model. Then the load rating and the load carrying capacity are evaluated. However, the response correction factor gives a value that fluctuates depending on the measurement location and load condition. In particular, when the initial analytical model is not suitable for representing the behavior of a bridge, the range of variation is large and the analysis response by the calibrated model may give a result that is different from the measured response. In this study, a pseudo-static load test was applied to obtain static response with dynamic components removed under various load conditions of a vehicle moving at a low speed. Static response was measured on two similar PSC-I girder bridges, and the response correction factors for displacement and strain were calculated for each of the two bridges. When the initial analysis model was not properly set up, it is verified that the response of the analytical model corrected by the average response correction factor does not fall within the margin of error with the measured response.

현재 공용중인 교량에 대한 재하시험으로 계측한 응답과 초기해석모델의 해석 응답을 비교하여 응답보정계수를 계산하고, 이 모델을 사용하여 내하율과 내하력을 평가하는 방법을 적용하고 있다. 그러나 이러한 응답보정계수는 계측 위치와 하중 조건에 따라 변동하는 값을 준다. 특히 초기해석모델이 교량의 거동에 합당하지 않은 경우, 그 변동 폭이 크며 보정된 모델에 의한 해석 응답이 계측된 응답과 동떨어진 결과를 줄 수 있다. 본 연구에서는 저속으로 주행하는 차량의 다양한 하중 조건에서 동적 성분을 제거한 정적 응답을 얻기 위해 의사정적재하시험법을 적용하였다. 두 개의 유사한 PSC-I 거더교에서 정적 응답을 계측하고, 두 교량 각각에 대한 변위와 변형률에 대한 응답보정계수를 계산하였다. 초기해석모델이 제대로 설정되어 있지 않다면, 평균적으로 구한 응답보정계수로 보정한 모델의 해석 응답이 계측 응답과 오차범위 내에 들어오는지 않음을 확인하였다.

Keywords

Acknowledgement

본 연구는 국토교통부 건설기술연구개발사업의 연구비지원(21SCIP-B128569-05)에 의해 수행되었습니다.

References

  1. Alampalli, S., Frangopol, D.M., Grimson, J., (...), Yang, D., Zhou, Y.E. (2021), Bridge Load Testing: State-of-The-Practice. Journal of Bridge Engineering, 26(3), 03120002. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001678
  2. American Association of State Highway and Transportation Officials (AASHTO) (2011), The Manual for bridge evaluation, 2nd ed. Washington, DC.
  3. Armendariz, R.R., Bowman, M.D. (2018), Improved Load Rating of an Open-Spandrel Reinforced-Concrete Arch Bridge. Journal of Performance of Constructed Facilities, 32(4), 04018035. https://doi.org/10.1061/(asce)cf.1943-5509.0001177
  4. Kim, D.U. (2021), A comparative study on evaluating bridge load carrying capacity for PSC girder bridge: using updated numerical models with measured data obtained before and after the cutoff of the external tendons. Master's Thesis, Inha University, Incheon, South Korea.
  5. Korea Concrete Institute (KCI) (2010), Guidelines and examples for safety assessment of operating concrete bridge. Seoul, South Korea.
  6. Korea Infrastructure Safety and Technology Corporation (KISTEC) (2019), Detailed guideline for safety and maintenance of facilities - safety inspection / diagnosis. Jinju, South Korea.
  7. NCHRP (1998), Manual for bridge rating through load testing. Project 12-28(13)A.
  8. Sanayei, M., Reiff, A.J., Brenner, B.R., Imbaro, G.R. (2016), Load Rating of a Fully Instrumented Bridge: Comparison of LRFR Approaches, Journal of Performance of Constructed Facilities, 30(2), 04015019. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000752
  9. Yoon, S.G. and Shin, S. (2019), Evaluation of bridge load carrying capacity of PSC girder bridge using pseudo-static load test, Journal of the Korea Institute for Structural Maintenance and Inspection, 23(4), 53-60.
  10. 鋼橋技術研究会 (2001). No.43 維持管理部会報告書, 平成13年5月.