DOI QR코드

DOI QR Code

RC 슬래브 교량의 요소별 노후도를 고려한 지진취약도 비교분석

A Comparative Study on Seismic Fragility of RC Slab Bridge Considering Aging Effect of Components

  • 안효준 (인하대학교 토목공학과) ;
  • 박기태 (한국건설기술연구원 노후인프라센터) ;
  • 정규산 (한국건설기술연구원 노후인프라센터) ;
  • 김유희 (한국건설기술연구원 노후인프라센터) ;
  • 이종한 (인하대학교 토목공학과)
  • 투고 : 2021.10.27
  • 심사 : 2021.11.22
  • 발행 : 2021.12.31

초록

근 국내에서 발생한 대규모 지진으로 인해 국민의 지진에 대한 관심이 증가하고 있다. 이에 따라 구조물의 내진성능관리에 대한 중요성이 대두되고 있다. 특히, 주요 도로시설물인 교량의 붕괴는 많은 인명피해로 직결되기 때문에, 교량의 지진취약도를 사전에 평가하고 대비를 하는 것이 중요하다. 최근에는 공용년수 30년 이상의 교량 구조물이 늘어나고 있어 교량의 노후화 영향에 대한 연구가 필요한 실정이다. 본 연구에서는 교량의 부재별 노후화를 고려하여 대상 RC 슬래브 교량의 지진해석을 실시하였다. 교량의 부재는 지진응답에 지배적인 영향을 주는 교각과 교량받침에 대해서 고려하였다. 교량의 내진성능 응답은 비선형 정적 및 동적 해석을 통해 분석하였다. 또한, 각 부재의 한계상태와 동적응답을 사용하여 부재별 노후화에 따른 지진취약도 비교분석을 수행하였다.

In recent years, large-scale earthquake activity has occurred in Korea, and thus public interest in earthquakes is increasing. Accordingly, the importance of seismic performance management of structures is emerging. In particular, the collapse of a bridge, one of main road facilities, directly leads to many casualties. Therefore, engineers need to evaluate the seismic fragility of the bridge and prepare for the earthquake event. The service life of these bridges has been over 30 years, which requires a study on the aging effect on bridges. In this study, seismic analysis of the target RC slab bridge was performed considering the aging effects of each component of the bridge. Components of the bridge included pier and bearing, which dominate the seismic response of the bridge. The seismic performance of the bridge was evaluated using nonlinear static and dynamic analyses. In addition, the limit state and dynamic response of each component were used to evaluate the seismic fragility according to the aging of each component.

키워드

과제정보

본 연구는 한국건설기술연구원 주요사업"DNA 기반 노후 교량 구조물 스마트 유지관리 플랫폼및 활용기술개발" 과제(20210289-001)를 통해 수행되었음.

참고문헌

  1. Ministry of Land, Infrastructure and Transport (2020), 2020 Road Bridge and Tunnel Status Report, Sejong, South Korea
  2. Mazzoni S, McKenna F, Scott MH, Fenves GL. (2006), OpenSees command language manual, Pacific Earthquake Engineering Research (PEER) Center. University of California, Berkeley, Berkeley.
  3. Mander JB, Priestley MJN, Park R. (1988), Theoretical stress-strain model for confined concrete. Journal of Structural Engineering ASCE. 114(8), 1804-1825. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  4. Aquino, W., and Hawkins, N. M. (2007), Seismic retrofitting of corroded reinforced concrete columns using carbon composites. ACI Structural Journal, 104, 348-356.
  5. Berry, M. P., and Eberhard, M. O. (2007), Performance modeling strategies for modern reinforced concrete bridge columns (Technical report). Berkeley, CA: Pacific Earthquake Engineering Research Center, University of California.
  6. Nguyen, Y. (2013), Determining the capacity of deteriorated reinforced concrete bridge structures under seismic loading, Ph.D. dessertation, California, San Diego State University, Department of Civil Engineering.
  7. Hamaguchi, H. (2009), A study of aging effect on rubber bearings after about twenty years in use, 11th World Conference on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures.
  8. AASHTO, (2010), Guide Specifications for Seismic Isolation Design 3rd edition, Washington D.C.
  9. Cornell CA, Jalayer F, Hamburger RO, Foutch DA. 2002, Probabilistic Basis for 2000 SAC Federal Emergency Management Agency Steel Moment Frame Guidelines. J Struct Eng., 128, 526-33. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(526).
  10. Barbat, A. H., Pujades, L. G., and Lantada, N., (2008), Seismic damage evaluation in urban areas using the capacity spectrum method: Application to Barcelona, Soil Dynamics and Earthquake Engineering, 28(10-11), 851-865. https://doi.org/10.1016/j.soildyn.2007.10.006
  11. Stefanidou SP, Kappos AJ. (2017), Methodology for the development of bridge-specific fragility curves. Earthq Eng Struct Dyn., 46, 73-93. https://doi.org/10.1002/eqe.2774