
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

9

Manuscript received December 5, 2021
Manuscript revised December 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.12.2

Software Engineering Meets Network Engineering: Conceptual Model
for Events Monitoring and Logging

Sabah Al-Fedaghi and Bader Behbehani
sabah.alfedaghi@ku.edu.kw bader92@gmail.com

Computer Engineering Department, Kuwait University, Kuwait

Summary
Abstraction applied in computer networking hides network
details behind a well-defined representation by building a model
that captures an essential aspect of the network system. Two
current methods of representation are available, one based on
graph theory, where a network node is reduced to a point in a
graph, and the other the use of non-methodological iconic
depictions such as human heads, walls, towers or computer racks.
In this paper, we adopt an abstract representation methodology,
the thinging machine (TM), proposed in software engineering to
model computer networks. TM defines a single coherent network
architecture and topology that is constituted from only five
generic actions with two types of arrows. Without loss of
generality, this paper applies TM to model the area of network
monitoring in packet-mode transmission. Complex network
documents are difficult to maintain and are not guaranteed to
mirror actual situations. Network monitoring is constant
monitoring for and alerting of malfunctions, failures, stoppages
or suspicious activities in a network system. Current monitoring
systems are built on ad hoc descriptions that lack systemization.
The TM model of monitoring presents a theoretical foundation
integrated with events and behavior descriptions. To investigate
TM modeling’s feasibility, we apply it to an existing computer
network in a Kuwaiti enterprise to create an integrated network
system that includes hardware, software and communication
facilities. The final specifications point to TM modeling’s
viability in the computer networking field.

Key words:
Software Engineering, Computer Network Engineering;
Conceptual Model; Network Monitoring and Logging; Network
Architecture Description

1. Introduction

This paper is a continuation of a previous article [1]. Our
previous paper dealt with network documentation. This
paper presents research in the area of networking
monitoring in packet-mode transmission using the same
conceptual modeling method, called a thinging machine
(TM).

Current depictions of network diagrams have been
developed over many years and include hundreds of
various symbols, which range from walls to computer
screens to server racks to a cloud-based storage system.

Network diagrams may also be based on an abstract graph
theory representation, which presents a network as a set of
nodes and edges. Scholars have been greatly interested in
defining a single coherent representation of a network [2].
This effort requires a rich understanding of relationships
among network elements according to their applicability,
environment and internal functionalities.

1.1 Monitoring Computer Networks

In general, “monitoring” refers to the methodical and
continuing gathering, examination and use of information
for management control and decision-making processes
[3]. In computer networks, continuous management
requires monitoring the network through apparatuses that
permit supervisors to instantaneously access information
on the system’s state and handle alerts for events such as
malfunctions, failures, stoppages or suspicious activities
[4]. A network monitoring system monitors external
security threats and internal incidents caused by system
crashes and malfunctions of servers, connections or other
devices.

From a technical perspective, the world is becoming
increasingly interconnected. Managing networks with such
interconnectivity is an essential factor for maintainability
and sustainability. Network maintenance requires a rapid
pinpointing process as well as addressing any difficulty
regardless of whether a failing mail daemon or a broken
fiber optic connection caused the incident. A modern
network system offers information about its events. These
events are generated by
 Logs within operating systems
 Archiving records of events within servers
 Logs of errors, warnings and failures within

applications
 Records of suspicious traffic generated by firewalls

and virtual private-network gateways
 Observing traffic among various network segments in

network routers and switches
 Simple network management protocol (SNMP) traps

and alerts reported to a management console [5].

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

10

Events occurring within a network’s components are
recorded as logs related to network security. These events
are created by various sources such as applications,
networking equipment, antivirus software, firewalls and
intrusion detection systems, operating systems and
workstations [6]. Log management is critical when
creating and handling adequately detailed event data in a
suitable period of time. Log analysis is valuable for
isolating security instances, detecting policy abuses,
capturing suspicious action and identifying working
difficulties. Logs are also precious when inspecting,
investigating and recognizing long-term problems.

The involved network devices monitor their own behavior,
receive and relay messages from other networks and
duplicate alerts. Event logs register all the activities on the
system’s devices for the purpose of utilizing the generated
data to address security and performance issues. The result
is a complicated picture of events and behaviors such that
a single problem can produce a blizzard of alerts and event
messages. In this situation, a huge amount of data is
created all over the network that no one can easily scan
and handle alone. According to Kay [5], in 2000, a
Computer Sciences Corp OC-12 (a fiber optic connection)
could generate about 850 MB of event data in an hour,
which translates into more than 600 GB of data per month.
In 2020, the volume of data being created generally
increased with the introduction of 5G networks, edge
computing, the Internet of Things and the increased
adoption of cloud computing. IDC expected that 59 ZB of
data would be generated and handled in 2020, up from 41
ZB in 2019 [7].

Currently, the same iconic representations used to describe
computer networks are also used to represent monitoring
systems. For example, the network monitoring server
OpManager is described in textual language, and its
architectural structure is given as shown in Fig. 1 [8].
Taking another example, Leskiw [9] described Syslog as a
mechanism that allows network devices to communicate
with a logging server (Syslog server) by sending event
messages. Various event message types are logged using
Syslog protocol, which covers a wide range of network
devices. Most network equipment, such as routers and
switches, can send Syslog messages [9]. Syslog simply
sends messages to a central location when specific events
are triggered. Syslog processes are represented as shown in
Fig. 2.

Network management also relies on an enhanced, coherent
high-level model for monitoring of computer networks.
High-level model architecture should demonstrate the
event-based mechanism within a monitoring system.
Events are produced by capturing records of data
generated by network components such as logs of traffic,

malfunctions, failures, system faults, breaches and network
address translations (NATs). The visualization of logs’
sources and details that network components produce in a
monitoring system is completely vague. Network
management lacks a high-level model to represent a
monitoring system for network components. Network
administrators and decision makers should be able to
visualize events within the monitoring system using a
high-level modeling approach that helps them understand
points of failure, business weaknesses and opportunities
for enhancement.

1.2 Proposed Thinging Machine Approach

TM adopts a high-level representation methodology to
model computer networks. It defines a single coherent
network architecture and topology similar to engineering
schematics. TM topology consists of only five generic
actions with two types of flow arrows. The TM model of
monitoring presents a theoretical foundation that is
integrated with a network’s events and behavior
descriptions.

In this paper, to investigate TM modeling’s feasibility, we
applied TM-based modeling to an existing computer
network in a Kuwaiti enterprise to create an integrated
network system that includes hardware, software and
communication facilities.

Fig. 2 Another representation of a monitoring system (From
[9]).

Fig. 1 Sample network monitoring description (From [8]).

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

11

Specifically, in this paper, we focus on modeling packet
flows through various software and devices in the network.
Accordingly, the monitoring problem is limited to
monitoring packets in the network instrument. For
monitoring purposes, we propose a more fundamental
approach for high-level description of computer networks.
Our model involves conceptualizing the structure of
network diagrams, and the resultant schema is used as a
vehicle for communication among engineers, managers
and decision makers.

1.3 Outline

 In the next section, we summarize TM [10].
 Next, we discuss a case study involving network

monitoring. The case involves an IT department that
has acquired a large number of servers and more
storage capacity, creating a well-defined and
understandable network description, as discussed in
our previous paper [10]. Due to space limitations, we
concentrate on a specific part that is closely related to
monitoring in its functionality.

 We focus on an adaptive security appliance (ASA)
network, including a flowchart of the ASA packet
process algorithm. Specifically, we concentrate on
modeling the FirePOWER services module.

 Therefore, our main contribution in this paper concerns
monitoring in the FirePOWER service module. We use
TM to model FirePOWER as a part of the network and
provide a general description of the system’s context,
with further focus on the LINA subsystem of the
FirePOWER system.

2. Thinging Machine Modeling

Diagrammatic modeling languages hold great promise for
software and network engineering and can depict structural
and behavioral specifications. However, many practitioners
still consider diagrammatic languages mere “doodles” [11].

TM uses a diagramming language built on one-category
ontology and five actions that, when designated over time,
produce a behavioral model in terms of the chronology of
events. The TM model articulates the ontology of the
world in terms of an entity called a thimac (the first three
letters of thing and machine), with double faces or two
“being-nesses,” as a thing and simultaneously as a
machine. The first side of the coin exhibits the wholeness
(thing) assumed by the thimac; on the second side,
operational symptoms (processes) emerge, providing a
“force” that goes beyond structures or things to embrace
other things in the thimac. To conceptualize a thimac as a
thing presents no indication as to the content of the thing
whereas to conceptualize a thimac as a machine forces a

definite structure of actions with a flow of other things
(See Fig. 3).

A thing is subjected to doing (e.g., a tree is a thing being
planted or cut), and a machine does (e.g., a tree is a
machine that absorbs carbon dioxide and uses sunlight to
make oxygen). The thing tree and the machine tree are two
faces of the thimac tree. A thing is viewed based on
Heidegger’s [12] notion of thinging. A thing is a machine,
and a machine is a thing. Fig. 4 shows a complete generic
machine. The actions in the machine (also called stages)
can be described as follows:

Transfer

Fig. 4 Flow of things in a thinging-machine model.

Receive Release

(Input) (Output)

(Accepted)

Process
(Arrive)

Create

Fig. 3. Thimac as a yin-yang symbol. A thing and a machine are each a
version of the other.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

12

Arrive: A thing moves to a new machine.
Accept: A thing enters a machine. For simplification, we
assume that all arriving things are accepted; therefore, we
can combine, arrive and accept the thing as the Receive
stage.
Release: A thing is marked as ready to be transferred
outside the machine (e.g., in an airport, passengers wait to
board after passport clearance).
Process: A thing is changed in form, but no new thing
results.
Create: A new thing is born in a machine.
Transfer: A thing is input into or output from a machine.

Additionally, the TM model includes storage and triggering
(denoted by a dashed arrow in this paper’s figures), which
initiates a flow from one machine to another. Multiple
machines can interact with each other through movement
of things or triggering stages. Triggering is a
transformation from one series of movements to another
(e.g., electricity triggers cold air).

3. Thinging Machine-Based Model of
Network Monitoring

In this section, we discuss a case study involving network
monitoring. Demand for a live network-monitoring
behavioral system is growing rapidly among network
administrators. Administrators require appropriate, efficient
and accurate logging systems with the ability to maintain,
upgrade and manage all network resources. This section
includes several discussions introducing the subsystem that
we will model. Additionally, we discuss the research area
that motivated our proposed model. Moreover, we
demonstrate TM modeling for static, dynamic, behavioral
and monitoring representations of the subsystem.

3.1 Background of the Modeled System

In this section, we focus on a case study of a single
organization in Kuwait. The organization’s business
requirements are growing, causing an increase in service
demands for information technology (IT) resources. The IT
department has acquired a large number of servers and
greater storage capacity. Creating a well-defined and
understandable network description is a way to visualize an
organization’s network structure and is critical for
improving the efficiency, effectiveness and timeliness of
maintenance activities. This need for improvement
motivates the development of a TM-based model instead of
the use of symbols such as walls, towers and human and
computer icons, which do not produce systematic
depictions that define coherent network architecture.

Additionally, using abstract network architecture diagrams
(graphs) of nodes and lines—which focus only on
presenting the communication between the nodes—is
equally unsatisfactory: their extremely abstract content
does not expose the nodes’ internal functionalities. The
individual features of the nodes’ static and dynamic aspects
are totally absent from a graph. In this case, a TM can form
the foundation of a general description of topological
connectivity within the network, which can be utilized to
understand the network, communication among various
types of stakeholders, the maintenance process, monitoring
and documentation.

In pursuing this goal, we model packet flows through
various sub-networks as a single phenomenon that ties
various components of the network system together. TM
modeling represents the network as a thimac. We model the
network as an existing system. Upon inspecting the current
network, we divided the TM thimac into several sub-
thimacs. Al-Fedaghi and Behbehani discussed the current
network (Fig. 5) in detail in [1].

Fig. 5 General description of case study network architecture.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

13

In this paper, we focus on adaptive security appliance
(ASA). ASA is a basic component used in many systems
that allows users to securely access data and other
resources within the network while delivering enterprise
firewall capabilities. The ASA 5500-X manual (2015)
includes a flowchart of the ASA packet process algorithm,
as shown in Fig. 6 and partially in Fig. 5. Al-Fedaghi and
Behbehani model this algorithm in TM (2020), except for
the FirePOWER services module shown in blue in Fig. 6.

3.2 Monitoring in FirePOWER Service Module

This section includes our main contribution in this paper.
We use TM to model FirePOWER as a part of the network.
We provide a general description of the context of the
FirePOWER system, with further focus on the LINA
subsystem (Fig. 5). Accordingly, in this section, we present

1. Static TM model: Al-Fedaghi and Behbehani (2020)
presented this type of modeling to specify ASA and
other components in Fig. 5. In this paper, we focus on
the TM static model of the FirePOWER services
module.

2. Events/dynamic model: This level of modeling
specifies the events of packets’ journey through LINA.

3. Behavior model: This level of modeling specifies the
chronology of events identified in (2).

3.3 General Description of the FirePOWER System

ASA aggregates security capabilities into one device (see
Fig. 7). These capabilities include firewall, antivirus,
intrusion prevention and VPN capabilities.

ASA’s purpose is to stop security threats and attacks
within the network. The FirePOWER service helps
discover vulnerabilities before an attack takes place by
detecting, blocking and defending against network security
attacks. It provides the following key capabilities: access
control, intrusion detection and prevention, advanced
malware protection (AMP) and file control. Ingress
packets are processed against access control lists (ACLs),
connection tables, network address translation (NAT) and
application inspections before traffic is forwarded to the
FirePOWER services module.

The so-called Firepower Threat Defense (FTD) is the main
software system that actively runs the FirePOWER service
in FirePOWER (Fig. 7). Some of the FirePOWER
functions found in FTD are the intrusion prevention
system (IPS), application visibility and control (AVC),
URL filtering and AMP. These services are called the
“FirePOWER services module” in Fig. 7. Fig. 8 shows a
sample description from [14].

FTD software consists of two main engines, along which
packets will flow. The first is the LINA engine (See Fig. 9).

Fig. 7 ASA with FirePOWER packet process.

Fig. 9 Detailed FTD packet process.

Fig. 6 ASA packet process algorithm (adapted from [13]).

Fig. 8. Sample description of FTD packetprocess [14]

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

14

which handles the packet’s entry routing (see Fig. 10 for
simplified packet structure) by controlling the outer IP
header via the inspecting traffic tunnel. The LINA engine
inspects the traffic tunnel between systems by checking
the packet’s outer header (see relevant details of packet
structure in Fig. 10) and deciding whether incoming
packets are allowed access. The second engine is the Snort
engine, in which packets can reach the LINA engine’s
allowance permissions. The Snort engine handles packet
entry routing by inspecting the inner IP header.

Prefilter policies handle outer IP header policies within the
LINA engine, and access control policies handle inner IP
header policies within the Snort engine. For instance, the
type of policies applied to traffic tunnels (GRE, IP-in-IP,
etc.) are prefilter policies; policies applied inside the
sessions are access control policies.

4. Modeling the LINA Subsystem in a

Thinging Machine

One of the main engines in FTD software is LINA, which
is responsible for handling the execution of trusted
connections, NAT, prefilter policies, etc. LINA is also
responsible for deciding whether the packet should be
further processed in Snort, depending on the predefined
rules and policies set within its components [15]. This
section presents LINA’s static, dynamic, behavioral and
monitoring models.

4.1 Static Model

Fig. 11 shows the static TM model of LINA. In the figure,
the packet flows from the Internet or WAN/LAN (Circle
1), reaching ASA, where the packet is processed starting
from RX to inspection checks (see Fig. 6). Then, the
packet flows to LINA (2) and to the ingress interface (3),
which handles packet entry. The packet is processed (4) as
follows.

Packet Entry
A. The input counter for incoming packets is triggered

(5) and incremented by one (6).
B. The destination is extracted (9) and transferred (10)

for comparison with LINA’s list of destinations (11).

 This comparison involves the packet’s destination
(12), with one destination fetched from the list (13) at
a time. The comparison process (14) involves the
following:

 If destinations are different and not at the end of the
list (the list contains more destination entries), the
next destination in the list is fetched for a new
comparison (15).

 If the destinations are different and at the end of the
list (16),

a. The packet is processed to be decrypted (17) and
then sent to the Untranslate–NAT module (18).
b. Defragmentation of payload: The stored (8)
payload (data) is released (19) to flow to the
defragmentation module (20), where it is
defragmented (21), removing spaces, and the new
payload (22) flows (23) to be stored (8).

 If the destinations are the same (24),
a. The defragmentation of the payload (19 to 23) is
performed.
b. The packet is released (25) to flow (26) to DAQ
(Data Acquisition).

Untranslate Network Address Translation
The packet is received (27) and processed (28) to extract
its header (29). The header is processed (30) to extract its
destination (31), which flows (32) to be compared with
destinations in a NAT table. The NAT table is processed
(33), and a destination address is retrieved (34) and
transferred (35) for comparison (36).

 If the destination is not in the table (37) and is not at
the end of the table, a new address is retrieved from
the table to be compared with the destination.

 If the destination is not in the table (38) or at the end
of the table, the egress interface (39; discard
Untranslate NAT process) is skipped and the
incoming destination packet flows to the prefilter
policy module (see below).

 If the destination exists in the address, the process will
result in YES (40), which will release and transfer the
destination to the egress interface.

In the egress interface (39), a table of global routes (41)
exists to show each destination with its related route. The
global route table is processed (42) to retrieve (43) one
route that flows (44) for comparison. The incoming
destination (40) and the route (44) are compared (45).

Fig. 10 Packet content upon entering ASA.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

15

ASA

Fig. 11 FTD static TM.

Header

Untranslate - NAT

Transfer

L3/L4
ACL

Egress
Interface

prefilter
policy

Process

R
eceive

Source

Receive

Trust Rule

Process: Action?

Receive

Transfer

Permit Trust

Allow
Rule

Process:
Permit

Receive

Transfer

Transfer

Release

Global
Route

Process

Transfer

H
ea

d
er

Destination
Transfer

Destination

Process

Packet

T
ra

ns
fe

r

R
ec

ei
ve

Receive

Transfe

Process

Process

Process:
Defrag

Transfer Release

Release

Payload (Data)

RX – Inspection

VPN Decrypt

Defragmentation
Input

Counter
Process:

Incr

Transfer Receive Process

Transfer

Receive

Release

EO
table

Release

Transfer

Transfer

Transfer

Destination

Process

Transfer

Process

O
ut

er
 H

ea
de

r

Process

Transfer

Source

Access
Control List

Receive

One Destination

One
Route

Create

Release

Transfer

Drop

Transfer
Receive

Process

Process:
Exist in NAT?

NO

O
ne

A

dd
re

ss

C
re

at
e

R
el

ea
se

T
ra

ns
fe

r

T
ra

ns
fe

r
R

ec
ei

ve

Receive

Transfer

Process

 Transfer
Release
Create
One

Policy

prefilter
policy

Transfer

Transfer

Receive

Release

 NO

YES EO table
Process: Existing

Create

Drop

D
ro

p

Process:
Permit

Receive

Transfer

Transfer

Release

Monitor
Rule

Release

Transfer

Header

 One Rule

Process:
Rule Type?

Transfer

Receive

Release

Transfer Transfer

Release

Create

Transfer

Receive

Process

Process

Release

YES

Transfer

Receive

2

3

5
9

10

12

11 15

31

7

27

28
29 30

25 24

18

19
21

23

33

34

40

36

37

39

32

41

42

43

35

44

65

45

46

47

48 49

50 51
52

53

54 55

56

59

61

60

63

64

66

70

67

68

69

B

72

73 74 75
71

80

LINA

Packet from Internet or WAN/LAN

Receive Release Transfer Transfer Receive

Data Storage

4

Ingress Interface

6

1

8

38

A

Receive Transfer

Transfer Receive Transfer

Create

Receive Release Transfer

Release Transfer Create

Not Found & Not EOF

Found
EOF

Process: Existing
Destination? Transfer Release Transfer

Release

Transfer Receive Process

Transfer

Receive

Process

NAT

EO table

Not
Found

Process:
Policy Type?

Found
Fastpath

policy

Found
Analyze
policy

57

58

C D E F G H

13
14

16

20

22

DAQ (Data Acquisition)

Flow Update module

Transfer

Transfer

26

Release

Release

Transfer

Release Transfer

Release

Process:
Permit

Receive

Transfer

Transfer

Release

Block
Rule

76

Process:
Permit

Receive

Transfer

Transfer

Release

Block
with Reset

77

Process:
Permit

Receive

Transfer

Transfer

Release

Interactive
Block

78

 Process:
 Permit

Receive

Transfer

Transfer

Release

Interactive
Block with

79

I

17

62

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

16

 If the destination does not exist in the route and the
global route table contains no remaining routes (46),
the incoming destination is dropped.

 If the destination does not exist in the route and the
global route table contains more routes (47), another
route is retrieved from the table to be compared with
the incoming destination.

 If the destination exists in the route (48), then a trigger
to create (49) a new destination is performed based on
the route. The packet with the new destination is
released (50) to the prefilter policy module (51).

Prefilter Policy (Traffic Filtering)
The packet in the prefilter policy module is processed

(52) to extract the outer header (53), which in turn is used
to extract the source (54). The source and the policy (55)
that are retrieved from the prefilter policy table (56) are
compared (57).
 If the source is not included in the policy and the

prefilter policy table contains no remaining policies,
the involved packet is dropped (58).

 If the source is not included in the policy and the
prefilter policies table contains more policies, a new
policy is retrieved to be compared with the source
(59).

 If the source is included as a “fastpath” policy (60 – a
policy is found), the packet is released to the flow
update module (61).

 If the source is included as an “analyze” policy (62 – a
policy is found) the packet is released to the L3/L4
ACL (63) module.

L3/L4 Access Control List
 The packet in the L3/L4 ACL module is processed (64) to
extract the header (65), which in turn is used to extract the
source (66). The source and the access control rule (67)
that are retrieved from the ACL (i.e., trust, monitor, allow,
block, block with reset, interactive block or interactive
block with reset) (68) are compared (69).
A. No type: If no rule is applicable to the source and the

ACL still has rules to be examined, a new rule is
retrieved to be compared with the source (70).

B. Trust rule: If the trust rule is applicable to the source,
the involved packet is processed (71) as follows.
- If trusted, the packet is released (73) to a flow

update module (another diagram in modeling the
system).

- If permitted, the packet is released (72) to DAQ
(another diagram in modeling the system).

C. Monitor rule: If the monitor rule is applicable to the
source, the involved packet is processed (74) and sent
to DAQ.

D. Allow rule: If the allow rule is applicable to the
source, the involved packet is processed (75) and
flows to DAQ.

E. Block rule: If the block rule is applicable to the
source, the involved packet is processed (76) and
flows to DAQ.

F. Block with Reset rule: If the block with reset rule is
applicable to the source, the involved packet
(including a reset rule) is processed (77) and flows to
DAQ.

G. Interactive Block rule: If the interactive block rule is
applicable to the source, the involved packet
(including a bypass rule) is processed (78) and flows
to DAQ.

H. Interactive Block with Reset rule: If the interactive
block with reset rule is applicable to the source, the
involved packet (includes an intersect rule) is
processed (79) and flows to DAQ.

I. Deny: If any rule is applicable to the source under a
deny action, the involved packed is dropped (80).

4.2 Dynamic Model

In this model, we select a decomposition of the static
model to identify the events embedded in the description.
The decompositions chosen are as follows (See Fig. 12):

Event 1 (E1): A packet’s arrival to LINA.
Event 2 (E2): The packet flows to the ingress interface.
Event 3 (E3): The packet’s details are processed.
Event 4 (E4): The ingress interface’s input counter is

incremented.
Event 5 (E5): The payload is extracted and stored.
Event 6 (E6): The header is extracted.
Event 7 (E7): The destination is extracted.
Event 8 (E8): The destination flows to be compared.
Event 9 (E9): A destination form is retrieved from the

destination table.
Event 10 (E10): The retrieved destination flows to be

compared.
Event 11 (E11): The incoming destination and the retrieved

destination are compared.
Event 12 (E12): A new destination is retrieved from the

destination table.
Event 13 (E13): The incoming destination does not exist in

the destination table.
Event 14 (E14): The incoming destination is found in the

destination table.
Event 15 (E15): The payload is retrieved from data storage

and flows to defragmentation.
Event 16 (E16): The payload is defragmented and stored.
Event 17 (E17): The packet flows to DAQ.
Event 18 (E18): The packet flows to VPN decrypt.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

17

ASA

Fig. 12 FTD event model.

Header

Untranslate - NAT
Transfer

L3/L4
ACL

Egress
Interface

prefilter
policy

Process

R
eceive

Source

Receive

Trust Rule

Process: Action?

Receive

Transfer

Permit Trust

Allow
Rule

Process:
Permit

Receive

Transfer

Transfer

Release

Global
Route

Process

Transfer

H
ea

d
er

Transfer

Destination

Process

Packet

Receive

Transfer

Process

Process

Payload (Data)

RX – Inspection

Input
Counter

Process:
Incr

Transfer Receive Process Transfer

Receive

Release

EO
table

Transfer

Transfer

Destination

Process

Transfer

Process

O
ut

er
 H

ea
de

r

Transfer

Access
Control List

Receive

Drop

Process

Process:
Exist in NAT?

NO
T

ra
ns

fe
r

R
ec

ei
ve

Receive

Transfer

Process

prefilter
policy

Transfer

Transfer

Receive

Release

 NO

YES EO table
Process: Existing

Create

Drop

Process:
Permit

Receive

Transfer

Transfer

Release

Monitor
Rule

Release

Transfer

Header

Transfer

Receive

Process

Release

YES

LINA

Packet from Internet or WAN/LAN

Receive Release Transfer Transfer Receive

Data Storage

Ingress Interface

Receive Transfer

Receive Release Transfer Release

Transfer

Receive

Process

NAT

DAQ (Data Acquisition)

Flow Update module

Transfer

E1 E3

E4
E5 E6

E7 Release

E12

E16

E17

E3

E6

E8

E20

E22

E23 E24

E8

E28
E29 E30 E31

Transfer

Release E32

E33

E34

E37

E43 E41

E40 E39

E49

E6

E3

E47

E51

E52 E53

E55 E54

 E18

Transfer

Release

Transfer

Release

Transfer

Release

O
ne

A

dd
re

ss

C
re

at
e

R
el

ea
se

T
ra

ns
fe

r

One
Route

E25 Create

Release

Transfer

Transfer
Receive

E27

One Rule

Transfer

Release

Create

T
ra

ns
fe

r

R
ec

ei
ve

Not Found & Not EOF

Found
EOF

Process: Existing
Destination?

Process:
Defrag

Transfer Release

Defragmentatio

Create

Transfer

Receive

EO
table

Not
Found

Process:
Policy Type?

Found
Fastpath

policy

Found
Analyze
policy

E38

E2

 One Destination

Release Transfer Create
E1

Destination E8

E10
E1

Receive Transfer Release Transfer

E14
E15

E19

E7

E21

E26

E3

E35

E36

Transfer
Release

Create
One

Policy

E46 E48

Process:
Rule Type?

Process

E50

Transfer Transfer Release Transfer Receive Process

VPN Decrypt

 Source
Transfer

Receive

Release

Transfer

E45

Process

E42
E44

D
ro

p

Process:
Permit

Receive

Transfer

Transfer

Release

Block
Rule

Process:
Permit

Receive

Transfer

Transfer

Release

Block
with Reset

Process:
Permit

Receive

Transfer

Transfer

Release

Interactive
Block

Process:
Permit

Receive

Transfer

Transfer

Release

Interactive
Block with

E60 E59 E58 E57 E56

E9

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

18

Event 19 (E19): The packet is decrypted and flows to

Untranslate–NAT.
Event 20 (E20): A destination address is retrieved from the

NAT table.
Event 21 (E21): The retrieved destination address flows to

be compared.
Event 22 (E22): The incoming destination and the retrieved

destination address are compared.
Event 23 (E23): A new destination address is retrieved

from the NAT table.
Event 24 (E24): The incoming destination does not exist in

the NAT table.
Event 25 (E25): A route is retrieved from the global route

table.
Event 26 (E26): The retrieved route flows to be compared.
Event 27 (E27): The incoming destination and the retrieved

route are compared.
Event 28 (E28): A new route is retrieved from the global

route table.
Event 29 (E29): The incoming destination is not included in

the global route table, and the packet is
dropped.

Event 30 (E30): The incoming destination is found in the
global route table.

Event 31 (E31): A new destination is set for the incoming
packet.

Event 32 (E32): The packet flows to the prefilter policy.
Event 33 (E33): The outer header is extracted.
Event 34 (E34): The source is extracted.
Event 35 (E35): The source flows to be compared.
Event 36 (E36): A policy is retrieved from the prefilter

policy table.
Event 37 (E37): The retrieved policy flows to be compared.
Event 38 (E38): The source and the policy are compared.
Event 39 (E39): A new policy is retrieved from the prefilter

policy table.
Event 40 (E40): The source is not included in the prefilter

policy table, and the packet is dropped.
Event 41 (E41): The source is found in the prefilter policy

table with a fastpath policy.
Event 42 (E42): The packet flows to the flow update

module.
Event 43 (E43): The source is found in the prefilter policy

table with an analyze policy.
Event 44 (E44): The packet flows to L3/L4 ACL.
Event 45 (E45): The source is extracted.
Event 46 (E46): The source flows to be compared.
Event 47 (E47): A rule is retrieved from ACL.
Event 48 (E48): The retrieved rule flows to be compared.
Event 49 (E49): The source and the rule are compared.
Event 50 (E50): A new rule is retrieved from ACL.
Event 51 (E51): The source is found in ACL with a trust

rule, and an action is performed on the
packet.

Event 52 (E52): The packet flows to the flow update
module using a trust action.

Event 53 (E53): The packet flows to DAQ using a permit
action.

Event 54 (E54): The source is found in ACL with a monitor
rule, and the packet flows to DAQ using a
permit action.

Event 55 (E55): The source is found in ACL with an allow
rule, and the packet flows to DAQ using a
permit action.

Event 56 (E56): The source is found in ACL with a block
rule, and the packet flows to DAQ using a
permit action.

Event 57 (E57): The source is found in ACL with a block
with reset rule, and the packet flows to DAQ
using a permit action.

Event 58 (E58): The source is found in ACL with an
interactive block rule, and the packet flows to
DAQ using a permit action.

Event 59 (E59): The source is found in ACL with an
interactive block with reset rule, and the
packet flows to DAQ using a permit action.

Event 60 (E60): The source is found in ACL with a deny
action, and the packet is dropped.

4.3 Behavioral Model

Fig. 13 shows the behavioral model based on the
decompositions in the dynamic model and according to the
chronology of events.

Fig. 13 TM behavioral model

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

19

4.4 Monitoring Model

Monitoring can be applied to all events, E1, E2. … E44, or a
subset of these events (see Fig. 14). Accordingly, when the
event Ei happens, it triggers a meta-event (an event that is
caused by an event), signified as Mi. For instance, M9
creates a record of E9 that contains data about the time of

E9 and other data—changes in values, alerts, warnings or
any other needed information. The time data can contain
various time information (e.g., start/end time, period; Fig.
15). A log manager may contain all sets of meta-events to
create temporal log registrations for historic archives of all
events, or it can merge events into one bigger event. For
example, a history record can be generated for the packet
in the ingress region (E3, … E6).

Monitoring System

Fig. 14. General overview of the monitoring system

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

20

CONCLUSION

We applied TM modeling to monitoring in packet-mode
transmission. Continuity is required in networking,
especially for alert processes upon failures, stoppages or
suspicious activities within a network system. Currently,
monitoring systems lack the conceptual representation and
systemization that generate proper event logs that can
precisely describe internal communications within network
resources. We applied TM-based modeling to an existing
computer network in an enterprise in Kuwait to create an
integrated network system including hardware, software
and communication facilities. The results speak for
themselves: we can apply a single modeling methodology
with a simple ontology of five actions and two types of
arrows uniformly to all stages of static, dynamic,
behavioral and monitoring representations. Of course, TM
is still a theoretical artifact that needs to be implemented in
reality. Further research in this direction will involve
building computer-based tools that can facilitate building
such a model.

References

[1] Al-Fedaghi, S., Behbehani, B.: How to Document Computer
Networks. Journal of Computer Science 16(6), 723–734
(2020). DOI:10.3844/jcssp.2020.723.434

[2] Wolf, T., Griffioen, J., Calvert, K. L., Dutta, R., Rouskas, G.
N., Baldine, I., Nagurney, A.: Choice as a Principle in
Network Architecture. In: Proc. of the ACM SIGCOMM
2012 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication
(2012)

[3] Umhlaba Development Services: Introduction to Monitoring
and Evaluation Using the Logical Framework Approach.
Noswal Hall, Braamfontein, Johannesburg, South Africa
(2017)
https://eeas.europa.eu/archives/delegations/ethiopia/docume
nts/eu_ethiopia/ressources/m_e_manual_en.pdf

[4] Svoboda, J., Ghafir, I., Prenosil, V.: Network Monitoring
Approaches: An Overview. Int J Adv Comput Netw
Secur 5(2), 88–93 (2015). DOI: 10.15224/978-1-63248-061-
3-72

[5] Kay, R. Event Correlation. In: Computerworld (2003).
https://www.computerworld.com/article/2572180/event-
correlation.html

[6] Kent, K., Souppaya, M.: Guide to Computer Security Log
Management. NIST special publication 92, 1–72 (2006)

[7] O’Brien, C.: 5 IPOs That Show the Importance of Data in
2020. In: VentureBeat (2020).
https://venturebeat.com/2020/12/28/5-ipos-that-show-the-
importance-of-data-in-2020/

[8] Network Monitoring Software. In: ManageEngine (2021).
https://www.manageengine.com/network-
monitoring/Eventlog_Tutorial_Part_II.html

[9] Leskiw, A. C.: Syslog: Servers, Messages & Security–
Tutorial & Guide to this System Logs! In: Network
Management Software (2020).
https://www.networkmanagementsoftware.com/what-is-
syslog/

[10] Al-Fedaghi, S.: Modeling in Systems Engineering:
Conceptual Time Representation. International Journal of
Computer Science and Network Security 21(3), 153–164
(2021)

[11] Bar-Sinai, M., Weiss, G., Marron, A.: Defining Semantic
Variations of Diagrammatic Languages Using Behavioral
Programming and Queries. In: EXE@ MoDELS, pp. 5–11
(2016)

[12] Heidegger, M.: The Thing. In: Hofstadter, A. (Trans.) Poetry,
Language, Thought, pp. 161–184. Harper and Row (1975)

[13] Santos, O., Kampanakis, P., Woland, A.: Introduction to
and Design of Cisco ASA with FirePOWER Services. Cisco
Press (2016).
https://www.ciscopress.com/articles/printerfriendly/2730336

[14] Zafeiroudis, M., Klauzova, V., Gasimov, I.: Clarify
Firepower Threat Defense Access Control Policy Rule
Actions. Cisco (2020).
https://www.cisco.com/c/en/us/support/docs/security/firepo
wer-ngfw/212321-clarify-the-firepower-threat-defense-
acc.html

[15] Campbell, C., Hoecke, B., Novakovic, D., Acs, G.,
Duernberger, S.: Firewall Innovation and Transformation—
A Closer Look at ASA and Firepower. Ciscolive (2017).
https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/201
7/pdf/TECSEC-2600.pdf

Fig. 15 Generating temporal data for changes in balance values.

