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Summary 
Abstraction applied in computer networking hides network 
details behind a well-defined representation by building a model 
that captures an essential aspect of the network system. Two 
current methods of representation are available, one based on 
graph theory, where a network node is reduced to a point in a 
graph, and the other the use of non-methodological iconic 
depictions such as human heads, walls, towers or computer racks. 
In this paper, we adopt an abstract representation methodology, 
the thinging machine (TM), proposed in software engineering to 
model computer networks. TM defines a single coherent network 
architecture and topology that is constituted from only five 
generic actions with two types of arrows. Without loss of 
generality, this paper applies TM to model the area of network 
monitoring in packet-mode transmission. Complex network 
documents are difficult to maintain and are not guaranteed to 
mirror actual situations. Network monitoring is constant 
monitoring for and alerting of malfunctions, failures, stoppages 
or suspicious activities in a network system. Current monitoring 
systems are built on ad hoc descriptions that lack systemization. 
The TM model of monitoring presents a theoretical foundation 
integrated with events and behavior descriptions. To investigate 
TM modeling’s feasibility, we apply it to an existing computer 
network in a Kuwaiti enterprise to create an integrated network 
system that includes hardware, software and communication 
facilities. The final specifications point to TM modeling’s 
viability in the computer networking field. 

Key words: 
Software Engineering, Computer Network Engineering; 
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1. Introduction 

This paper is a continuation of a previous article [1]. Our 
previous paper dealt with network documentation. This 
paper presents research in the area of networking 
monitoring in packet-mode transmission using the same 
conceptual modeling method, called a thinging machine 
(TM).  

Current depictions of network diagrams have been 
developed over many years and include hundreds of 
various symbols, which range from walls to computer 
screens to server racks to a cloud-based storage system. 

Network diagrams may also be based on an abstract graph 
theory representation, which presents a network as a set of 
nodes and edges. Scholars have been greatly interested in 
defining a single coherent representation of a network [2]. 
This effort requires a rich understanding of relationships 
among network elements according to their applicability, 
environment and internal functionalities.  

1.1 Monitoring Computer Networks 

In general, “monitoring” refers to the methodical and 
continuing gathering, examination and use of information 
for management control and decision-making processes 
[3]. In computer networks, continuous management 
requires monitoring the network through apparatuses that 
permit supervisors to instantaneously access information 
on the system’s state and handle alerts for events such as 
malfunctions, failures, stoppages or suspicious activities 
[4]. A network monitoring system monitors external 
security threats and internal incidents caused by system 
crashes and malfunctions of servers, connections or other 
devices. 

From a technical perspective, the world is becoming 
increasingly interconnected. Managing networks with such 
interconnectivity is an essential factor for maintainability 
and sustainability. Network maintenance requires a rapid 
pinpointing process as well as addressing any difficulty 
regardless of whether a failing mail daemon or a broken 
fiber optic connection caused the incident. A modern 
network system offers information about its events. These 
events are generated by  
 Logs within operating systems 
 Archiving records of events within servers 
 Logs of errors, warnings and failures within 

applications 
 Records of suspicious traffic generated by firewalls 

and virtual private-network gateways 
 Observing traffic among various network segments in 

network routers and switches 
 Simple network management protocol (SNMP) traps 

and alerts reported to a management console [5]. 
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Events occurring within a network’s components are 
recorded as logs related to network security. These events 
are created by various sources such as applications, 
networking equipment, antivirus software, firewalls and 
intrusion detection systems, operating systems and 
workstations [6]. Log management is critical when 
creating and handling adequately detailed event data in a 
suitable period of time. Log analysis is valuable for 
isolating security instances, detecting policy abuses, 
capturing suspicious action and identifying working 
difficulties. Logs are also precious when inspecting, 
investigating and recognizing long-term problems.  

The involved network devices monitor their own behavior, 
receive and relay messages from other networks and 
duplicate alerts. Event logs register all the activities on the 
system’s devices for the purpose of utilizing the generated 
data to address security and performance issues. The result 
is a complicated picture of events and behaviors such that 
a single problem can produce a blizzard of alerts and event 
messages. In this situation, a huge amount of data is 
created all over the network that no one can easily scan 
and handle alone. According to Kay [5], in 2000, a 
Computer Sciences Corp OC-12 (a fiber optic connection) 
could generate about 850 MB of event data in an hour, 
which translates into more than 600 GB of data per month. 
In 2020, the volume of data being created generally 
increased with the introduction of 5G networks, edge 
computing, the Internet of Things and the increased 
adoption of cloud computing. IDC expected that 59 ZB of 
data would be generated and handled in 2020, up from 41 
ZB in 2019 [7].  

Currently, the same iconic representations used to describe 
computer networks are also used to represent monitoring 
systems. For example, the network monitoring server 
OpManager is described in textual language, and its 
architectural structure is given as shown in Fig. 1 [8]. 
Taking another example, Leskiw [9] described Syslog as a 
mechanism that allows network devices to communicate 
with a logging server (Syslog server) by sending event 
messages. Various event message types are logged using 
Syslog protocol, which covers a wide range of network 
devices. Most network equipment, such as routers and 
switches, can send Syslog messages [9]. Syslog simply 
sends messages to a central location when specific events 
are triggered. Syslog processes are represented as shown in 
Fig. 2. 

Network management also relies on an enhanced, coherent 
high-level model for monitoring of computer networks. 
High-level model architecture should demonstrate the 
event-based mechanism within a monitoring system. 
Events are produced by capturing records of data 
generated by network components such as logs of traffic, 

malfunctions, failures, system faults, breaches and network 
address translations (NATs). The visualization of logs’ 
sources and details that network components produce in a 
monitoring system is completely vague. Network 
management lacks a high-level model to represent a 
monitoring system for network components. Network 
administrators and decision makers should be able to 
visualize events within the monitoring system using a 
high-level modeling approach that helps them understand 
points of failure, business weaknesses and opportunities 
for enhancement. 

1.2 Proposed Thinging Machine Approach 

TM adopts a high-level representation methodology to 
model computer networks. It defines a single coherent 
network architecture and topology similar to engineering 
schematics. TM topology consists of only five generic 
actions with two types of flow arrows. The TM model of 
monitoring presents a theoretical foundation that is 
integrated with a network’s events and behavior 
descriptions. 

In this paper, to investigate TM modeling’s feasibility, we 
applied TM-based modeling to an existing computer 
network in a Kuwaiti enterprise to create an integrated 
network system that includes hardware, software and 
communication facilities.  

Fig. 2 Another representation of a monitoring system (From 
[9]). 

 
Fig. 1 Sample network monitoring description (From [8]). 
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Specifically, in this paper, we focus on modeling packet 
flows through various software and devices in the network. 
Accordingly, the monitoring problem is limited to 
monitoring packets in the network instrument. For 
monitoring purposes, we propose a more fundamental 
approach for high-level description of computer networks. 
Our model involves conceptualizing the structure of 
network diagrams, and the resultant schema is used as a 
vehicle for communication among engineers, managers 
and decision makers. 

 
1.3 Outline  

 In the next section, we summarize TM [10].  
 Next, we discuss a case study involving network 

monitoring. The case involves an IT department that 
has acquired a large number of servers and more 
storage capacity, creating a well-defined and 
understandable network description, as discussed in 
our previous paper [10]. Due to space limitations, we 
concentrate on a specific part that is closely related to 
monitoring in its functionality. 

 We focus on an adaptive security appliance (ASA) 
network, including a flowchart of the ASA packet 
process algorithm. Specifically, we concentrate on 
modeling the FirePOWER services module. 

 Therefore, our main contribution in this paper concerns 
monitoring in the FirePOWER service module. We use 
TM to model FirePOWER as a part of the network and 
provide a general description of the system’s context, 
with further focus on the LINA subsystem of the 
FirePOWER system.  

2. Thinging Machine Modeling 

Diagrammatic modeling languages hold great promise for 
software and network engineering and can depict structural 
and behavioral specifications. However, many practitioners 
still consider diagrammatic languages mere “doodles”  [11].  

TM uses a diagramming language built on one-category 
ontology and five actions that, when designated over time, 
produce a behavioral model in terms of the chronology of 
events. The TM model articulates the ontology of the 
world in terms of an entity called a thimac (the first three 
letters of thing and machine), with double faces or two 
“being-nesses,” as a thing and simultaneously as a 
machine. The first side of the coin exhibits the wholeness 
(thing) assumed by the thimac; on the second side, 
operational symptoms (processes) emerge, providing a 
“force” that goes beyond structures or things to embrace 
other things in the thimac. To conceptualize a thimac as a 
thing presents no indication as to the content of the thing 
whereas to conceptualize a thimac as a machine forces a 

definite structure of actions with a flow of other things 
(See Fig. 3). 

A thing is subjected to doing (e.g., a tree is a thing being 
planted or cut), and a machine does (e.g., a tree is a 
machine that absorbs carbon dioxide and uses sunlight to 
make oxygen). The thing tree and the machine tree are two 
faces of the thimac tree. A thing is viewed based on 
Heidegger’s [12] notion of thinging. A thing is a machine, 
and a machine is a thing. Fig. 4 shows a complete generic 
machine. The actions in the machine (also called stages) 
can be described as follows: 

Transfer 

Fig. 4 Flow of things in a thinging-machine model. 

Receive Release 

(Input) (Output) 

(Accepted) 

Process  
(Arrive)

Create 

Fig. 3. Thimac as a yin-yang symbol. A thing and a machine are each a 
version of the other. 
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Arrive: A thing moves to a new machine. 
Accept: A thing enters a machine. For simplification, we 
assume that all arriving things are accepted; therefore, we 
can combine, arrive and accept the thing as the Receive 
stage. 
Release: A thing is marked as ready to be transferred 
outside the machine (e.g., in an airport, passengers wait to 
board after passport clearance). 
Process: A thing is changed in form, but no new thing 
results. 
Create: A new thing is born in a machine. 
Transfer: A thing is input into or output from a machine. 

Additionally, the TM model includes storage and triggering 
(denoted by a dashed arrow in this paper’s figures), which 
initiates a flow from one machine to another. Multiple 
machines can interact with each other through movement 
of things or triggering stages. Triggering is a 
transformation from one series of movements to another 
(e.g., electricity triggers cold air).    

3. Thinging Machine-Based Model of 
Network Monitoring 

In this section, we discuss a case study involving network 
monitoring. Demand for a live network-monitoring 
behavioral system is growing rapidly among network 
administrators. Administrators require appropriate, efficient 
and accurate logging systems with the ability to maintain, 
upgrade and manage all network resources. This section 
includes several discussions introducing the subsystem that 
we will model. Additionally, we discuss the research area 
that motivated our proposed model. Moreover, we 
demonstrate TM modeling for static, dynamic, behavioral 
and monitoring representations of the subsystem. 

 

 

 

 

 

 

 

 

 

 

 

 

 
3.1 Background of the Modeled System 

In this section, we focus on a case study of a single 
organization in Kuwait. The organization’s business 
requirements are growing, causing an increase in service 
demands for information technology (IT) resources. The IT 
department has acquired a large number of servers and 
greater storage capacity. Creating a well-defined and 
understandable network description is a way to visualize an 
organization’s network structure and is critical for 
improving the efficiency, effectiveness and timeliness of 
maintenance activities. This need for improvement 
motivates the development of a TM-based model instead of 
the use of symbols such as walls, towers and human and 
computer icons, which do not produce systematic 
depictions that define coherent network architecture. 

Additionally, using abstract network architecture diagrams 
(graphs) of nodes and lines—which focus only on 
presenting the communication between the nodes—is 
equally unsatisfactory: their extremely abstract content 
does not expose the nodes’ internal functionalities. The 
individual features of the nodes’ static and dynamic aspects 
are totally absent from a graph. In this case, a TM can form 
the foundation of a general description of topological 
connectivity within the network, which can be utilized to 
understand the network, communication among various 
types of stakeholders, the maintenance process, monitoring 
and documentation. 

In pursuing this goal, we model packet flows through 
various sub-networks as a single phenomenon that ties 
various components of the network system together. TM 
modeling represents the network as a thimac. We model the 
network as an existing system. Upon inspecting the current 
network, we divided the TM thimac into several sub-
thimacs. Al-Fedaghi and Behbehani discussed the current 
network (Fig. 5) in detail in [1]. 

 
Fig. 5 General description of case study network architecture. 
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In this paper, we focus on adaptive security appliance 
(ASA). ASA is a basic component used in many systems 
that allows users to securely access data and other 
resources within the network while delivering enterprise 
firewall capabilities. The ASA 5500-X manual (2015) 
includes a flowchart of the ASA packet process algorithm, 
as shown in Fig. 6 and partially in Fig. 5. Al-Fedaghi and 
Behbehani model this algorithm in TM (2020), except for 
the FirePOWER services module shown in blue in Fig. 6.  

3.2 Monitoring in FirePOWER Service Module 

This section includes our main contribution in this paper. 
We use TM to model FirePOWER as a part of the network. 
We provide a general description of the context of the 
FirePOWER system, with further focus on the LINA 
subsystem (Fig. 5). Accordingly, in this section, we present  

1. Static TM model: Al-Fedaghi and Behbehani (2020) 
presented this type of modeling to specify ASA and 
other components in Fig. 5. In this paper, we focus on 
the TM static model of the FirePOWER services 
module.  

2. Events/dynamic model: This level of modeling 
specifies the events of packets’ journey through LINA. 

3. Behavior model: This level of modeling specifies the 
chronology of events identified in (2).  

3.3 General Description of the FirePOWER System 
 

ASA aggregates security capabilities into one device (see 
Fig. 7). These capabilities include firewall, antivirus, 
intrusion prevention and VPN capabilities.  

 

 

 

 

 

 

 

 

 

 

ASA’s purpose is to stop security threats and attacks 
within the network. The FirePOWER service helps 
discover vulnerabilities before an attack takes place by 
detecting, blocking and defending against network security 
attacks. It provides the following key capabilities: access 
control, intrusion detection and prevention, advanced 
malware protection (AMP) and file control. Ingress 
packets are processed against access control lists (ACLs), 
connection tables, network address translation (NAT) and 
application inspections before traffic is forwarded to the 
FirePOWER services module.  

The so-called Firepower Threat Defense (FTD) is the main 
software system that actively runs the FirePOWER service 
in FirePOWER (Fig. 7). Some of the FirePOWER 
functions found in FTD are the intrusion prevention 
system (IPS), application visibility and control (AVC), 
URL filtering and AMP. These services are called the 
“FirePOWER services module” in Fig. 7. Fig. 8 shows a 
sample description from [14]. 

FTD software consists of two main engines, along which 
packets will flow. The first is the LINA engine (See Fig. 9). 

 

Fig. 7 ASA with FirePOWER packet process. 

Fig. 9 Detailed FTD packet process. 

Fig. 6 ASA packet process algorithm (adapted from [13]). 

Fig. 8. Sample description of FTD packetprocess [14] 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021 

 

14

 

 
which handles the packet’s entry routing (see Fig. 10 for 
simplified packet structure) by controlling the outer IP 
header via the inspecting traffic tunnel. The LINA engine 
inspects the traffic tunnel between systems by checking 
the packet’s outer header (see relevant details of packet 
structure in Fig. 10) and deciding whether incoming 
packets are allowed access. The second engine is the Snort 
engine, in which packets can reach the LINA engine’s 
allowance permissions. The Snort engine handles packet 
entry routing by inspecting the inner IP header. 

Prefilter policies handle outer IP header policies within the 
LINA engine, and  access control policies handle inner IP 
header policies within the Snort engine. For instance, the 
type of policies applied to traffic tunnels (GRE, IP-in-IP, 
etc.) are prefilter policies; policies applied inside the 
sessions are access control policies. 
 
4. Modeling the LINA Subsystem in a 

Thinging Machine  

One of the main engines in FTD software is LINA, which 
is responsible for handling the execution of trusted 
connections, NAT, prefilter policies, etc. LINA is also 
responsible for deciding whether the packet should be 
further processed in Snort, depending on the predefined 
rules and policies set within its components [15]. This 
section presents LINA’s static, dynamic, behavioral and 
monitoring models.  

 
4.1 Static Model  
 
Fig. 11 shows the static TM model of LINA. In the figure, 
the packet flows from the Internet or WAN/LAN (Circle 
1), reaching ASA, where the packet is processed starting 
from RX to inspection checks (see Fig. 6). Then, the 
packet flows to LINA (2) and to the ingress interface (3), 
which handles packet entry. The packet is processed (4) as 
follows. 
 
Packet Entry 
A. The input counter for incoming packets is triggered 

(5) and incremented by one (6). 
B. The destination is extracted (9) and transferred (10) 

for comparison with LINA’s list of destinations (11). 
 
 
 
 
 
 
 
 
 

 
 This comparison involves the packet’s destination 
(12), with one destination fetched from the list (13) at 
a time. The comparison process (14) involves the 
following: 

 If destinations are different and not at the end of the 
list (the list contains more destination entries), the 
next destination in the list is fetched for a new 
comparison (15). 

 If the destinations are different and at the end of the 
list (16), 

a. The packet is processed to be decrypted (17) and 
then sent to the Untranslate–NAT module (18). 
b. Defragmentation of payload: The stored (8) 
payload (data) is released (19) to flow to the 
defragmentation module (20), where it is 
defragmented (21), removing spaces, and the new 
payload (22) flows (23) to be stored (8). 

 If the destinations are the same (24), 
a. The defragmentation of the payload (19 to 23) is 
performed.  
b. The packet is released (25) to flow (26) to DAQ 
(Data Acquisition). 

 
Untranslate Network Address Translation  
The packet is received (27) and processed (28) to extract 
its header (29). The header is processed (30) to extract its 
destination (31), which flows (32) to be compared with 
destinations in a NAT table. The NAT table is processed 
(33), and a destination address is retrieved (34) and 
transferred (35) for comparison (36).  

 If the destination is not in the table (37) and is not at 
the end of the table, a new address is retrieved from 
the table to be compared with the destination. 

 If the destination is not in the table (38) or at the end 
of the table, the egress interface (39; discard 
Untranslate NAT process) is skipped and the 
incoming destination packet flows to the prefilter 
policy module (see below). 

 If the destination exists in the address, the process will 
result in YES (40), which will release and transfer the 
destination to the egress interface. 

In the egress interface (39), a table of global routes (41) 
exists to show each destination with its related route. The 
global route table is processed (42) to retrieve (43) one 
route that flows (44) for comparison. The incoming 
destination (40) and the route (44) are compared (45).  

Fig. 10 Packet content upon entering ASA. 
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Fig. 11 FTD static TM. 
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 If the destination does not exist in the route and the 
global route table contains no remaining routes (46), 
the incoming destination is dropped. 

 If the destination does not exist in the route and the 
global route table contains more routes (47), another 
route is retrieved from the table to be compared with 
the incoming destination. 

 If the destination exists in the route (48), then a trigger 
to create (49) a new destination is performed based on 
the route. The packet with the new destination is 
released (50) to the prefilter policy module (51). 

Prefilter Policy (Traffic Filtering) 
The packet in the prefilter policy module is processed 

(52) to extract the outer header (53), which in turn is used 
to extract the source (54). The source and the policy (55) 
that are retrieved from the prefilter policy table (56) are 
compared (57). 
 If the source is not included in the policy and the 

prefilter policy table contains no remaining policies, 
the involved packet is dropped (58). 

 If the source is not included in the policy and the 
prefilter policies table contains more policies, a new 
policy is retrieved to be compared with the source 
(59). 

 If the source is included as a “fastpath” policy (60 – a 
policy is found), the packet is released to the flow 
update module (61). 

 If the source is included as an “analyze” policy (62 – a 
policy is found) the packet is released to the L3/L4 
ACL (63) module. 

L3/L4 Access Control List 
 The packet in the L3/L4 ACL module is processed (64) to 
extract the header (65), which in turn is used to extract the 
source (66). The source and the access control rule (67) 
that are retrieved from the ACL (i.e., trust, monitor, allow, 
block, block with reset, interactive block or interactive 
block with reset) (68) are compared (69). 
A. No type: If no rule is applicable to the source and the 

ACL still has rules to be examined, a new rule is 
retrieved to be compared with the source (70). 

B. Trust rule: If the trust rule is applicable to the source, 
the involved packet is processed (71) as follows.  
- If trusted, the packet is released (73) to a flow 

update module (another diagram in modeling the 
system). 

- If permitted, the packet is released (72) to DAQ 
(another diagram in modeling the system).  

C. Monitor rule: If the monitor rule is applicable to the 
source, the involved packet is processed (74) and sent 
to DAQ. 

D. Allow rule: If the allow rule is applicable to the 
source, the involved packet is processed (75) and 
flows to DAQ. 

E. Block rule: If the block rule is applicable to the 
source, the involved packet is processed (76) and 
flows to DAQ. 

F. Block with Reset rule: If the block with reset rule is 
applicable to the source, the involved packet 
(including a reset rule) is processed (77) and flows to 
DAQ.  

G. Interactive Block rule: If the interactive block rule is 
applicable to the source, the involved packet 
(including a bypass rule) is processed (78) and flows 
to DAQ.  

H. Interactive Block with Reset rule: If the interactive 
block with reset rule is applicable to the source, the 
involved packet (includes an intersect rule) is 
processed (79) and flows to DAQ. 

I. Deny: If any rule is applicable to the source under a 
deny action, the involved packed is dropped (80). 

4.2 Dynamic Model  
 

In this model, we select a decomposition of the static 
model to identify the events embedded in the description. 
The decompositions chosen are as follows (See Fig. 12):  

 
Event 1 (E1): A packet’s arrival to LINA. 
Event 2 (E2): The packet flows to the ingress interface. 
Event 3 (E3): The packet’s details are processed. 
Event 4 (E4): The ingress interface’s input counter is 

incremented. 
Event 5 (E5): The payload is extracted and stored. 
Event 6 (E6): The header is extracted. 
Event 7 (E7): The destination is extracted. 
Event 8 (E8): The destination flows to be compared. 
Event 9 (E9): A destination form is retrieved from the 

destination table. 
Event 10 (E10): The retrieved destination flows to be 

compared. 
Event 11 (E11): The incoming destination and the retrieved 

destination are compared. 
Event 12 (E12): A new destination is retrieved from the 

destination table. 
Event 13 (E13): The incoming destination does not exist in 

the destination table. 
Event 14 (E14): The incoming destination is found in the 

destination table. 
Event 15 (E15): The payload is retrieved from data storage 

and flows to defragmentation. 
Event 16 (E16): The payload is defragmented and stored. 
Event 17 (E17): The packet flows to DAQ. 
Event 18 (E18): The packet flows to VPN decrypt. 
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Fig. 12 FTD event model. 
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Event 19 (E19): The packet is decrypted and flows to 

Untranslate–NAT. 
Event 20 (E20): A destination address is retrieved from the 

NAT table. 
Event 21 (E21): The retrieved destination address flows to 

be compared. 
Event 22 (E22): The incoming destination and the retrieved 

destination address are compared. 
Event 23 (E23): A new destination address is retrieved 

from the NAT table. 
Event 24 (E24): The incoming destination does not exist in 

the NAT table. 
Event 25 (E25): A route is retrieved from the global route 

table. 
Event 26 (E26): The retrieved route flows to be compared. 
Event 27 (E27): The incoming destination and the retrieved 

route are compared. 
Event 28 (E28): A new route is retrieved from the global 

route table. 
Event 29 (E29): The incoming destination is not included in 

the global route table, and the packet is 
dropped. 

Event 30 (E30): The incoming destination is found in the 
global route table. 

Event 31 (E31): A new destination is set for the incoming 
packet. 

Event 32 (E32): The packet flows to the prefilter policy. 
Event 33 (E33): The outer header is extracted. 
Event 34 (E34): The source is extracted. 
Event 35 (E35): The source flows to be compared. 
Event 36 (E36): A policy is retrieved from the prefilter 

policy table. 
Event 37 (E37): The retrieved policy flows to be compared. 
Event 38 (E38): The source and the policy are compared. 
Event 39 (E39): A new policy is retrieved from the prefilter 

policy table. 
Event 40 (E40): The source is not included in the prefilter 

policy table, and the packet is dropped. 
Event 41 (E41): The source is found in the prefilter policy 

table with a fastpath policy.  
Event 42 (E42): The packet flows to the flow update 

module. 
Event 43 (E43): The source is found in the prefilter policy 

table with an analyze policy. 
Event 44 (E44): The packet flows to L3/L4 ACL. 
Event 45 (E45): The source is extracted. 
Event 46 (E46): The source flows to be compared. 
Event 47 (E47): A rule is retrieved from ACL. 
Event 48 (E48): The retrieved rule flows to be compared. 
Event 49 (E49): The source and the rule are compared. 
Event 50 (E50): A new rule is retrieved from ACL. 
Event 51 (E51): The source is found in ACL with a trust 

rule, and an action is performed on the 
packet. 

Event 52 (E52): The packet flows to the flow update 
module using a trust action. 

Event 53 (E53): The packet flows to DAQ using a permit 
action. 

Event 54 (E54): The source is found in ACL with a monitor 
rule, and the packet flows to DAQ using a 
permit action. 

Event 55 (E55): The source is found in ACL with an allow 
rule, and the packet flows to DAQ using a 
permit action. 

Event 56 (E56): The source is found in ACL with a block 
rule, and the packet flows to DAQ using a 
permit action. 

Event 57 (E57): The source is found in ACL with a block 
with reset rule, and the packet flows to DAQ 
using a permit action. 

Event 58 (E58): The source is found in ACL with an 
interactive block rule, and the packet flows to 
DAQ using a permit action. 

Event 59 (E59): The source is found in ACL with an 
interactive block with reset rule, and the 
packet flows to DAQ using a permit action. 

Event 60 (E60): The source is found in ACL with a deny 
action, and the packet is dropped. 

4.3 Behavioral Model 

Fig. 13 shows the behavioral model based on the 
decompositions in the dynamic model and according to the 
chronology of events. 

Fig. 13 TM behavioral model 
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4.4 Monitoring Model 

Monitoring can be applied to all events, E1, E2. … E44, or a 
subset of these events (see Fig. 14). Accordingly, when the 
event Ei happens, it triggers a meta-event (an event that is 
caused by an event), signified as Mi. For instance, M9 
creates a record of E9 that contains data about the time of 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E9 and other data—changes in values, alerts, warnings or 
any other needed information. The time data can contain 
various time information (e.g., start/end time, period; Fig. 
15). A log manager may contain all sets of meta-events to 
create temporal log registrations for historic archives of all 
events, or it can merge events into one bigger event. For 
example, a history record can be generated for the packet 
in the ingress region (E3, … E6). 

Monitoring System 

   

Fig. 14. General overview of the monitoring system 
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CONCLUSION 

We applied TM modeling to monitoring in packet-mode 
transmission. Continuity is required in networking, 
especially for alert processes upon failures, stoppages or 
suspicious activities within a network system. Currently, 
monitoring systems lack the conceptual representation and 
systemization that generate proper event logs that can 
precisely describe internal communications within network 
resources. We applied TM-based modeling to an existing 
computer network in an enterprise in Kuwait to create an 
integrated network system including hardware, software 
and communication facilities. The results speak for 
themselves: we can apply a single modeling methodology 
with a simple ontology of five actions and two types of 
arrows uniformly to all stages of static, dynamic, 
behavioral and monitoring representations. Of course, TM 
is still a theoretical artifact that needs to be implemented in 
reality. Further research in this direction will involve 
building computer-based tools that can facilitate building 
such a model.  
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Fig. 15 Generating temporal data for changes in balance values. 


