
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

549

Manuscript received December 5, 2021
Manuscript revised December 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.12.76

Finding Unexpected Test Accuracy by Cross Validation in Machine
Learning

Hoijin Yoon
hj.yoon@uhs.ac.kr

Hyupsung University, Gyeonggi-do, Republic of Korea

Summary
Machine Learning(ML) splits data into 3 parts, which are usually
60% for training, 20% for validation, and 20% for testing. It just
splits quantitatively instead of selecting each set of data by a
criterion, which is very important concept for the adequacy of test
data. ML measures a model’s accuracy by applying a set of
validation data, and revises the model until the validation accuracy
reaches on a certain level. After the validation process, the
complete model is tested with the set of test data, which are not
seen by the model yet. If the set of test data covers the model’s
attributes well, the test accuracy will be close to the validation
accuracy of the model. To make sure that ML’s set of test data
works adequately, we design an experiment and see if the test
accuracy of model is always close to its validation adequacy as
expected. The experiment builds 100 different SVM models for
each of six data sets published in UCI ML repository. From the
test accuracy and its validation accuracy of 600 cases, we find
some unexpected cases, where the test accuracy is very different
from its validation accuracy. Consequently, it is not always true
that ML’s set of test data is adequate to assure a model’s quality.
Key words:
Software Testing, Machin learning, Test adequacy, Validation,
Accuracy.

1. Introduction

In recent years, Machine Learning (ML) has become
an essential technique for developing an intelligent system,
which is built based on a big size of data. A data set is
divided by 3 separate groups, which are one for training,
another for validation, and the other for testing. For the
convenience, these three part are called simply Training set,
Validation set, and Test set as shown in Figure 1. As shown
in Figure 1, the validation set is replaced with cross
validation when the size of data is not big enough to save
another group of data for validation. Cross validation

generates a set of data for validation by a method, for
example, n-folding and so on.

Training set is used to train a model, and the trained
model understands the training data well. Training
accuracy, the hit ratio of the model’s predictions for a set of
training data, must be high. But the fact that a model
achieves a high training doesn’t mean that it’s a good model
for all the general data. This is “Overfitting” problem. To
avoid overfitting problem, the model should be validated.
The data set for validation is applied to a model to measure
Validation accuracy, which is a percentage of how many
predictions hit their labels of data. The fact that the
validation accuracy is much lower than the training
accuracy means that the current model must be overfitting.
Overfitting is a phenomenon often seen when a trained
model performs extremely well on the samples used for
training but performs poorly on new unknown samples; that
is to say the model is not generalized well [1]. So the model
needs to be generalized more by fixing the hyper-
parameters [2]. The generalization has repeated until the
model’s validation accuracy is measured as high as its
training accuracy. The generalized model is tested with test
set, which has not been seen by the model yet. Test accuracy
is a percentage of correct predictions for these unseen data.
Figure 1 explains how 3 types of data sets are used in
training, validating, and testing in ML, and introduces ML’s
terminology.

ML splits the data into 3 parts, which is usually 60%
for training, 20% for validation, and 20% for testing instead
of selecting data by a certain criterion. This approach is
quantitative, and we doubt the quality of test set with
wondering if the test set made by data-splitting could cover
all the factors that should be tested in a model. Some

Fig 1. Training, Validation, and Testing in ML

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.12, December 2018

550

existing research works [3-6] also studies ML’s data usage.
Technically, the validation set is neutral in order to check if
a model is overfitting, and test accuracy is expected to be
close to the validation accuracy. If the test accuracy is still
high as expected by a high validation accuracy, the test set
can be said to be adequate and we don’t have any reason for
asking ML a certain criterion to select a test set. This
research work answers the question about quality of ML’s
test set through an experiment checking if the test set covers
the expectation that test accuracy is close to validation
accuracy within a certain range.

Section 2 introduces two resources for the experiment;
Scikit-learns and UCI repository. In Section 3, an
experiment is designed and the charts resulted from the
experiment is presented. Section 4 makes a discussion on
some unexpected findings to answer our research question.
The conclusion is mentioned in Section 5.

2. Materials and methods

2.1 Scikit-Learn

Scikit-Learn is a project that was started in 2007 as a
Google Summer of Code project by David Cournapeau. In
2010 the team made the first public release. Scikit-learn is
a Python module integrating a wide range of state-of-the-art
machine learning algorithms for medium-scale supervised
and unsupervised problems. This package focuses on
bringing machine learning to non-specialists using a
general-purpose high-level language. Emphasis is put on
ease of use, performance, documentation, and API
consistency. It has minimal dependencies and is distributed
under the simplified BSD license, encouraging its use in
both academic and commercial settings. Source code,
binaries, and documentation can be downloaded from
http://scikit-learn.sourceforge.net [7].

Scikit-learn can evaluate a model’s performance using
cross-validation, and it maximizes computational efficiency
as shown in Table 2[7], which compares computation time
for some algorithms, implemented in the major machine
learn toolkits accessible in Python; MLpy[8], PyBrain[9],
pymvpa[10], MDP[11], and Shogun[12]. The computation

is with Madelon data set[13], 4400 instances and 500
features.

2.2 UCI ML repository

The well-established University of California Irvine
(UCI) ML Repository (https://archive.ics.uci.edu/ml/) is a
collection of databases, domain theories, and data
generators that are used for the empirical analysis of ML
algorithms. The archive has been cited over 1000 times,
making it one of the top 100 most cited papers in computer
science [14].

The Iris Flower dataset or Fisher’s Iris dataset was
introduced by the British statistician and biologist Ronald
Fisher[15]. The dataset consists of 50 samples from each of
the three species of Iris (Iris setosa, Iris virginica, and Iris
versicolor). Four features were measured from each sample:
the length and the width of the sepals and petals, in
centimeters. Based on the combination of these four
features, Fisher developed a linear discriminant model to
distinguish the species from each other. For instance, the
35th sample in the Iris dataset is < 4: 9; 3: 1; 1: 5; 0: 2;”
Irissetosa” >, where the sepal length is 4.9 cm, sepal width
is 3.1 cm, petal length is 1.5 cm, petal width is 0.2 cm, and
its class is Iris setosa. The dataset, which contains a set of
150 records, has been referred to in many research studies
[16-20]. The experiment in this study uses the Iris Flower
dataset obtained from a public research data storage, namely
the Machine Learning Repository [14] maintained by the
University of California, Irvine.

3. Results

3.1 Research Question

In ML, test set measures the accuracy of model that is
passed through model validation. The model after the
validation is expected to achieve a high accuracy under test
set, which is a set of data unseen by a model yet. We doubt
this expectation. That is why ML selects a test set
quantitatively without a criterion while a traditional
software testing selects test cases with a well-developed
criterion. We want to make sure that ML’s test set is good

Table 1. Time in seconds on the Madelon data set for various machine learning libraries [7]

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.12, December 2018

551

enough for testing a validated model, which means that the
test accuracy keeps close to its validation accuracy.

3.2. Experiment

The experiment aims to measure validation accuracy
and test accuracy, and calculates the gap between validation
accuracy and test accuracy. Technically, a high validation
accuracy expects a high test accuracy and vice versa. The
experiment runs 100 cases for each kind of data sets, and
check if the test accuracy follows its validation accuracy. If
a test accuracy is low with a high validation accuracy, test
set or validation set is not selected adequately. Through the
experiment, we find he unexpected test accuracy, and show
that the ML’s data splitting method needs to utilize data
selection criteria that is considered in software testing.

3.2.1. Subjects

In UCI ML repository, "Most Popular Data Sets" are
ranked based on the number of downloads since 2007. The
top six data sets in this repository are applied to this
experiment. The selected data sets have been used in many
studies [15-17]. As described in Table 2, the six datasets are
of different sizes from Iris (data volume: 150) to Adult (data
volume: 48,842). Additionally, the feature complexity in
each data set varies from simple Iris with 4 features to
Breast Cancer with 32 features.

Table 2. The six most-popular datasets in the UCI
machine learning repository

No. Dataset Size Feature
1 Iris 150 4
2 Heart Disease 303 13
3 Breast Cancer 569 32
4 Car Evaluation 1728 6
5 Wine Quality 4898 12
6 Adults 48842 14

3.2.2. Measurement

For measurement, we coded a python program with
Scikit-learn library. The program is executing the steps of
experiment; splitting data into train set and test set, training
a SVM model with the train set, validating it with cross

validation set, measuring validation accuracy, testing the
model with test set, measuring test accuracy, and
calculating the gap between validation accuracy and test
accuracy. It includes an iteration of 100 different data-
splitting for each data set in it. The program generates
validation set by n-folding method, where n equals to 5 for
instance. That is because the size of some data sets in the
experiment is not big enough to be divided into 3 parts; train
set, validation set, and test set. In this case, cross validation
is recommended traditionally. For example, 5-fold cross
validation folds a train set into 5 parts and validates the
model with each part of them. Finally, it calculates the
average of five numbers of accuracy as the validation
accuracy. We use n-fold cross validation in the experiment
because cross validation is free from the potential
overfitting problem caused by splitting quantitatively.

The output of experiment is written in a CSV file for
each data set. The output includes 3 kinds of accuracy; train
accuracy, validation accuracy, and test accuracy. It also
includes the calculated gap between test accuracy and
validation accuracy. Vertically, the file has 100 rows
excepting the title row, and one row represents the output
for one case of data splitting. Figure 2 is a part of the CSV
file.

3.3. Validation Accuracy

As explained in Figure 1, a model is learning with train
set, and then it is validated with validation set. At this time,
the model is called as a hypothesis, since it is not a final
version of model. The hypothesis has accepted data of train
set in it through a learning process, but it hasn’t seen data
of validation set yet. Validation set as unseen data is very
meaningful for the model selection, where it checks if the
hypothesis works generally without overfitting to train set.
Therefore, the validation set should be neural and moreover
represents a future testing data. The experiment applies a
cross validation method to avoid overfitting of validation
data itself. Cross validation generates a set of data by
folding data of train set. We use 5-fold method in the
experiment.

Fig 2 A part of output file for IRIS data set

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.12, December 2018

552

Fig 3. Box plot for the gap of Test accuracy from Validation accuracy or Train accuracy

Fig 4. Bar chart representing the gap between validation accuracy and test accuracy

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.12, December 2018

553

The result shows that the validation accuracy is always
more close to its test accuracy compared to the train
accuracy. In the chart, one box plot presents all the numbers
of accuracy for 100 different kinds of data splitting. This
measurement is done for each of six UCI data sets
mentioned in Table 2.

Figure 3 shows six box plot chars, one for each data
set. The perfect result is located in zero, which means that
the validation or train accuracy is the same as test accuracy.
A box representing “test accuracy minus validation
accuracy” is located around zero more than a box
representing “test accuracy minus train accuracy.” As
shown in all the chars of Figure 3, we have recognized that
the validation accuracy is more similar to test accuracy. It
means that the validation set, which is generated by 5
folding cross validation, is more neutral than the train set.

3.4. Test Accuracy

According to the definition of validation, a high
validation accuracy expects a high test accuracy. The test
set would be biased or not adequate for testing if the
expectation does not always happen. As mentioned in
Section 1, we focus on the adequacy of ML’s test set in
terms of software testing. The experiment calculates the gap
between validation accuracy and test accuracy. The gap is
calculated by a formula, test accuracy minus validation
accuracy. The gap would be positive if test accuracy is
higher, and negative if test accuracy is lower than validation
accuracy. The length of line in chart of Figure 4 presents the
gap between test accuracy and validation accuracy. The
length would be short if test accuracy is almost same to the
validation accuracy, and long if test accuracy is far from the
validation accuracy.

In case of a long line in chart, the model passed though
validation would not get a good test accuracy although it is
supposed to achieve a high accuracy. This is the unexpected
result, which exist in some cases of 100 different data
splitting. For instance, the test accuracy of the 5th case in
IRIS is almost 13%p lower than its validation accuracy. It
must be a big difference.

4. Discussion

4.1 Unexpected test accuracy

According to the definition of validation in model
selection, validation accuracy represent how much the
model is accurate in predicting for general input data. Low
validation accuracy means that the trained model is
overfitting, and the model needs to be generalized in order
to get a high validation accuracy. Model selection process
prefers a high validation accuracy expecting that the test

accuracy is close to its validation accuracy. Through the
experiment, we found that this expectation is not always
true. The unexpected finding is high test accuracy for low
validation accuracy or low test accuracy for high validation
accuracy. The former case is presented as a dropping line
under x-axis of chart in Figure 4, while the latter case is
presented as a rising line over x-axis.

For instance, the difference between test accuracy and
validation accuracy is -13.33%p in the 5th model of IRIS
data set. It has been represented as a long dropping line in a
IRIS chart of Figure 4. In this case, test accuracy is
measured as 86.67% even though validation accuracy is
100%. For another instance, the 59th case of Heart Disease
data set is presented as a long rising line in a chart of Figure
4. It achieves low validation accuracy, 54.86%, but its test
accuracy is measured as 73.33%. 73.33% is located within
the 5 top high test accuracy in 100 cases of Heart Disease.

Table 3. A few of unexpected figures measured in the
experiment

4.2 Adequacy of test set

In traditional software testing, a set of test data has to
be selected by an appropriate criterion because an
exhaustive testing, that covers all available input data, is
impossible theoretically. The criterion affects test coverage
finally. ML also selects a set of test data, but it doesn’t use
a criterion. It only splits data set quantitatively; usually 60%
for train set, 20% for validation set, and the other 20% for
test set. Considering the importance of criteria in software
testing, we doubt whether the test set would work
adequately or not. This is called as the test adequacy.

As described in Section 4.1, some unexpected test
accuracy measured by test set were found in the experiment.
Graphically, the long dropping or rising lines represents the
unexpected results. In case of Heart Disease, the length of
line in chart is long either over or below x-axis. Therefore,
test set in ML is not always adequate for testing the model.

Data Set Name IRIS
Heart

Disease

Split# 5 59

Train accuracy(%) 100 64.98

Validation accuracy(%) 100 54.86

Test accuracy(%) 86.67 73.33

Test accuracy –validation accuracy
(%p)

-13.33 18.47

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.12, December 2018

554

4.3 Threats of validity

A threat to internal validity, is that the experiment
generate a validation set through only 5-fold cross
validation method. It can be 3-fold or 4-fold instead of 5-
fold. But the number of foldings may not be critical for the
validation accuracy comes as an average of all the
validation accuracy calculated by each fold. One more
threat is that the experiment doesn’t cover the case of
normal validation set, 20% of data set. In our defense, the
normal validation set could be biased because of data-
splitting’s randomness.

A threat to external validity is that the experiment uses
SVM classifier as a target model. If another modeling
algorithm is used in the experiment, the figures would be
different. But this research work doesn’t focus on analysis
which modeling algorithm matches to the expectation. The
difference between modeling algorithms is not the interest
in this work. Therefore, we have chosen SVM classifier,
which offers very high accuracy compared to other
classifiers such as logistic regression, and decision trees.
SVM has been widely used in different fields and it can
obtain high performance in many real world applications
such as image retrieval [19], cancer recognition [20], text
classification [21] and credit scoring [22].

5. Conclusions

The traditional software testing selects a set of test data
by an appropriate criterion considering the theory that an
exhaustive testing, that covers all available input data, is
impossible. ML also selects a set of test data, but it only
splits data set quantitatively; usually 60% for train set, 20%
for validation set, and the other 20% for test set. Namely, it
doesn’t use a test data selection criterion. To make sure that
ML’s set of test data works adequately, we designed an
experiment that shows the adequacy of ML’s test set. The
experiment used six data sets presented in Table 1,
implemented SVM classifier as a target model, and includes
scikit-learn library. The adequacy was analyzed based on
the expectation that test accuracy keeps close to its
validation accuracy within a certain range.

Through the experiment, we found that this
expectation is not always true. The unexpected finding is
high test accuracy for low validation accuracy or low test
accuracy for high validation accuracy. There happens the
unexpected test accuracy in all the cases of six data sets, and
some of them showed big difference, such as 13.3%p or
18.84%p, from the expected accuracy. The experiment is
done for 100 cases of data-splittings, some of them satisfied
the expectation, but some of them didn’t. Therefore, we
found that the cause of difference falls on data of test set. It
means that the test set of ML is not adequate for a reliable

testing. We suggest that ML apply its appropriate criteria to
select a test set, since even safety-critical system has been
accepting the ML approach recently. Current data-splitting
method is not adequate for validating future ML systems.

Acknowledgments

This work was supported by the Hyupsung University
Research Grant of 2020.

References
[1] Yun Xu and Royston Goodacre. On Splitting Training and

Validation Set: A Comparative Study of Cross-Validation,
Bootstrap and Systematic Sampling for Estimating the
Generalization Performance of Supervised Learning. Journal
of Analysis and Testing. 2:249-262. (2018)

[2] Andrew Ng. Model Selection and Train/Validation/Test sets.
Machine Learning @ Coursera.

[3] Shin Nakajima and Kai Ngoc BUI. Dataset Coverage for
Testing Machine Learning Computer Programs. Proceedings
of 23rd Asia- Pacific Software Engineering Conference; 2016
Dec 6-9; New Zealand: IEEE, (2016)

[4] Arnab Sharma and Keike Wehrheim. Testing Machine
Learning Algorithms for Balanced Data Usage. Proceeding
of 12th International Conference of Software Testing,
Verification and Validation; 2019 April 22-27; China: IEEE;
(2019)

[5] Senthil Mani and Anush Sankaran. Coverage Testing of Deep
Learning Models using Dataset Characterization. ArXiv.
2019; arXiv:1911.07309.(2019)

[6] Du Zhang and Jeffrey Tsai. Machine Learning Applications
in Software Engineering. World Scientific; (2005)

[7] F. Pedregosa et al. Scikit-learn: Machine Learning Systems
with Python. Journal of Machine Learning Research.
12(85):2825-2830. (2011)

[8] D. Albanese, G. Merler, S.and Jurman, and R. Visintainer.
MLPy: high-performance python package for predictive
modelling. Proceeding on Workshop on Machine Learning
Open Source Software. 2008 December 12; Canada:
PASCAL. (2008)

[9] T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke,
T. R¨uckstieß, and J. Schmidhuber. PyBrain. The Journal of
Machine Learning Research. 11:743–746. (2010)

[10] M. Hanke, Y.O. Halchenko, P.B. Sederberg, S.J. Hanson, J.V.
Haxby, and S. Pollmann. PyMVPA: A Python toolbox for
multivariate pattern analysis of fMRI data. Neuro informatics.
7(1):37-53. (2009)

[11] T. Zito, N.Wilbert, L.Wiskott, and P. Berkes. Modular toolkit
for data processing (MDP): A Python data processing
framework. Frontiers in Neuro informatics. January (2008)

[12] S. Sonnenburg, G. R¨atsch, S. Henschel, C.Widmer, J. Behr,
A. Zien, F. de Bona, A. Binder, C. Gehl, and V. Franc. The
SHOGUN machine learning toolbox. Journal of Machine
Learning Research. 11:1799–1802 (2010)

[13] I Guyon, S. R. Gunn, A. Ben-Hur, and G. Dror. Result
analysis of the NIPS 2003 feature selection challenge.
Proceedings of the 17th International Conference on Neural

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.12, December 2018

555

Information Processing Systems. 2004 December;
Vancouver, Canada: MIT press. (2004)

[14] Dua D, Graff C. UCI Machine Learning Repository.
Available from: http://archive.ics.uci.edu/ml (2017)

[15] R. A. Fisher. The use of multiple measurements in taxonomic
problems. Annals of Human Genetics. 7(2):179-188 (1936)

[16] R. O. Duda and P.E. Hart. Pattern Classification and Scene
Analysis. John Wiley Sons: New York (1973)

[17] B. V. Dasarathy. Nosing around the neighbourhood: A new
system structure and classification rule for recognition in
partially exposed environments. IEEE Transactions on
Pattern Analysis and Machine Intelligence. PAMI-2(1):67-71
(1980)

[18] G.W. Gates. The reduced nearest neighbor rule. IEEE
Transactions on Information Theory. 18(3): 431–433 (1972)

[19] Tao, D.C., Tang, X.O., Li, X.L., Wu, X.D. Asymmetric
bagging and random subspace for support vector machines-
based relevance feedback in image retrieval. IEEE
Transactions on Pattern Analysis and Machine Intelligence.
28(7), 1088–1099 (2006)

[20] Giorgio, V., Marco, M., Francesca, R. Cancer recognition
with bagged ensembles of support vector machines. Neuro
computing. 2004; 56: 461–466 (2004)

[21] Hyunsoo, K., Peg, H., Haesun, P. Dimension Reduction in
Text Classification with Support Vector Machines. Journal of
Machine Learning Research. 6:37–53 (2005)

[22] Bellotti, T., Crook, J. Support vector machines for credit
scoring and discovery of significant features. Expert Systems
with Applications. 36:3302–3308 (2009)

 Hoijin Yoon received the B.S., M.S.
and Ph.D. degrees in Computer Science
from Ewha Womans University, Korea,
in 1993, 1998 and 2004, respectively
Dr. Yoon worked in Ewha as a full-time
lecturer for 2 years after getting her
Ph.D. In 2007, she joined the faculty of
the Department of Computer
Engineering at Hyupsung University,
Hwaseung-si, Korea. She is currently
an Associate Professor in the

Department of Computer Engineering, Hyupsung University. She
is interested in Software testing and Mutation Analysis.

