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Summary 
Machine Learning(ML) splits data into 3 parts, which are usually 
60% for training, 20% for validation, and 20% for testing. It just 
splits quantitatively instead of selecting each set of data by a 
criterion, which is very important concept for the adequacy of test 
data. ML measures a model’s accuracy by applying a set of 
validation data, and revises the model until the validation accuracy 
reaches on a certain level. After the validation process, the 
complete model is tested with the set of test data, which are not 
seen by the model yet. If the set of test data covers the model’s 
attributes well, the test accuracy will be close to the validation 
accuracy of the model. To make sure that ML’s set of test data 
works adequately, we design an experiment and see if the test 
accuracy of model is always close to its validation adequacy as 
expected. The experiment builds 100 different SVM models for 
each of six data sets published in UCI ML repository. From the 
test accuracy and its validation accuracy of 600 cases, we find 
some unexpected cases, where the test accuracy is very different 
from its validation accuracy. Consequently, it is not always true 
that ML’s set of test data is adequate to assure a model’s quality. 
Key words: 
Software Testing, Machin learning, Test adequacy, Validation, 
Accuracy. 

1. Introduction 

In recent years, Machine Learning (ML) has become 
an essential technique for developing an intelligent system, 
which is built based on a big size of data. A data set is 
divided by 3 separate groups, which are one for training, 
another for validation, and the other for testing.  For the 
convenience, these three part are called simply Training set, 
Validation set, and Test set as shown in Figure 1. As shown 
in Figure 1, the validation set is replaced with cross 
validation when the size of data is not big enough to save 
another group of data for validation. Cross validation 

generates a set of data for validation by a method, for 
example, n-folding and so on.  

Training set is used to train a model, and the trained 
model understands the training data well. Training 
accuracy, the hit ratio of the model’s predictions for a set of 
training data, must be high. But the fact that a model 
achieves a high training doesn’t mean that it’s a good model 
for all the general data. This is “Overfitting” problem. To 
avoid overfitting problem, the model should be validated. 
The data set for validation is applied to a model to measure 
Validation accuracy, which is a percentage of how many 
predictions hit their labels of data. The fact that the 
validation accuracy is much lower than the training 
accuracy means that the current model must be overfitting. 
Overfitting is a phenomenon often seen when a trained 
model performs extremely well on the samples used for 
training but performs poorly on new unknown samples; that 
is to say the model is not generalized well [1]. So the model 
needs to be generalized more by fixing the hyper-
parameters [2].   The generalization has repeated until the 
model’s validation accuracy is measured as high as its 
training accuracy.  The generalized model is tested with test 
set, which has not been seen by the model yet. Test accuracy 
is a percentage of correct predictions for these unseen data.  
Figure 1 explains how 3 types of data sets are used in 
training, validating, and testing in ML, and introduces ML’s 
terminology.  

ML splits the data into 3 parts, which is usually 60% 
for training, 20% for validation, and 20% for testing instead 
of selecting data by a certain criterion.  This approach is 
quantitative, and we doubt the quality of test set with 
wondering if the test set made by data-splitting could cover 
all the factors that should be tested in a model. Some 

Fig 1. Training, Validation, and Testing in ML 
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existing research works [3-6] also studies ML’s data usage. 
Technically, the validation set is neutral in order to check if 
a model is overfitting, and test accuracy is expected to be 
close to the validation accuracy. If the test accuracy is still 
high as expected by a high validation accuracy, the test set 
can be said to be adequate and we don’t have any reason for 
asking ML a certain criterion to select a test set. This 
research work answers the question about quality of ML’s 
test set through an experiment checking if the test set covers 
the expectation that test accuracy is close to validation 
accuracy within a certain range.  

Section 2 introduces two resources for the experiment; 
Scikit-learns and UCI repository. In Section 3, an 
experiment is designed and the charts resulted from the 
experiment is presented. Section 4 makes a discussion on 
some unexpected findings to answer our research question. 
The conclusion is mentioned in Section 5. 

2. Materials and methods 

2.1 Scikit-Learn 

Scikit-Learn is a project that was started in 2007 as a 
Google Summer of Code project by David Cournapeau. In 
2010 the team made the first public release. Scikit-learn is 
a Python module integrating a wide range of state-of-the-art 
machine learning algorithms for medium-scale supervised 
and unsupervised problems. This package focuses on 
bringing machine learning to non-specialists using a 
general-purpose high-level language. Emphasis is put on 
ease of use, performance, documentation, and API 
consistency. It has minimal dependencies and is distributed 
under the simplified BSD license, encouraging its use in 
both academic and commercial settings. Source code, 
binaries, and documentation can be downloaded from 
http://scikit-learn.sourceforge.net [7]. 

Scikit-learn can evaluate a model’s performance using 
cross-validation, and it maximizes computational efficiency 
as shown in Table 2[7], which compares computation time 
for some algorithms, implemented in the major machine 
learn toolkits accessible in Python; MLpy[8], PyBrain[9], 
pymvpa[10], MDP[11], and Shogun[12].  The computation 

is with Madelon data set[13], 4400 instances and 500 
features. 

 
2.2 UCI ML repository 
 

The well-established University of California Irvine 
(UCI) ML Repository (https://archive.ics.uci.edu/ml/) is a 
collection of databases, domain theories, and data 
generators that are used for the empirical analysis of ML 
algorithms. The archive has been cited over 1000 times, 
making it one of the top 100 most cited papers in computer 
science [14]. 

The Iris Flower dataset or Fisher’s Iris dataset was 
introduced by the British statistician and biologist Ronald 
Fisher[15]. The dataset consists of 50 samples from each of 
the three species of Iris (Iris setosa, Iris virginica, and Iris 
versicolor). Four features were measured from each sample: 
the length and the width of the sepals and petals, in 
centimeters. Based on the combination of these four 
features, Fisher developed a linear discriminant model to 
distinguish the species from each other. For instance, the 
35th sample in the Iris dataset is < 4: 9; 3: 1; 1: 5; 0: 2;” 
Irissetosa” >, where the sepal length is 4.9 cm, sepal width 
is 3.1 cm, petal length is 1.5 cm, petal width is 0.2 cm, and 
its class is Iris setosa. The dataset, which contains a set of 
150 records, has been referred to in many research studies 
[16-20]. The experiment in this study uses the Iris Flower 
dataset obtained from a public research data storage, namely 
the Machine Learning Repository [14] maintained by the 
University of California, Irvine. 

3. Results 

3.1 Research Question 

In ML, test set measures the accuracy of model that is 
passed through model validation. The model after the 
validation is expected to achieve a high accuracy under test 
set, which is a set of data unseen by a model yet. We doubt 
this expectation. That is why ML selects a test set 
quantitatively without a criterion while a traditional 
software testing selects test cases with a well-developed 
criterion. We want to make sure that ML’s test set is good 

Table 1. Time in seconds on the Madelon data set for various machine learning libraries [7] 



IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.12, December 2018 
 

 

551

 

enough for testing a validated model, which means that the 
test accuracy keeps close to its validation accuracy. 

 

3.2. Experiment 

The experiment aims to measure validation accuracy 
and test accuracy, and calculates the gap between validation 
accuracy and test accuracy. Technically, a high validation 
accuracy expects a high test accuracy and vice versa. The 
experiment runs 100 cases for each kind of data sets, and 
check if the test accuracy follows its validation accuracy. If 
a test accuracy is low with a high validation accuracy, test 
set or validation set is not selected adequately. Through the 
experiment, we find he unexpected test accuracy, and show 
that the ML’s data splitting method needs to utilize data 
selection criteria that is considered in software testing.  

3.2.1. Subjects 

In UCI ML repository, "Most Popular Data Sets" are 
ranked based on the number of downloads since 2007. The 
top six data sets in this repository are applied to this 
experiment. The selected data sets have been used in many 
studies [15-17]. As described in Table 2, the six datasets are 
of different sizes from Iris (data volume: 150) to Adult (data 
volume: 48,842). Additionally, the feature complexity in 
each data set varies from simple Iris with 4 features to 
Breast Cancer with 32 features. 

Table 2. The six most-popular datasets in the UCI 
machine learning repository  

No. Dataset Size Feature 
1 Iris 150 4 
2 Heart Disease 303 13 
3 Breast Cancer 569 32 
4 Car Evaluation 1728 6 
5 Wine Quality 4898 12 
6 Adults 48842 14 

 

3.2.2. Measurement 

For measurement, we coded a python program with 
Scikit-learn library. The program is executing the steps of 
experiment; splitting data into train set and test set, training 
a SVM model with the train set, validating it with cross 

validation set, measuring validation accuracy, testing the 
model with test set, measuring test accuracy, and 
calculating the gap between validation accuracy and test 
accuracy. It includes an iteration of 100 different data-
splitting for each data set in it. The program generates 
validation set by n-folding method, where n equals to 5 for 
instance. That is because the size of some data sets in the 
experiment is not big enough to be divided into 3 parts; train 
set, validation set, and test set.  In this case, cross validation 
is recommended traditionally. For example, 5-fold cross 
validation folds a train set into 5 parts and validates the 
model with each part of them. Finally, it calculates the 
average of five numbers of accuracy as the validation 
accuracy. We use n-fold cross validation in the experiment 
because cross validation is free from the potential 
overfitting problem caused by splitting quantitatively. 

The output of experiment is written in a CSV file for 
each data set. The output includes 3 kinds of accuracy; train 
accuracy, validation accuracy, and test accuracy. It also 
includes the calculated gap between test accuracy and 
validation accuracy. Vertically, the file has 100 rows 
excepting the title row, and one row represents the output 
for one case of data splitting. Figure 2 is a part of the CSV 
file. 

3.3. Validation Accuracy 

As explained in Figure 1, a model is learning with train 
set, and then it is validated with validation set. At this time, 
the model is called as a hypothesis, since it is not a final 
version of model. The hypothesis has accepted data of train 
set in it through a learning process, but it hasn’t seen data 
of validation set yet. Validation set as unseen data is very 
meaningful for the model selection, where it checks if the 
hypothesis works generally without overfitting to train set. 
Therefore, the validation set should be neural and moreover 
represents a future testing data. The experiment applies a 
cross validation method to avoid overfitting of validation 
data itself. Cross validation generates a set of data by 
folding data of train set. We use 5-fold method in the 
experiment.  

 

 

 

Fig 2 A part of output file for IRIS data set 
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Fig 3. Box plot for the gap of Test accuracy from Validation accuracy or Train accuracy 

Fig 4. Bar chart representing the gap between validation accuracy and test accuracy 
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The result shows that the validation accuracy is always 
more close to its test accuracy compared to the train 
accuracy. In the chart, one box plot presents all the numbers 
of accuracy for 100 different kinds of data splitting. This 
measurement is done for each of six UCI data sets 
mentioned in Table 2. 

Figure 3 shows six box plot chars, one for each data 
set. The perfect result is located in zero, which means that 
the validation or train accuracy is the same as test accuracy. 
A box representing “test accuracy minus validation 
accuracy” is located around zero more than a box 
representing “test accuracy minus train accuracy.” As 
shown in all the chars of Figure 3, we have recognized that 
the validation accuracy is more similar to test accuracy. It 
means that the validation set, which is generated by 5 
folding cross validation, is more neutral than the train set. 

3.4. Test Accuracy 

According to the definition of validation, a high 
validation accuracy expects a high test accuracy. The test 
set would be biased or not adequate for testing if the 
expectation does not always happen.  As mentioned in 
Section 1, we focus on the adequacy of ML’s test set in 
terms of software testing. The experiment calculates the gap 
between validation accuracy and test accuracy. The gap is 
calculated by a formula, test accuracy minus validation 
accuracy. The gap would be positive if test accuracy is 
higher, and negative if test accuracy is lower than validation 
accuracy. The length of line in chart of Figure 4 presents the 
gap between test accuracy and validation accuracy. The 
length would be short if test accuracy is almost same to the 
validation accuracy, and long if test accuracy is far from the 
validation accuracy. 

In case of a long line in chart, the model passed though 
validation would not get a good test accuracy although it is 
supposed to achieve a high accuracy. This is the unexpected 
result, which exist in some cases of 100 different data 
splitting. For instance, the test accuracy of the 5th case in 
IRIS is almost 13%p lower than its validation accuracy. It 
must be a big difference. 

4. Discussion 

4.1 Unexpected test accuracy 

According to the definition of validation in model 
selection, validation accuracy represent how much the 
model is accurate in predicting for general input data. Low 
validation accuracy means that the trained model is 
overfitting, and the model needs to be generalized in order 
to get a high validation accuracy.  Model selection process 
prefers a high validation accuracy expecting that the test 

accuracy is close to its validation accuracy. Through the 
experiment, we found that this expectation is not always 
true. The unexpected finding is high test accuracy for low 
validation accuracy or low test accuracy for high validation 
accuracy. The former case is presented as a dropping line 
under x-axis of chart in Figure 4, while the latter case is 
presented as a rising line over x-axis.  

For instance, the difference between test accuracy and 
validation accuracy is -13.33%p in the 5th model of IRIS 
data set. It has been represented as a long dropping line in a 
IRIS chart of Figure 4.  In this case, test accuracy is 
measured as 86.67% even though validation accuracy is 
100%. For another instance, the 59th case of Heart Disease 
data set is presented as a long rising line in a chart of Figure 
4. It achieves low validation accuracy, 54.86%, but its test 
accuracy is measured as 73.33%. 73.33% is located within 
the 5 top high test accuracy in 100 cases of Heart Disease. 

Table 3. A few of unexpected figures measured in the 
experiment  

 

4.2 Adequacy of test set 

In traditional software testing, a set of test data has to 
be selected by an appropriate criterion because an 
exhaustive testing, that covers all available input data, is 
impossible theoretically. The criterion affects test coverage 
finally. ML also selects a set of test data, but it doesn’t use 
a criterion. It only splits data set quantitatively; usually 60% 
for train set, 20% for validation set, and the other 20% for 
test set. Considering the importance of criteria in software 
testing, we doubt whether the test set would work 
adequately or not. This is called as the test adequacy.  

As described in Section 4.1, some unexpected test 
accuracy measured by test set were found in the experiment. 
Graphically, the long dropping or rising lines represents the 
unexpected results. In case of Heart Disease, the length of 
line in chart is long either over or below x-axis. Therefore, 
test set in ML is not always adequate for testing the model. 

 

Data Set Name IRIS 
Heart 

Disease 

Split# 5 59 

Train accuracy(%) 100 64.98 

Validation accuracy(%) 100 54.86 

Test accuracy(%) 86.67 73.33 

Test accuracy –validation accuracy 
(%p) 

-13.33 18.47 
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4.3 Threats of validity 

A threat to internal validity, is that the experiment 
generate a validation set through only 5-fold cross 
validation method. It can be 3-fold or 4-fold instead of 5-
fold. But the number of foldings may not be critical for the 
validation accuracy comes as an average of all the 
validation accuracy calculated by each fold. One more 
threat is that the experiment doesn’t cover the case of 
normal validation set, 20% of data set. In our defense, the 
normal validation set could be biased because of data-
splitting’s randomness.   

A threat to external validity is that the experiment uses 
SVM classifier as a target model. If another modeling 
algorithm is used in the experiment, the figures would be 
different. But this research work doesn’t focus on analysis 
which modeling algorithm matches to the expectation. The 
difference between modeling algorithms is not the interest 
in this work. Therefore, we have chosen SVM classifier, 
which offers very high accuracy compared to other 
classifiers such as logistic regression, and decision trees. 
SVM has been widely used in different fields and it can 
obtain high performance in many real world applications 
such as image retrieval [19], cancer recognition [20], text 
classification [21] and credit scoring [22]. 

5. Conclusions 

The traditional software testing selects a set of test data 
by an appropriate criterion considering the theory that an 
exhaustive testing, that covers all available input data, is 
impossible. ML also selects a set of test data, but it only 
splits data set quantitatively; usually 60% for train set, 20% 
for validation set, and the other 20% for test set. Namely, it 
doesn’t use a test data selection criterion. To make sure that 
ML’s set of test data works adequately, we designed an 
experiment that shows the adequacy of ML’s test set.  The 
experiment used six data sets presented in Table 1, 
implemented SVM classifier as a target model, and includes 
scikit-learn library. The adequacy was analyzed based on 
the expectation that test accuracy keeps close to its 
validation accuracy within a certain range. 

Through the experiment, we found that this 
expectation is not always true. The unexpected finding is 
high test accuracy for low validation accuracy or low test 
accuracy for high validation accuracy. There happens the 
unexpected test accuracy in all the cases of six data sets, and 
some of them showed big difference, such as 13.3%p or 
18.84%p, from the expected accuracy. The experiment is 
done for 100 cases of data-splittings, some of them satisfied 
the expectation, but some of them didn’t. Therefore, we 
found that the cause of difference falls on data of test set. It 
means that the test set of ML is not adequate for a reliable 

testing. We suggest that ML apply its appropriate criteria to 
select a test set, since even safety-critical system has been 
accepting the ML approach recently. Current data-splitting 
method is not adequate for validating future ML systems. 
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