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Abstract 
The aim of this study is to provide empirical evaluation of the 
accuracy of data-model fit using growing levels of invariance 
models. Overall model accuracy of factor solutions was evaluated 
by the examination of the order for testing three levels of 
measurement invariance (MIV) starting with configural invariance 
(model 0). Model testing was evaluated by the Chi-square 
difference test (∆𝛘𝟐) between two groups, and root mean square 
error of approximation (RMSEA), comparative fit index (CFI), and 
Tucker-Lewis index (TLI) were used to evaluate the all-model fits. 
Factorial invariance result revealed that stability of the models was 
varying over increasing levels of measurement as a function of 
variable-to-factor ratio (VTF), subject-to-variable ratio (STV), and 

their interactions. There were invariant factor loadings and 
invariant intercepts among the groups indicating that measurement 

invariance was achieved . For VTF ratio  (3:1, 6:1, and 9:1), the 
models started to show accuracy over levels of measurement when 
STV ratio was 6:1. Yet, the frequency of stability models over 1000 
replications increased (from 69% to 89%) as STV ratio increased. 
The models showed more accuracy at or above 39:1 STV. 
 
Key words:  
Model- accuracy; Factorial-invariance; Level of measurement 
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1. Introduction  

 

To understand the impact of experimental design (ED) and 
the sampling design (SD)or other influences on WSV, a 
systematic structure for evaluating WSV changes is 
necessary. One possibility to evaluate WSV systematically is 
to use factorial invariance (FIV) [1]–[5]. Methods of FIV 
offer a structure that allows for disentangling measurement 
elements from structural elements in the factor model. Via 
FIV and evaluation of data-model fit, the impact of ED and 
SD on WSV can be compared among groups by examination 
of model precision [1], [6]–[9]. Previous research has 
investigated the precisions of factor solutions by the 
examination of Chi-square value (χ ) and overall model fit 
indices (OMF) such as goodness-of- fit index (GFI), adjusted 
goodness-of-fit index (AGFI), Tucker-Lewis index (TLI), 
comparative fit index (CFI), and root mean square error of 
approximation (RMSEA) [10]–[14]. Overall model fit 
indices examined global measures of data-model fit. 

There are three key features of design that are of paramount 
importance and generally overshadow all the technical 
decisions facing the researcher. These three features are: (a) 
the selection of and number of indicator variables, (b) the 
nature and size of the sample, and (c) the communality 
magnitude. Understanding the impact of variable-to-factor 
ratio (VTF), sample size or subject-to-variable ratio (STV), 
and communalities (h2) magnitude in FA analyses is relevant 
because these features affect the model precision and 
operationalized (measured) latent variable (factor) variance, 
which determines model invariance of FA findings. 

The benefit of FA is based on its ability to produce a well-
built, reliable, and understandable estimates of factor 
loadings [15, p. 154]. Therefore, understanding how VTF, 
STV, and h2 interact in FA and how they possibly influence 
or change the model precision and operationalized (measured) 
latent variable (factor) variance is the basic problem 
investigated in this study[16]–[29].  

The model precision in this research is operationalized along 
psychometric lines, not statistical. Statistically, precision is 
inversely related to the standard error of the sampling 
distribution and is related to the minimizing the standard 
error of a statistic. Psychometrically, precision can mean this, 
but additionally, in a reliability context it can also refer to the 
accuracy of the estimator to be near (or the same) as the 
theoretical latent variable (e.g., the true score) [1], [10]. Thus, 
as the standard error of measurement decreases the 
precision/accuracy of the observed scores converges to the 
true score. However, no comprehensive study has been found 
in the existing literature that has systematically examined the 
incremental or combined impacts of two features of ED and 
SD and how best to estimate the model. Therefore, evaluating 
the impact of ED and SD effects on WSV in FA findings is 
the basis of the proposed Monte Carlo simulation study[30], 
[31]. 

Three major concerns have emerged repeatedly in the 
literature related to the use and interpretation of FA in social 
science research: (a) determining an adequate number of 
indicator variables to describe the latent trait; (b) factoring a 
sufficient sample size to have reasonable confidence in the 
stability of the model estimate; and (c) establishing minimum 
communality levels to determine which indicator variables 
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can represent a latent trait, especially in simulation studies [8, 
10–13]. 

Factor Analysis (FA) assumes that the indicator variables 
used should be linearly related to one another. Otherwise, the 
number of extracted factors will be the same as the number 
of original variables [2, 15]. Survey instrument length and 
number of variables differ based on discipline, purpose, 
sample frame, and method of data collection. Recently, the 
online survey has become an important method of data 
collection for many researchers and scholars for a variety of 
reasons (e.g., online surveys are easy to design, conduct, and 
sometimes they are the only option for data collection). 
According to SurveyMonkey the median length of its paid 
surveys was 9 questions [37]. While industry-specific 
surveys and market-research surveys tend to have more 
questions, event surveys and just-for-fun surveys tend to be 
shorter [37]. If the length of the survey is about 9 questions 
or fewer, it can lead to a higher completion rate and increase 
the likelihood that people will choose to take the researcher’s 
surveys in the future. More recent studies of factor analysis 
in the literature do not include the VTF ratio 9:1 in their 
investigations [5, 12, 15–17], nor how this number is relative 
to sample size when factor analysis is conducted. 

 

2. Theoretical Consideration 

 

Researchers should determine an adequate number of 
indicator variables that is required to produce a stable and 
precise model to describe the latent trait. Fabrigar et al. [41] 
investigated the effects of indicator variables on pattern 
recovery to determine the sufficient number of indicator 
variables that is likely to produce patterns that closely 
approximate the population pattern. They reported that the 
number of indicator variables can strongly affect the degree 
to which a sample pattern reproduces the population pattern, 
and a minimum of three variables per factor is critical. The 
information about the adequate number of indicator variables 
that is required to produce a stable and precise model can be 
used in the design of a study and, retrospectively, in the 
evaluation of an existing study. 

A larger sample size is better than a smaller sample size 
because it is minimizing misfit and the probability of errors. 
In many cases, increasing the sample size may not be possible. 
In medical research, it is very difficult to collect a large 
sample of patients suffering from a certain disease [22–24]. 
Investigating the minimum STV ratio or small absolute 
sample size to obtain the stability of the model is necessary. 
Only a very limited number of studies on the role of sample 
size in factor analysis have investigated real or simulated 
small sample size. De Winter, Dodou, and Wieringa [40] 
investigated the minimum sample size necessary to obtain 
reliable factor solutions under various conditions. They 

concluded that under the conditions of high communality, 
high number of observed variables, and small number of 
factors, FA yields a stable estimates model for sample sizes 
below 50. 

Previous research has investigated the stability of factor 
solutions by the examination of chi-square value (χ ) and 
overall model fit indices (OMF) such as goodness-of- fit 
index (GFI), adjusted goodness-of-fit index (AGFI), Tucker-
Lewis index (TLI), comparative fit index (CFI), root mean 
square error of approximation (RMSEA), and root mean 
square residual (RMR)[8, 10, 18, 25–27]. Overall model fit 
indices examined global measures of data-model fit. 
Examinations of measurement invariance (MIV) (configural, 
weak, and strong) were used to evaluate model stability. 

Selecting the adequate sample size is an important decision 
in study design. A researcher must determine how large the 
sample should be and what is the most appropriate sampling 
frame. Literature has proposed tremendous guidelines for 
estimating an adequate sample size for FA [2, 4, 11, 36, 40]. 

 

3. Methods 

 

Simulation data are used in social science to answer a 
particular research question, solve a statistical problem, or 
improve analysis procedures techniques. Statistical program 
developers and research designers usually perform 
simulation data techniques for several reasons: gathering real 
data may be difficult, time-consuming, expensive, or real 
data sometime violate distributional assumptions. Simulation 
data often leads to greater understanding of an analysis and 
the results one can expect from various oddities of real-life 
data [10]. Simulation may approximate real-world results yet 
requires less time and effort and gives the researcher a chance 
to experiment with data under various conditions. 

3.1 Research procedure 

The study was designed to investigate empirical evaluation 
of accuracy of model fit in growing levels of invariance. This 
study manipulated: (a) variable-to-factor ratio (3:1, 6:1, and 
9:1) that were randomly sampled from a population of 1000 
indicator variables, (b) subject-to-variable ratio of 3:1 to 39:1 
in multiple of 2 (3:1, 6:1, 9:1, 12:1, and 39:1), and (c) 
communality magnitude (high, moderate, low, and mixed). 
These factors were varied in a known factor structure with: 
(a) continuous variables (measurement scale), (b) normal 
distribution, (c) 6-factor solutions (common factor), and (d) 
orthogonal solution (factor structure). 

3.2 Invariance 

The present study used (MGCFA) multiple-group 
confirmatory factor analysis model to exam invariance of the 
effectiveness scale across students’ classifications (gender 
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and status). Table 1 illustrates the order for testing 
measurement invariance starting with configural invariance 
(model 0). Model testing was evaluated by the chi-square 
difference test (∆χ ) between two groups, and RSMA, CFI, 
and TLI were used to evaluate all of the model fits. As 
previously referenced, the following criteria values 
suggested were used in this study: RMSEA: 0.00 - 0.05 very 
decent fit, CFI > 0.95 decent fit, and TLI  0.96 decent fit. 

Table 1. Procedure for Testing Stability Among Models 

 
 

4. Results 

Table 2a to 2c presents complete findings of measurement 
invariance for mixed communality among levels of STV over 
1000 replications where significant p-value marked with "*".  

VTF (3:1). examination of the measurement invariance, 
beginning with configural (M0) to weak (M1) to strong (M2). 
The findings revealed that for VTF ratios (6:1), χ  showed 

statistically significant results when testing configural 
invariance: (3:1 with 39:1); (3:1 with 12:1); (3:1 with 9:1); 
and (3:1 with 6:1). Thus, non-invariance was established 
precluding further invariance testing, e.g., weak, strong, and 
structural. However, at higher STV ratios, e.g., groups (6:1 
with 39:1); (6:1 with 12:1); (6:1 with 9:1); (9:1 with 39:1), 
(9:1 with 12:1); (9:1 with 39:1) and (12:1 with 39:1), χ  

was not statistically significant indicating configural 
invariance was established. Given the presence of configural 
invariance, testing for weak invariance was conducted. Again, 
chi-square difference between ∆𝜒  was not 
statistically significant supporting the hypothesis of weak 
factorial invariance between the two groups. After weak 
invariance was supported, examination of the indicator 
intercepts was tested. Results again supported the finding of 

strong invariance, e.g., the ∆𝜒 was not statistically 
significant. In conclusion, there were invariant factor 
loadings and invariant intercepts among the groups 
indicating that measurement invariance was achieved as 
described above.  

VTF (6:1). The model beginning with configural (M0) to 
weak (M1) to strong (M2). The findings revealed that for 
VTF ratios (6:1), χ  showed statistically significant results 

when testing configural invariance: (3:1 with 39:1); (3:1 with 
12:1); (3:1 with 9:1); (3:1 with 6:1); and (6:1 with 9:1). Thus, 
non-invariance was established precluding further invariance 
testing, e.g., weak, strong, and structural. However, at higher 
STV ratios, e.g., groups (6:1 with 39:1); (6:1 with 12:1); 
(12:1 with 39:1), (9:1 with 12:1); (9:1 with 39:1) and (12:1 
with 39:1), χ  was not statistically significant indicating 

configural invariance was established. Given the presence of 
configural invariance, testing for weak invariance was 
conducted. Again, chi-square difference between ∆𝜒  
was not statistically significant supporting the hypothesis of 
weak factorial invariance between the two groups. After 
weak invariance was supported, examination of the indicator 
intercepts was tested. Results again supported the finding of 
strong invariance, e.g., the ∆𝜒 was not statistically 
significant. In conclusion, there were invariant factor 
loadings and invariant intercepts among the groups 
indicating that measurement invariance was achieved as 
described above.  

VTF (9:1). The findings revealed that for VTF ratios (9:1), 
χ  showed statistically significant results when testing 

configural invariance: (3:1 with 39:1); (3:1 with 12:1); (3:1 
with 9:1); (3:1 with 6:1); (6:1 with 9:1); (6:1 with 12:1); and 
(6:1 with 39:1). Thus, non-invariance was established 
precluding further invariance testing, e.g., weak, strong, and 
structural. However, at higher STV ratios, e.g., groups (9:1 
with 12:1); (9:1 with 39:1) and (12:1 with 39:1), χ  was 

not statistically significant indicating configural invariance 
was established. Given the presence of configural invariance, 
testing for weak invariance was conducted. Again, chi-square 
difference between ∆𝜒  was not statistically 
significant supporting the hypothesis of weak factorial 
invariance between the two groups. After weak invariance 
was supported, examination of the indicator intercepts was 
tested. Results again supported the finding of strong 
invariance, e.g., the ∆𝜒 was not statistically 
significant. In conclusion, there were invariant factor 
loadings and invariant intercepts among the groups 
indicating that measurement invariance was achieved as 
described above. 

Table 2a. Examination for factorial-invariance (measurement and structural) 
across levels of education groups 

 

VT
F 

Between 
Groups 

𝛘𝟐 M ∆𝛘𝟐 p-value 
RMSEA 
CFI 
TLI 

M Test Name 𝑯𝟎 Symbol ∆𝝌𝟐 Test 
Test 
Statistics 
Guide 

M0 
Configural 
invariance 

𝐻 : λ
λ
⋯
λ  

 

𝜆 : The 
number of 
factor 
patterns 
across 𝑔  
groups 
 

 

If ∆χ  
NS, 
model 
shows 
configural 
factorial 
invariance 
in place 

M1 
Weak 
measurement 
invariance 

𝐻 : λ

λ
⋯
λ  

λ :  
The factor 
loading of 
j indicator 
variable in 
the group 
 

∆𝜒  

If ∆χ  
NS, 
model 
shows 
weak 
factorial 
invariance 
in place 

M2 
Strong 
measurement 
invariance 

𝐻 : τ

τ
⋯
τ  

τ : The 
indicator 
variables 
intercept 
(means) of 
𝑗  
indicator 
variable in 
the group 

∆𝜒  

If ∆χ  
NS, 
model 
shows 
strong 
factorial 
invariance 
in place 
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GFI 

3:1 

STV=3:1 
& 
STV=39:1 

369.18 M0 --- 0.0301* 
0.0201 
0.9893 
0.9874 

--- 
M1-
M0 

--- --- 
--- 
--- 
--- 

--- 
M2-
M1 

--- --- 
--- 
--- 
--- 

STV=3:1 
& 
STV=12:1 

371.33 M0 --- 0.0252* 
0.0285 
0.9791 
0.9754 

--- 
M1-
M0 

--- --- 
--- 
--- 
--- 

--- 
M2-
M1 

--- --- 
--- 
--- 
--- 

STV=3:1 
& 
STV=9:1 

375.77 M0 --- 0.0172* 
0.0399 
0.9602 
0.9530 

--- 
M1-
M0 

--- --- 
--- 
--- 
--- 

--- 
M2-
M1 

--- --- 
--- 
--- 
--- 

STV=3:1 
& 
STV=6:1 

386.26 M0 --- 0.0065* 
0.0573 
0.9245 
0.9104 

--- 
M1-
M0 

--- --- 
--- 
--- 
--- 

--- 
M2-
M1 

--- --- 
--- 
--- 
--- 

STV=6:1 
& 
STV=39:1 

340.29 M0 --- 0.2084 
0.0117 
0.9952 
0.9950 

356.07 
M1-
M0 

15.78 0.3968 
0.0117 
0.9950 
0.9951 

370.63 
M2-
M1 

14.56 0.4835 
0.0114 
0.9950 
0.9954 

STV=6:1 
& 
STV=12:1 

342.43 M0 --- 0.1859 
0.0164 
0.9907 
0.9902 

358.02 
M1-
M0 

15.59 0.4098 
0.0163 
0.9904 
0.9904 

372.60 
M2-
M1 

14.58 0.4820 
0.0159 
0.9905 
0.9910 

STV=6:1 
& 
STV=9:1 

346.89 M0 --- 0.1444 
0.0237 
0.9825 
0.9808 

362.81 
M1-
M0 

15.92 0.3873 
0.0236 
0.9819 
0.9810 

377.46 
M2-
M1 

14.65 0.4769 
0.0229 
0.9820 
0.9820 

STV=9:1 
& 
STV=12:1 

329.85 M0 --- 0.3402 
0.0082 
0.9971 
0.9978 

345.07 
M1-
M0 

15.22 0.4356 
0.0081 
0.9970 
0.9979 

360.13 
M2-
M1 

15.06 0.4471 
0.0080 
0.9969 
0.9979 

STV=9:1 
& 
STV=39:1 

331.88 M0 --- 0.3120 
0.0115 
0.9946 
0.9957 

346.96 
M1-
M0 

15.08 0.4456 
0.0113 
0.9945 
0.9958 

362.06 
M2-
M1 

15.1 0.4442 
0.0111 
0.9945 
0.9960 

325.34 M0 --- 0.4066 0.0063 

STV=12:1
& 
STV=39:1 

0.9980 
0.9990 

340.40 
M1-
M0 

15.06 0.4471 
0.0062 
0.9980 
0.9990 

355.2
8 

M2
-M1 

14.8
8 

0.460
0 

0.006
1 

0.998
0 

0.999
1 

 

Table 2b. Examination for factorial-invariance (measurement and structural) 
across levels of education groups 

VTF 
Between 
Groups 

𝛘𝟐 M ∆𝛘𝟐 p-value 

RMSEA 
CFI 
TLI 
GFI 

6:1 

STV=3:1 & 
STV=39:1 

1257.15 M0 --- 0.0006* 
0.0152 
0.9942 
0.9938 

--- 
M1-
M0 

--- --- 
--- 
--- 
--- 

--- 
M2-
M1 

--- --- 
--- 
--- 
--- 

STV=3:1 & 
STV=12:1 

1262.68 M0 --- 0.0004* 
0.0213 
0.9888 
0.9879 

--- 
M1-
M0 

--- --- 
--- 
--- 
--- 

--- 
M2-
M1 

--- --- 
--- 
--- 
--- 

STV=3:1 & 
STV=9:1 

1262.65 M0 --- 0.0004* 
0.0213 
0.9888 
0.9879 

--- 
M1-
M0 

--- --- 
--- 
--- 
--- 

--- 
M2-
M1 

--- --- 
--- 
--- 
--- 

STV=3:1 & 
STV=6:1 

1310.82 M0 --- <0.0001* 
0.0425 
0.9579 
0.9544 

--- 
M1-
M0 

--- --- 
--- 
--- 
--- 

--- 
M2-
M1 

--- --- 
--- 
--- 
--- 

STV=6:1 & 
STV=39:1 

1170.54 M0 --- 0.0686 
0.0093 
0.9975 
0.9973 

1200.54 
M1-
M0 

30 0.4656 
0.0092 
0.9975 
0.9974 

1230.60 
M2-
M1 

30.06 0.4625 
0.0090 
0.9975 
0.9975 

STV=6:1 & 
STV=12:1 

1176.06 M0 --- 0.0549 
0.0130 
0.9952 
0.9949 

1206.12 
M1-
M0 

30.06 0.4625 
0.0128 
0.9951 
0.9950 

1236.47 
M2-
M1 

30.35 0.4478 
0.0127 
0.9951 
0.9951 

STV=6:1 & 
STV=9:1 

1191.49 M0 --- 0.0279* 
0.018 
0.9905 
0.9898 

--- 
M1-
M0 

--- --- 
--- 
--- 
--- 

--- 
M2-
M1 

--- --- 
--- 
--- 
--- 
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STV=9:1 & 
STV=12:1 

1137.82 M0 --- 0.2086 
0.0062 
0.9986 
0.9987 

1167.98 
M1-
M0 

30.16 0.4574 
0.0061 
0.9986 
0.9987 

1197.93 
M2-
M1 

29.95 0.4682 
0.0061 
0.9986 
0.9987 

STV=9:1 & 
STV=39:1 

1143.33 M0 --- 0.1773 
0.0086 
0.9975 
0.9975 

1173.42 
M1-
M0 

30.09 0.4610 
0.0085 
0.9975 
0.9976 

1203.61 
M2-
M1 

30.19 0.4559 
0.0084 
0.9974 
0.9976 

STV=12:1& 
STV=39:1 

1122.39 M0 --- 0.3133 
0.0044 
0.9991 
0.9993 

1152.28 
M1-
M0 

29.89 0.4712 
0.0044 
0.9991 
0.9993 

1182.31 
M2-
M1 

30.03 0.4641 
0.0044 
0.9991 
0.9994 

 
Table 2c. Examination for factorial-invariance (measurement and structural) 

across levels of education groups 

VTF 
Between 
Groups 

𝛘𝟐 M ∆𝛘𝟐 p-value 

RMSEA 
CFI 
TLI 
GFI 

9:1 

STV=3:1 & 
STV=39:1 

2640.05 M0 --- <0.0001* 
0.01241 
0.9948 
0.9946 

--- 
M1-
M0 

--- --- 
--- 
--- 
--- 

--- 
M2-
M1 

--- --- 
--- 
--- 
--- 

STV=3:1 & 
STV=12:1 

2654.33 M0 --- <0.0001* 
0.0174 
0.9899 
0.9894 

--- 
M1-
M0 

--- --- 
--- 
--- 
--- 

--- 
M2-
M1 

--- --- 
--- 
--- 
--- 

STV=3:1 & 
STV=9:1 

2681.11 M0 --- <0.0001* 
0.0244 
0.9806 
0.9796 

--- 
M1-
M0 

--- --- 
--- 
--- 
--- 

--- 
M2-
M1 

--- --- 
--- 
--- 
--- 

STV=3:1 & 
STV=6:1 

2748.81 M0 --- <0.0001* 
0.0345 
0.9621 
0.9601 

--- 
M1-
M0 

--- --- 
--- 
--- 
--- 

--- 
M2-
M1 

--- --- 
--- 
--- 
--- 

STV=6:1 & 
STV=39:1 

2464.25 M0 --- <0.0001* 
0.0076 
0.9978 
0.9978 

--- 
M1-
M0 

--- --- 
--- 
--- 
--- 

--- 
M2-
M1 

--- --- 
--- 
--- 
--- 

STV=6:1 & 
STV=12:1 

2478.53 M0 --- <0.0001* 
0.0108 
0.9958 
0.9956 

--- 
M1-
M0 

--- --- 
--- 
--- 
--- 

--- 
M2-
M1 

--- --- 
--- 
--- 
--- 

STV=6:1 & 
STV=9:1 

2505.31 M0 --- 0.0059* 
0.0154 
0.9918 
0.9914 

--- 
M1-
M0 

--- --- 
--- 
--- 
--- 

--- 
M2-
M1 

--- --- 
--- 
--- 
--- 

STV=9:1 & 
STV=12:1 

2396.55 M0 --- 0.1648 
0.0047 
0.9989 
0.9990 

2441.69 
M1-
M0 

45.14 0.4661 
0.0047 
0.9989 
0.9990 

2486.29 
M2-
M1 

44.6 0.4470 
0.0046 
0.9989 
0.9990 

STV=9:1 & 
STV=39:1 

2410.83 M0 --- 0.1190 
0.0069 
0.9980 
0.9980 

2455.99 
M1-
M0 

45.16 0.4652 
0.0068 
0.9980 
0.9980 

2500.68 
M2-
M1 

44.69 0.4432 
0.0067 
0.9980 
0.9980 

STV=12:1& 
STV=39:1 

2369.77 M0 --- 0.2782 
0.0034 
0.9993 
0.9995 

2413.98 
M1-
M0 

44.21 0.5053 
0.0033 
0.9993 
0.9995 

2458.99 
M2-
M1 

45.01 0.4715 
0.0033 
0.9993 
0.9995 

 
 

5. Conclusion 

In general, this study provided empirical evaluation of the 
accuracy of the data-model fit over increasingly levels of 
factorial invariance for different feature of design in factor 
analysis. The study concluded that accuracy of the models 
was varying over increasingly levels of measurement as a 
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function of VTF, STV, and their interactions . There were 
invariant factor loadings and invariant intercepts among the 
groups indicating that measurement invariance was achieved . 
For VTF ratio  (3:1, 6:1, and 9:1) the models started to 
showed stability over levels of measurement when STV ratio 
was 3:1. Yet, the frequency of stability models over 1000 
replications increased (from 69% to 89%) as STV ratio 
increased. The models showed more accuracy at or above 
39:1 STV. 
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