Acknowledgement
This research was supported by the Ministry of Trade, Industry, and Energy Grant funded by the Korean Government [Project Number 20003901].
References
- F. Karagulian, C. A. Belis, C. F. C. Dora, A. M. Pruss-Ustun, S. Bonjour, H. Adair-Rohani, and M. Amann, "Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level", Atmos. Environ., 120, 475 (2015). https://doi.org/10.1016/j.atmosenv.2015.08.087
- P. Kumar, L. Pirjola, M. Ketzel, and R. M. Harrison, "Nanoparticle emissions from 11 non-vehicle exhaust sources-A review", Atmos. Environ., 67, 252 (2013). https://doi.org/10.1016/j.atmosenv.2012.11.011
- M. Mathissen, V. Scheer, R. Vogt, and T. Benter, "Investigation on the potential generation of ultrafine particles from the tire-road interface", Atmos. Environ., 45, 6172 (2011). https://doi.org/10.1016/j.atmosenv.2011.08.032
- F. Amato ed., "Non-exhaust emissions: An urban air quality problem for public health; Impact and mitigation measures", Academic Press, Barcelona, Spain, 2018.
- A. Valavanidis, K. Fiotakis, and T. Vlachogianni, "Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms", J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev., 26, 339 (2008). https://doi.org/10.1080/10590500802494538
- M. J. Foitzik, H. J. Unrau, F. Gauterin, J. Dornhofer, and T. Koch, "Investigation of ultra fine particulate matter emission of rubber tires", Wear, 394, 87 (2018). https://doi.org/10.1016/j.wear.2017.09.023
- I. Park, H. Kim, and S. Lee, "Characteristics of tire wear particles generated in a laboratory simulation of tire/road contact conditions", J. Aerosol Sci., 124, 30 (2018). https://doi.org/10.1016/j.jaerosci.2018.07.005
- J. Kwak, S. Lee, and S. Lee, "On-road and laboratory investigations on non-exhaust ultrafine particles from the interaction between the tire and road pavement under braking conditions", Atmos. Environ., 97, 195 (2014). https://doi.org/10.1016/j.atmosenv.2014.08.014
- G. Kim, and S. Lee, "Characteristics of tire wear particles generated by a tire simulator under various driving conditions", Environ. Sci. Technol., 52, 12153 (2018). https://doi.org/10.1021/acs.est.8b03459
- P. J. Kole, A. J. Lohr, F. G. A. J. Van Belleghem, and Ad M. J. Ragas, "Wear and tear of tyres: a stealthy source of microplastics in the environment", Int. J. Environ. Res. Public Health, 14, 1265 (2017). https://doi.org/10.3390/ijerph14101265
- B. Rodgers, "Tire Engineering: An Introduction", CRC Press: Boca Raton, FL, USA, 2020.
- J. Ejsmont, and W. Owczarzak, "Engineering method of tire rolling resistance evaluation", Measurement, 145, 144 (2019). https://doi.org/10.1016/j.measurement.2019.05.071
- V. D. Veiga, T. M. Rossignol, J. D. S. Crespo, and L. N. Carli, "Tire tread compounds with reduced rolling resistance and improved wet grip", J. Appl. Polym. Sci., 134, 45334 (2017). https://doi.org/10.1002/app.45334
- S. S. Sarkawi, W. K. Dierkes, and J. W. M. Noordermeer, "Natural Rubber-Silica Combinations for Low Rolling Resistance Truck Tyre Treads", Rubber World, 26 (2012).
- M.-J. Wang, "Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates", Rubber Chem. Technol., 71, 520 (1988). https://doi.org/10.5254/1.3538492
- S. S. Sarkawi, W. K. Dierkes, and J. W. M. Noordermeer, "Morphology of silica-reinforced natural rubber: The effect of silane coupling agent", Rubber Chem. Technol., 88, 359 (2015). https://doi.org/10.5254/rct.15.86936
- W. Dierkes, K. Sengloyluan, W. Kaewsakul, J. Noordermeer, K. Sahakaro, and A. Blume, "New Approaches to Increase the Compatibility of Natural Rubber and Silica for Reduction of Rolling Resistance of Truck and Bus Tires", ITEC in Focus: Green Tire (2019).
- W. Kaewsakul, K. Sahakaro, W. K. Dierkes, and J. W. Noordermeer, "Optimization of Epoxidation Degree and Silane Coupling Agent Content for Silica-Filled Epoxidized Natural Rubber Tire Tread Compounds", Adv. Mater. Res., 844, 243 (2014). https://doi.org/10.4028/www.scientific.net/AMR.844.243
- P. J. Martin, P. D. Brown, A. V. Chapman, and S. Cook, "Silica-reinforced epoxidized natural rubber tire treads-Performance and durability", Rubber Chem. Technol., 88, 390 (2015). https://doi.org/10.5254/rct.15.85940
- G. Ryu, D. Kim, S. Song, K. Hwang, B. Ahn, and W. Kim, "Effect of Epoxide Content on the Vulcanizate Structure of Silica-Filled Epoxidized Natural Rubber (ENR) Compounds", Polymers, 13, 1862 (2021). https://doi.org/10.3390/polym13111862
- G. Ryu, D. Kim, S. Song, K. Hwang, and W. Kim, "Effect of the Epoxide Contents of Liquid Isoprene Rubber as a Processing Aid on the Properties of Silica-Filled Natural Rubber Compounds", Polymers, 13, 3026 (2021). https://doi.org/10.3390/polym13183026
- P. Rooshenass, R. Yahya, and S. N. Gan, "Preparation of Liquid Epoxidized Natural Rubber by Oxidative Degradations Using Periodic Acid, Potassium Permanganate and UV-Irradiation", J. Polym. Environ., 26, 1378 (2018). https://doi.org/10.1007/s10924-017-1038-x
- D.R. Burfield, K.-L. Lim, K.-S. Law, and S. Ng, "Analysis of epoxidized natural rubber. A comparative study of d.s.c., n.m.r., elemental analysis and direct titration methods", Polymer, 25, 995 (1984). https://doi.org/10.1016/0032-3861(84)90086-7
- N. H. A. Azhar, H. M. Rasid, and S. F. M. Yusoff, "Epoxidation and Hydroxylation of Liquid Natural Rubber", Sains Malays., 46, 485 (2017). https://doi.org/10.17576/jsm-2017-4603-17
- V. Tanrattanakul, B. Wattanathai, A. Tiangjunya, and P. Muhamud, "In situ epoxidized natural rubber: Improved oil resistance of natural rubber", J. Appl. Polym. Sci., 90, 261 (2003). https://doi.org/10.1002/app.12706
- J. Liu, Z. Tang, T. Lin, B. Guo, and G. Huang, "New evidence disclosed for networking in natural rubber by dielectric relaxation spectroscopy", Soft Matter., 11, 2290 (2015). https://doi.org/10.1039/c4sm02521k
- L. Xu, C. Huang, M. Luo, W. Qu, H. Liu, Z. Gu, L. Jing, G. Huang, and J. Zheng, "A rheological study on non-rubber component networks in natural rubber", Rsc Advances., 5, 91742 (2015). https://doi.org/10.1039/C5RA07428B
- K. Sengloyluan, K. Sahakaro, W. K. Dierkes, and J. W. Noordermeer, "Silica-reinforced tire tread compounds compatibilized by using epoxidized natural rubber", Eur. Polym. J., 51, 69 (2014). https://doi.org/10.1016/j.eurpolymj.2013.12.010
- I.J. Kim, D. Kim, B. Ah n, H. Lee, H. Kim, and W. Kim, "Vulcanizate Structures of NR Compounds with Silica and Carbon Black Binary Filler Systems at Different Curing Temperatures", Elast. Compos., 56, 20 (2021). https://doi.org/10.7473/EC.2021.56.1.20
- S. Han, W.-S. Kim, D.-Y. Mun, B. Ahn, and W. Kim, "Effect of coupling agents on the vulcanizate structure of carbon black filled natural rubber", Compos. Interfaces, 27, 355 (2020). https://doi.org/10.1080/09276440.2019.1637197
- S. Maghami, "Silica-Filled Tire Tread Compounds: An Investigation into the Viscoelastic Properties of the Rubber Compounds and Their Relation to Tire Performance", Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2016.
- K. Suchiva, C. Sirisinha, P. Sae-Oui, and P. Thapthong, "Development of tyre tread compounds for good wet-grip: Effects of rubber type", IOP Conference Series: Materials Science and Engineering, 526, 012035 (2019).
- M.-J. Wang, P. Zhang, and K. Mahmud, "Carbon-Silica Dual Phase Filler, a new Generation Reinforcing Agent for Rubber: Part IX. Application to Truck Tire Tread Compound", Rubber Chem. Technol., 74, 124 (2001). https://doi.org/10.5254/1.3547633