DOI QR코드

DOI QR Code

기계학습을 이용한 유선 액세스 네트워크의 에너지 소모량 예측 모델

Prediction Model of Energy Consumption of Wired Access Networks using Machine Learning

  • Suh, Yu-Hwa (Baird University College, Soongsil University) ;
  • Kim, Eun-Hoe (Department of Software Engineering, Seoil University)
  • 투고 : 2021.02.01
  • 심사 : 2021.02.04
  • 발행 : 2021.02.28

초록

그린 네트워킹(Green networking)은 유선 데이터 네트워크(Wired data network)에서 통합적인 에너지 관리를 통해 에너지 낭비와 CO2 배출 감소를 유도하기 위해 주요 관심분야가 되었다. 그러나 액세스 네트워크(access networks)는 유선 데이터 네트워크 영역에서 사용자 단말을 제외하면 가장 많은 에너지를 소비하는 영역임에도 불구하고 그 범위가 매우 광대하여 통합적인 관리가 어렵고, 그 에너지 소모량과 에너지 절약 잠재성을 예측하기가 매우 어렵다. 본 논문에서는 기존의 다양한 수학적 예측 모델과 실험 및 실측 데이터를 이용하여 유선 액세스 네트워크의 에너지 소모량 데이터를 수집하고 머신러닝(Machine learning)의 지도학습을 이용한 다중 선형 회귀모델을 생성한다. 또한 생성한 모델로부터 다양한 실험을 통해 회귀모델의 성능을 최적화하여 유선 액세스 네트워크의 에너지 소모량을 예측하였고 생성한 회귀모델은 널리 알려진 평가 지표를 통해 성능을 평가하였다.

Green networking has become a issue to reduce energy wastes and CO2 emission by adding energy managing mechanism to wired data networks. Energy consumption of the overall wired data networks is driven by access networks, expect for end devices. However, on a global scale, it is more difficult to manage centrally energy, measure and model the real energy use and energy savings potential of the access networks. This paper presented the multiple linear regression model to predict energy consumption of wired access networks using supervised learning of machine learning with data collected by existing investigated materials, actual measured values and results of many models. In addition, this work optimized the performance of it by various experiments and predict energy consumption of wired access networks. The performance evaluation of the regression model was achieved by well-knowned evaluation metrics.

키워드

참고문헌

  1. R. Bolla, R, Bruschi, F. Davoli, and F. Cucchietti, "Energy efficiency in the future Internet: A survey of existing approaches and trends in energy-aware fixed network infrastructures", IEEE Commun. Surveys & Tuts., vol . 13, no. 2, pp. 223-244, 2011. https://doi.org/10.1109/SURV.2011.071410.00073
  2. J. Baliga, R. Ayre, W. V. Sorin, K. Hinton, and R. S. Tucker, "Energy consumption in optical IP networks," J. Lightwave Technol., vol. 27, no. 13, pp. 2391-2403, 2009. https://doi.org/10.1109/jlt.2008.2010142
  3. R. Bolla, R. Bruschi, A. Carrega, F. Davoli, D. Suino, C. Vassilakis, and A. Zafeiropoulos, "Cutting the energy bills of Internet Service Providers and telecoms through power management: An impact analysis," Computer Networks, vol. 56, pp. 2320-2342, 2012. https://doi.org/10.1016/j.comnet.2012.04.003
  4. S. Lambert, W. V. Heddeghem, W. Vereecken, B. Lannoo, D. Colle, and M. Pickavet, "Worldwide electricity consumption of communication networks," Optics Express, vol. 20, no. 26, pp. B513-B524, 2012. https://doi.org/10.1364/OE.20.00B513
  5. V. C. Coroama, C. Schien, C. Preist, and L. M. Hilty, "The energy intensity of the internet: Home and access networks ICT innovations for sustainability," Advances in Intell. Syst. Comput., vol. 310, pp. 137-155, 2015.
  6. Y. H. Suh, K. Y. Kim, "Estimation Modelling of Energy Consumption and Anti-greening Impacts in Large-Scale Wired Access Networks", J. Korean Institute of Communications and Information Sciences, Vol. 41 No. 08, pp. 928-941, 2016. 08. https://doi.org/10.7840/kics.2016.41.8.928
  7. David A. Freedman (2009). Statistical Models: Theory and Practice. Cambridge University Press. p. 26.
  8. S. L.anzisera, B. Nordman, and R. Brown, "Data network equipment energy use and savings potential in buildings," Energy Efficiency, vol. 5, no. 2, pp. 149-162, 2012. https://doi.org/10.1007/s12053-011-9136-4
  9. California Energy Commission, Small Network Equipment, California Energy Commission, Jul. 2013.