DOI QR코드

DOI QR Code

현수교 지중정착식 앵커리지의 거동특성과 국내 도서지역에서의 적용성에 대한 연구

A Study on the Physical Behavior and the Applicability of Rock Anchorage System of a Suspension Bridge in Domestic Island

  • 투고 : 2021.02.10
  • 심사 : 2021.02.17
  • 발행 : 2021.02.28

초록

현수교의 지중정착식 앵커리지는 기초 암반이 신선할 경우에 적용될 수 있는 형식으로, 앵커리지 형식 중 환경성과 경제성 측면에서 뚜렷한 장점이 있다. 그러나 케이블 하중 재하시 암반의 거동특성이 아직 명확하게 규명되지 않았고 설계기법이 정립되어 있지 않아, 실무자들이 구조물 계획을 수립하는데 많은 어려움을 겪고 있다. 본 연구에서는 국내 도서지역의 경암 지반에 계획된 지중정착식 앵커리지를 대상으로 모형실험과 수치해석을 수행하고 지지암반의 거동 특성을 평가하였으며, 자중과 전단력으로 케이블 하중에 저항하는 비대칭 형태의 암반 쐐기 블록을 제안하였다. 또한 경암 지반에서 강연선 홀 설치를 위한 실규모 시험천공을 실시하고, 경사 천공의 정밀도를 확인하여 지중정착식 앵커리지의 적용 가능성을 평가하였다.

The rock anchorage of a suspension bridge is an outstanding anchorage type from environmental and economical perspective, although it should be applied when the bearing foundation is fresh enough to resist large cable loads. In practice, geotechnical engineers have encountered difficulties in designing the anchorage structure due to the fact that the physical behaviors of rocks against cable loads have not yet been fully proved and its design method was not established yet. In this study, model tests and numerical studies were performed to evaluate the behavior of the rock anchorage system planned under hard rock layers in domestic islands, and results suggest that the shape of asymmetric rock wedges can resist the tension loads with self weight and shear resistance. Additionally, real scale trial tests were carried out to verify the accuracy of an inclined drilling penetrating hard rock layers to install tendon to the bearing plate.

키워드

참고문헌

  1. Kim, S.R., Hwang, J.I., Kim, M.M., and Ko, H.Y. (2006), "Comparison of 1-g and Centrifuge Model Tests for Similitude Laws", J. of the Korean Geotechnical Society, Vol.22, No.5, pp.59-67.
  2. Seo, Seunghwan, Park, Jaehyun, Lee, Sungjune, and Chung, Moonkyung (2018), "Analysis of Pull-out behavior of Tunnel-type Anchorage for Suspended Bridge Using 2-D Model Tests and Numerical Analysis", J. of the Korean Geotechnical Society, Vol.34, No.10, pp.61-74. https://doi.org/10.7843/KGS.2018.34.10.61
  3. Hong, Eun-Soo, Cho, Gye-Chun, Baak, Seng Hyoung, Park, Jae-Hyun, Chung, Moonkyung, and Lee, Seong-Won (2014), "A Numerical Study on Pull-out behaviour of Cavern-type Rock Anchorages", J. of the Korean Tunnelling and Underground Space Association, Vol.16, No.6, pp.521-531. https://doi.org/10.9711/KTAJ.2014.16.6.521
  4. Jeon, S.W., Kim, J.W., Hong, C.W., and Kim, Y.K. (2003), "Effect of a Karstic Lime Cavern on the Stability of Tunnel - A Scaled Model Test", J. of Korean Society for Geosystem Engineering, Vol.40, No.3, pp.147-158.
  5. Kim, Jong-Gwan and Yang, Hyung-Sik (2016), "Stability Analysis of the Inclined Pillars by Scaled Model Test", J. of the Korean Tunnelling and Underground Space Association, Vol.26, No.6, pp.508-515.
  6. Coquard, P. and Boisetelle, R. (1994), "Water and Solvent Effects on the Strength of Set Plaster", Int. J. of Rock Mechanics and Min. Sci., 31.5, pp.517-524. https://doi.org/10.1016/0148-9062(94)90153-8
  7. Iai, S. (1989), "Similitude for Shaking Table Tests on a Soil-structure-fluid Model in 1g Gravitational Field", Soils and Foundations, Vol.29, No.1, pp.105-118. https://doi.org/10.3208/sandf1972.29.105
  8. Meyerhof, G.G. and Adams, J.I. (1968), "The Ultimate Uplift Capacity of Foundations", Can. Geotech. J., Vol.5, pp.225-244. https://doi.org/10.1139/t68-024
  9. Yafeng Han, Xinrong Liu, Ning Wei, Dongliang Li, Zhiyun Deng, Xiangchao Wu, and Dongshuang Liu (2019), "A Comprehensive Review of the Mechanical behavior of Suspension Bridge Tunnel-type Anchorage", J. of the Advances in Materials Science and Engineering, Volume 2019, 19 pages.
  10. Korean Institute of Bridge and Structural Engineers and Korea Bridge Design & Engineering Research Center (2018), Korea Bridge Design Code (Limit State Design - Cable Bridge), pp./6-49/-/6-55/.
  11. Korean Geotechnical Society and KICT (2020), Geotechnical design guideline for anchorage of suspension bridge, pp.68-76.