References
- North EJ, Halden RU. 2013. Plastics and environmental health: the road ahead. Rev. Environ. Health 28: 1-8. https://doi.org/10.1515/reveh-2012-0030
- Thompson RC, Moore CJ, vom Saal FS, Swan SH. 2009. Plastics, the environment and human health: current consensus and future trends. Philos. Trans. R Soc. Lond B Biol. Sci. 364: 2153-2166. https://doi.org/10.1098/rstb.2009.0053
- Urtuvia V, Villegas P, Gonzalez M, Seeger M. 2014. Bacterial production of the biodegradable plastics polyhydroxyalkanoates. Int. J. Biol. Macromol. 70: 208-213. https://doi.org/10.1016/j.ijbiomac.2014.06.001
- Penkhrue W, Khanongnuch C, Masaki K, Pathom-Aree W, Punyodom W, Lumyong S. 2015. Isolation and screening of biopolymerdegrading microorganisms from northern Thailand. World J. Microbiol. Biotechnol. 31: 1431-1442. https://doi.org/10.1007/s11274-015-1895-1
- Poli A, Di Donato P, Abbamondi GR, Nicolaus B. 2011. Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea 2011: 692253.
- Rehm BH. 2003. Polyester synthases: natural catalysts for plastics. Biochem. J. 376: 15-33. https://doi.org/10.1042/BJ20031254
- Hyakutake M, Tomizawa S, Mizuno K, Abe H, Tsuge T. 2014. Alcoholytic cleavage of polyhydroxyalkanoate chains by class IV synthases induced by endogenous and exogenous ethanol. Appl. Environ. Microbiol. 80: 1421-1429. https://doi.org/10.1128/AEM.03576-13
- Singh M, Patel SK, Kalia VC. 2009. Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb. Cell Fact. 8: 38. https://doi.org/10.1186/1475-2859-8-38
- Skerman VBD, McGowan V, Sneath PHA. 1980. Approved lists of bacterial names. Int. J. Syst. Evol. Microbiol. 30: 225-420. https://doi.org/10.1099/00207713-30-1-225
- Parte AC. 2018. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int. J. Syst. Evol. Microbiol. 68: 1825-1829. https://doi.org/10.1099/ijsem.0.002786
- Bergey DH, Holt JG. 1994. Bergey's manual of determinative bacteriology. pp.787. 9th Ed. Philadelphia: Lippincott Williams & Wilkins.
- Tsuge T, Hyakutake M, Mizuno K. 2015. Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus. Appl. Microbiol. Biotechnol. 99: 6231-6240. https://doi.org/10.1007/s00253-015-6777-9
- Valappil SP, Peiris D, Langley GJ, Herniman JM, Boccaccini AR, Bucke C, et al. 2007. Polyhydroxyalkanoate (PHA) biosynthesis from structurally unrelated carbon sources by a newly characterized Bacillus spp. J. Biotechnol. 127: 475-487. https://doi.org/10.1016/j.jbiotec.2006.07.015
- Gouda MK, Swellam AE, Omar SH. 2001. Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol. Res. 156: 201-207. https://doi.org/10.1078/0944-5013-00104
- Kumar P, Ray S, Patel SK, Lee JK, Kalia VC. 2015. Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int. J. Biol. Macromol. 78: 9-16. https://doi.org/10.1016/j.ijbiomac.2015.03.046
- Mohandas SP, Balan L, Jayanath G, Anoop BS, Philip R, Cubelio SS, et al. 2018. Biosynthesis and characterization of polyhydroxyalkanoate from marine Bacillus cereus MCCB 281 utilizing glycerol as carbon source. Int. J. Biol. Macromol. 119: 380-392. https://doi.org/10.1016/j.ijbiomac.2018.07.044
- Narayanan A, Ramana KV. 2012. Polyhydroxybutyrate production in Bacillus mycoides DFC1 using response surface optimization for physico-chemical process parameters. 3Biotech 2: 287-296.
- Schlegel HG, Lafferty R, Krauss I. 1970. The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch. Mikrobiol. 71: 283-294. https://doi.org/10.1007/BF00410161
- Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbuchel A. 1999. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch. Mikrobiol. 171: 73-80.
- Sangkharak K, Prasertsan P. 2012. Screening and identification of polyhydroxyalkanoates producing bacteria and biochemical characterization of their possible application. J. Gen. Appl. Microbiol. 58: 173-182. https://doi.org/10.2323/jgam.58.173
- Muangsuwan W, Ruangsuj P, Chaichanachaicharn P, Yasawong M. 2015. A novel nucleic lateral flow assay for screening of PHAproducing haloarchaea. J. Microbiol. Methods 116: 8-14. https://doi.org/10.1016/j.mimet.2015.06.012
- Muangsuwan W, Promptmas C, Jeamsaksiri W, Bunjongpru W, Srisuwan A, Hruanun C, et al. 2016. Development of an immunoFET biosensor for the detection of biotinylated PCR product. Heliyon 2: e00188. https://doi.org/10.1016/j.heliyon.2016.e00188
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. https://doi.org/10.1093/nar/25.24.4876
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
- Page RD. 1996. TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357-358.
- Shamala TR, Chandrashekar A, Vijayendra SVN, Kshama L. 2003. Identification of polyhydroxyalkanoate (PHA)-producing Bacillus spp. using the polymerase chain reaction (PCR). J. Appl. Microbiol. 94: 369-374. https://doi.org/10.1046/j.1365-2672.2003.01838.x